Summary of Lecture 3

In which we complete the study of Independent Set and Max Cut in $G_{n,p}$ random graphs.

1 Maximum Independent Set

Last time we proved an upper bound of $O\left(\frac{1}{p}\log np\right)$ to the probable value of the maximum independent set in a $G_{n,p}$ random graph, a bound that holds also for p = p(n) being a function of n.

Consider the greedy algorithm

- $S := \emptyset$
- for each $v \in V$

- if v has no neighbors in S then $S := S \cup \{v\}$

 $\bullet\,$ return S

To analyze the algorithm, consider the following random variables: let t_i be the number of for-loop iterations between the time the *i*-th element is added to S and the time the (i + 1)-th element is added to S (t_i is undefined if the algorithm terminates with a set Sof size less than i + 1). Thus the size of the independent set found by the algorithm is the largest *i* such that t_{i-1} is defined.

Consider now the following slightly different probabilistic process: in addition to our graph over n vertices $\{1, \ldots, n\}$, we also consider a countable infinite number of other vertices $n + 1, n + 2, \ldots$, we sample an infinite super-graph of our graph so that each possible edge has probability p of being generated, we continue to run the greedy algorithm for every vertex of this infinite graph, and we call t_i the (now, always defined) number of for-loop iterations between the *i*-th and the (i + 1)-th time that we add a node to S. In this revised definition, the size of the independent set found by algorithm in our actual graph is the largest i such that $t_0 + t_1 + \ldots + t_k \leq n$.

We show that t_i has a geometric distribution with success probability $(1-p)^i$, and so $\mathbb{E} t_i = \frac{1}{(1-p)^i}$ and $\mathbf{Var} t_i = \frac{1-(1-p)^i}{(1-p)^{2i}}$, meaning that

$$\mathbb{E} t_0 + t_1 + \dots + t_k = \frac{\frac{1}{(1-p)^k} - 1}{\frac{1}{1-p} - 1} \le \frac{1}{(1-p)^k} \left(\frac{1}{1-p} - 1\right)^{-1} = \frac{1}{p \cdot (1-p)^{k-1}}$$

$$\mathbf{Var} t_0 + t_1 + \dots + t_k \le \sum_{i=0}^k \frac{1}{(1-p)^{2i}} = \frac{\frac{1}{(1-p)^{2k}} - 1}{\frac{1}{(1-p)^2} - 1} \le \frac{1}{(1-(1-p)^2) \cdot (1-p)^{2k-2}}$$

$$\le \frac{1}{p \cdot (1-p)^{2k-2}} = p \left(\mathbb{E} t_0 + \dots + t_k\right)^2$$

If we choose a k such that $\mathbb{E} t_0 + \cdots + t_k \leq \frac{n}{2}$, which is true if we choose

$$k = \log_{\frac{1}{p-1}} \frac{pn}{2} \approx \frac{1}{p} \ln pn$$

then we are also getting that the standard deviation of $t_0 + \cdots + t_k$ is at most pn/2 and, if $p(n) \to 0$ we have a 1 - o(1) probability that $t_0 + \cdots + t_k \leq n$, meaning that $|S| \geq k$.

Thus, if $p(n) \to 0$, the greedy algorithm has a 1 - o(1) probability of finding an independent set of size $\Omega(p^{-1} \log pn) = \Omega\left(\frac{n}{d} \log d\right)$.

In terms of certifiable upper bounds, the key bound is

Lemma 1 If $p = p(n) > \frac{\log n}{n}$, G is sampled from $G_{n,p}$ and A is the adjacency matrix of G, then there is a 1 - o(1) probability that

$$||A - pJ|| \le O(\sqrt{pn})$$

If S is an independent set of size k, then $\mathbf{1}_{S}^{T}A\mathbf{1}_{S} = 0$, $\mathbf{1}_{S}^{T}J\mathbf{1}_{S} = k^{2}$, and $||\mathbf{1}_{S}||^{2} = k$, so that

$$||A - pJ|| \ge pk$$

so we have that, if we denote by $\alpha(G)$ the size of the largest independent set in G,

$$\alpha(G) \le \frac{1}{p} ||A - pJ||$$

In $G_{n,p}$ random graph, the above upper bound is, with high probability, $O(\sqrt{n/p}) = O(n/\sqrt{d})$.

In conclusion, in $G_{n,p}$ random graphs, the probable value of the largest independent set is $O\left(\frac{n}{d}\log d\right)$, the independent set found by the greedy algorithm has size $\Omega\left(\frac{n}{d}\log d\right)$ with high probability, and spectral methods provide with a high probability an $O(n/\sqrt{d})$ upper bound certificate, where d = pn.

2 Max Cut

The probability that a $G_{n,p}$ random graph, d := pn, has a cut cutting more than $\frac{dn}{4} + \epsilon dn$ is at most $e^{-\Omega(\epsilon^2 dn)}$, there are 2^n possible cuts, so with $2^{-\Omega(n)}$ probability the size of the maximum cut is at most $O(dn/4 + \sqrt{dn})$.

Consider the greedy algorithm

- $A := \emptyset$
- $\bullet \ B:= \emptyset$
- for each $v \in V$
 - if v has more neighbors in B than in A then $A := A \cup \{v\}$
 - $else B := B \cup \{v\}$
- return (A, B)

Let $V = \{1, ..., n\}$, A_i and B_i be the sets A, B when vertex i is considered in the for-loop and let a_i and b_i be their cardinality. Then the absolute value of the difference between the number of neighbors of i in A_i versus B_i has expectation $\Omega(\sqrt{pi})$ and variance O(pi). Adding over all i, the sum of the differences (which is the gain over cutting half the edges), has mean $\Omega(n\sqrt{pn})$ and variance $O(pn^2)$, so the gain is $\Omega(n\sqrt{pn}) = \Omega(n\sqrt{d})$ with 1 - o(1)probability.

In terms of certifiable upper bounds, we have that if S, V - S is a cut of cost $\frac{dn}{4} + C$, then we have

$$\mathbf{1}_{S}^{T}A\mathbf{1}_{V-S} = \frac{dn}{4} + C$$
$$\mathbf{1}_{S}^{T}pJ\mathbf{1}_{V-S} = p \cdot |S| \cdot |V-S| \le p \cdot \frac{n^{2}}{4} = \frac{dn}{4}$$
$$||\mathbf{1}_{S}|| \cdot ||\mathbf{1}_{V-S}|| = \sqrt{|S| \cdot |V-S|} \le \sqrt{\frac{n^{2}}{4}}$$

 \mathbf{SO}

$$C \le 2n \cdot ||\mathbf{1}_S|| \cdot ||\mathbf{1}_{V-S}||$$

This means that, in every graph, the maximum cut is upper bounded by

$$\frac{dn}{4} + \frac{n}{2} \left\| A - \frac{d}{n} J \right\|$$

which, in $G_{n,p}$ random graphs with d = pn is with high probability $\frac{dn}{4} + O(n\sqrt{d})$.

So we have that the probable optimum is at most $\frac{dn}{4} + O(n\sqrt{d})$, the greedy algorithm finds a cut that, with high probability, has cost at least $\frac{dn}{4} + \Omega(n\sqrt{d})$ and, for $p > \frac{\log n}{n}$, spectral algorithms give upper bound certificates that the optimum is at most $\frac{dn}{4} + O(n\sqrt{d})$