
U.C. Berkeley — CS294: Beyond Worst-Case Analysis Handout 3
Luca Trevisan August 31, 2017

Scribed by Keyhan Vakil

Lecture 3

In which we complete the study of Independent Set and Max Cut in Gn,p random graphs.

1 Maximum Independent Set

Last time we proved an upper bound of O
(

1
p log np

)
to the probable value of the maximum

independent set in a Gn,p random graph. This bound also holds if p is a function of n.
There is a simple greedy algorithm which can be shown to achieve an independent set of
size Ω(n/d) where d is the average degree of the graph. For a Gn,p random graph, this gives
us an independent of size Ω(1/p). However we will see how to specialize this analysis to
sparse Gn,p random graphs, and close the remaining gap between the probable value and
the greedy algorithm.

Consider the greedy algorithm below.

• S := ∅

• for each v ∈ V

– if v has no neighbors in S then S := S ∪ {v}

• return S

1.1 First attempt

We might try to model our analysis of this algorithm based on our discussion from Lecture 2.

To wit, let R be the set of vertices not in S which have no neighbors in S. Let Ri be the
size of R when S contains i vertices. If Rk = 0, then our algorithm outputs an independent
set of size k. Therefore we can determine the expected size of the algorithm’s output (up
to a constant factor) by determining k such that E[Rk] = O(1).

Now we determine E[Ri+1 | Ri]. A proportion of p vertices are connected to the (i +
1)th vertex in expectation. Of the Ri vertices, we expect that 1 − p of them will remain
unconnected to all the vertices in S. This gives us that E[Ri+1 | Ri] = (1 − p)Ri, and by
induction E[Rk] = (1− p)kn.

1

Let k be such that E[Rk] = 1. Then:

E[Rk] = (1− p)kn = 1 =⇒ k = log 1
1−p

n ≈ 1

p
lnn

We conclude that our independent set has expected size Θ(1
p log n). However if we take

p = Θ(1/n), that would lead us to believe that we could get an independent set of size
Θ(n log n) in a graph with only n vertices, which is impossible.

The error is that E[Ri+1 | Ri] should be (1− p)(Ri − 1), not (1− p)Ri. Note that once we
add the (i+ 1)th vertex to S, it can no longer be in R by definition. When p is a constant,
the difference is negligible, but when p is small then the difference becomes more significant.

It is possible to salvage this analysis, but the result is less elegant. Instead we will now
present a different analysis, which will also let us conclude more about higher moments as
well.

1.2 Analysis of the greedy algorithm

To analyze the algorithm, consider the following random variables: let ti be the number
of for-loop iterations between the time the i-th element is added to S and the time the
(i+ 1)-th element is added to S. We leave ti undefined if the algorithm terminates with a
set S of size less than i+ 1. Thus the size of the independent set found by the algorithm is
the largest i such that ti−1 is defined.

Consider the following slightly different probabilistic process: in addition to our graph
over n vertices {1, . . . , n}, we also consider a countably infinite number of other vertices
n+ 1, n+ 2, We sample an infinite super-graph of our graph over this larger vertex set,
so that each possible edge has probability p of being generated.

We continue to run the greedy algorithm for every vertex of this infinite graph, and we call
ti the (now, always defined) number of for-loop iterations between the i-th and the (i+1)-th
time that we add a node to S. In this revised definition, the size of the independent set
found by algorithm in our actual graph is the largest k such that t0 + t1 + · · ·+ tk−1 ≤ n.

Now we will reason about the distribution of ti. Say that we have i vertices in S and we
are trying to determine if we should add some vertex v to S. Note that the probability of
v being disconnected from all of S is (1 − p)i. So we add a vertex at each iteration with
probability (1−p)i, which shows that ti is geometrically distributed with success probability
(1− p)i.
Based on this, we can find the expected value and variance of our sum from before

E [t0 + t1 + · · · tk−1] =

1
(1−p)k

− 1

1
1−p − 1

≤
1

(1−p)k

1
1−p − 1

=
1

p · (1− p)k−1

2

and likewise

Var[t0 + t1 + · · · tk−1] ≤
k−1∑
i=0

1

(1− p)2i

=

1
(1−p)2k

− 1

1
(1−p)2

− 1

≤ 1

(1− (1− p)2) · (1− p)2k−2

≤ 1

p · (1− p)2k−2

= p (E[t0 + · · ·+ tk−1])2 .

We want to choose k so that the sum is at most n with high probability. Let

k = log 1
1−p

pn

2
≈ 1

p
ln pn.

This makes the expected value of the sum ≤ n/2 and the standard deviation ≤ √pn/2.
Thus, if p(n)→ 0 sufficiently fast, the greedy algorithm has a 1−o(1) probability of finding
an independent set of size Ω(p−1 log pn) = Ω

(
n
d log d

)
, where d := np is a measure of the

average degree.

1.3 Certifiable upper bound

We now derive a polynomial time computable upper bound certificate for maximum in-
dependent set in Gn,p. We use the following lemma without proof. Note its similarity to
Lemma 2 from Lecture 1.

Lemma 1 If p = p(n) ≥ logn
n , G is sampled from Gn,p, A is the adjacency matrix of G,

and J is the matrix of all ones, then there is a 1− o(1) probability that

‖A− pJ‖ ≤ O(
√
pn)

Since A− pJ is a real symmetric matrix its spectral norm can be computed as:

‖A− pJ‖ = max
x 6=0

|xT (A− pJ)x|
xTx

.

If S is an independent set of size k, then 1T
SA1S = 0, 1T

SJ1S = k2, and 1T
S1S = k, so that

‖A− pJ‖ ≥
|1T

S (A− pJ)1S |
1T
S1S

= pk.

3

This bound holds for any independent set, so it also holds for the largest one. If we denote
by α(G) the size of the largest independent set in G, we have that

α(G) ≤ 1

p
‖A− pJ‖.

For a Gn,p random graph, the above upper bound is O(
√
n/p) = O(n/

√
d) with high

probability.

2 Max Cut

We will now reconsider Max Cut for the general case Gn,p. In Lecture 2, we dealt with the
special case of p = 1

2 . Unlike maximum independent set, our arguments for the case p = 1
2

apply to Max Cut without much modification.

2.1 High probability upper bound

Let G be a random graph from Gn,p, and define d := pn as a measure of its average degree.
We will prove that the size of a maximum cut of G is at most dn/4 + O(

√
dn) with high

probability. The proof of this statement is nearly identical to the version in Lecture 2,
where it was presented for the case p = 1

2 . We know that the expected value of a cut S is
|S| · |V − S| ≤ dn/4. By a Chernoff bound, the probability that any particular cut exceeds
expectation by an additive factor of O(εn) is exponentially decreasing by a factor of ε2dn.
By taking ε = 1/

√
d and taking a union bound over all 2n possible cuts S, we have that our

expected cut has value at most dn/4 +O(
√
dn) with probability 1− 2−Ω(n).

2.2 Greedy algorithm

Consider the greedy algorithm

• A := ∅

• B := ∅

• for each v ∈ V

– if v has more neighbors in B than in A then A := A ∪ {v}
– else B := B ∪ {v}

• return (A,B).

Label V = {1, . . . , n}. Let Ai and Bi be the sets A and B when vertex i is considered in
the for-loop. For the purpose of analysis, we delay the random decisions in G until a vertex
is considered. In particular, we delay the choice of which of 1, 2, . . . , i−1 is a neighbor until

4

i is vertex i is considered. Note that no edge needs to be considered twice, and so we can
treat each one as an independent biased coin flip.

Let ai and bi be the neighbors of i in Ai and Bi respectively. We can show that |ai − bi| =
max(ai, bi)− 1

2(ai + bi), and so
∑

i |ai − bi| is the gain our algorithm achieves over cutting
half the edges.

Now |ai − bi| has expectation Ω(
√
pi) and variance O(pi). Adding over all i, the sum of

the differences has mean Ω(n
√
pn) and variance O(pn2). This gives us an expected gain

of Ω(n
√
pn) = Ω(n

√
d) with 1 − o(1) probability. The value of cutting half the edges is

approximately dn/4. This gives a final value of dn/4 + Ω(n
√
d) w.h.p. as stated.

2.3 Certifiable upper bound

Again, we will derive a certifiable upper bound by looking at the spectral norm. If (S, V −S)
is a cut with value dn

4 + C, then we have

1T
SA1V−S =

dn

4
+ C

1T
SpJ1V−S = p · |S| · |V − S| ≤ p · n

2

4
=
dn

4

‖1S‖ · ‖1V−S‖ =
√
|S| · |V − S| ≤

√
n2

4
so

C ≤ 2n · ‖1S‖ · ‖1V−S‖.

This means that, in every graph, the maximum cut is upper bounded by

dn

4
+
n

2

∥∥∥∥A− d

n
J

∥∥∥∥
which if d ≥ log n is with high probability at most dn

4 +O(n
√
d) (by Lemma 1).

3 Conclusion

We conclude with the following table, which summarizes our results for a random graph
sampled from Gn,d/n.

Problem Expected Value Greedy Algorithm Certifiable Upper Bound

Independent Set O
(
n
d log d

)
Ω
(
n
d log d

)
w.h.p. O

(
n√
d

)
w.h.p.*

Max Cut dn
4 +O(n

√
d) dn

4 + Ω(n
√
d) w.h.p. dn

4 +O(n
√
d) w.h.p.*

* Note that both certifiable upper bounds require d ≥ log n.

Both greedy algorithms perform very well in comparison to the probable value. In Max Cut,
our greedy algorithm is particularly strong, matching our certifiable upper bound up to a

5

lower order term. This supports one of our major theses: while greedy algorithms exhibit
poor worst-case performance, they tend to do well over our given distribution.

6

	Maximum Independent Set
	First attempt
	Analysis of the greedy algorithm
	Certifiable upper bound

	Max Cut
	High probability upper bound
	Greedy algorithm
	Certifiable upper bound

	Conclusion

