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Summary of Lecture 3

In which we complete the study of Independent Set and Max Cut in Gn,p random graphs.

1 Maximum Independent Set

Last time we proved an upper bound of O
(

1
p log np

)
to the probable value of the maximum

independent set in a Gn,p random graph, a bound that holds also for p = p(n) being a
function of n.

Consider the greedy algorithm

• S := ∅

• for each v ∈ V

– if v has no neighbors in S then S := S ∪ {v}

• return S

To analyze the algorithm, consider the following random variables: let ti be the number
of for-loop iterations between the time the i-th element is added to S and the time the
(i + 1)-th element is added to S (ti is undefined if the algorithm terminates with a set S
of size less than i+ 1). Thus the size of the independent set found by the algorithm is the
largest i such that ti−1 is defined.

Consider now the following slightly different probabilistic process: in addition to our graph
over n vertices {1, . . . , n}, we also consider a countable infinite number of other vertices
n+ 1, n+ 2, . . ., we sample an infinite super-graph of our graph so that each possible edge
has probability p of being generated, we continue to run the greedy algorithm for every
vertex of this infinite graph, and we call ti the (now, always defined) number of for-loop
iterations between the i-th and the (i+ 1)-th time that we add a node to S. In this revised
definition, the size of the independent set found by algorithm in our actual graph is the
largest i such that t0 + t1 + . . .+ tk ≤ n.

We show that ti has a geometric distribution with success probability (1 − p)i, and so

E ti = 1
(1−p)i and Varti = 1−(1−p)i

(1−p)2i , meaning that
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E t0 + t1 + · · · tk =

1
(1−p)k − 1

1
1−p − 1

≤ 1

(1− p)k

(
1

1− p
− 1

)−1

=
1

p · (1− p)k−1

Vart0 + t1 + · · · tk ≤
k∑
i=0

1

(1− p)2i
=

1
(1−p)2k − 1

1
(1−p)2 − 1

≤ 1

(1− (1− p)2) · (1− p)2k−2

≤ 1

p · (1− p)2k−2
= p (E t0 + · · · tk)2

If we choose a k such that E t0 + · · · tk ≤ n
2 , which is true if we choose

k = log 1
p−1

pn

2
≈ 1

p
ln pn

then we are also getting that the standard deviation of t0 + · · · tk is at most pn/2 and, if
p(n)→ 0 we have a 1− o(1) probability that t0 + · · · tk ≤ n, meaning that |S| ≥ k.

Thus, if p(n)→ 0, the greedy algorithm has a 1−o(1) probability of finding an independent
set of size Ω(p−1 log pn) = Ω

(
n
d log d

)
.

In terms of certifiable upper bounds, the key bound is

Lemma 1 If p = p(n) > logn
n , G is sampled from Gn,p and A is the adjacency matrix of

G, then there is a 1− o(1) probability that

||A− pJ || ≤ O(
√
pn)

If S is an independent set of size k, then 1TSA1S = 0, 1TSJ1S = k2, and ||1S ||2 = k, so that

||A− pJ || ≥ pk

so we have that, if we denote by α(G) the size of the largest independent set in G,

α(G) ≤ 1

p
||A− pJ ||

In Gn,p random graph, the above upper bound is, with high probability, O(
√
n/p) =

O(n/
√
d).

In conclusion, in Gn,p random graphs, the probable value of the largest independent set is
O
(
n
d log d

)
, the independent set found by the greedy algorithm has size Ω

(
n
d log d

)
with

high probability, and spectral methods provide with a high probability an O(n/
√
d) upper

bound certificate, where d = pn.
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2 Max Cut

The probability that a Gn,p random graph, d := pn, has a cut cutting more than dn
4 + εdn

is at most e−Ω(ε2dn), there are 2n possible cuts, so with 2−Ω(n) probability the size of the
maximum cut is at most O(dn/4 +

√
dn).

Consider the greedy algorithm

• A := ∅

• B := ∅

• for each v ∈ V

– if v has more neighbors in B than in A then A := A ∪ {v}
– else B := B ∪ {v}

• return (A,B)

Let V = {1, . . . , n}, Ai and Bi be the sets A,B when vertex i is considered in the for-loop
and let ai and bi be their cardinality. Then the absolute value of the difference between
the number of neighbors of i in Ai versus Bi has expectation Ω(

√
pi) and variance O(pi).

Adding over all i, the sum of the differences (which is the gain over cutting half the edges),
has mean Ω(n

√
pn) and variance O(pn2), so the gain is Ω(n

√
pn) = Ω(n

√
d) with 1− o(1)

probability.

In terms of certifiable upper bounds, we have that if S, V − S is a cut of cost dn
4 +C, then

we have

1TSA1V−S =
dn

4
+ C

1TSpJ1V−S = p · |S| · |V − S| ≤ p · n
2

4
=
dn

4

||1S || · ||1V−S || =
√
|S| · |V − S| ≤

√
n2

4
so

C ≤ 2n · ||1S || · ||1V−S ||

This means that, in every graph, the maximum cut is upper bounded by

dn

4
+
n

2

∥∥∥∥A− d

n
J

∥∥∥∥
which, in Gn,p random graphs with d = pn is with high probability dn

4 +O(n
√
d).

So we have that the probable optimum is at most dn
4 +O(n

√
d), the greedy algorithm finds

a cut that, with high probability, has cost at least dn
4 + Ω(n

√
d) and, for p > logn

n , spectral

algorithms give upper bound certificates that the optimum is at most dn
4 +O(n

√
d)
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