
U.C. Berkeley — CS294: Beyond Worst-Case Analysis Handout 1
Luca Trevisan August 24, 2017

Lecture 1

In which we describe what this course is about and discuss algorithms for the clique problem
in random graphs.

1 About This Course

In this course we will see how to analyze the performance of algorithms (such as running
time, approximation ratio, or, in the case of online algorithms, regret and competitive ra-
tio) without resorting to worst-case analysis. The class will assume familiarity with basic
combinatorics and discrete probability (as covered in CS70), linear algebra (as covered in
Math54), and analysis of algorithms and NP-completeness (as covered in CS170). This
course is based on on a course by the same name developed by Tim Roughgarden at Stan-
ford, but our choice of topics will be slightly different.

A familiar criticism of the worst-case analysis of algorithms is that it can significantly
overestimate the performance of algorithms in practice. For example, quicksort with a
fixed pivot choice has worst-case quadratic time, but usually it runs faster than mergesort;
hash tables with a deterministic hash function have worst-case linear time per operation, but
they usually require constant time per operation; only quadratic-time algorithms are known
for edit distance (and sub-quadratic worst-case performance is impossible under standard
assumptions) but sub-quadratic running time occurs in practice, especially if one allows
approximations; the simplex algorithm for linear programming has worst-case exponential
running time in all known implementations but works well in practice; and so on.

In order to make a more predictive, non-worst-case, analysis of algorithms we need to first
develop a model of the instances that we will feed into the algorithms, and this will usually
be a probabilistic model. In this course we will look at models of various complexity, ranging
from simple models involving only one or few (or even zero!) parameters, which are easy to
understand but not necessarily a good fit for real-world instances, to more complex models
involving a mix of adversarial and probabilistic choices.

We can roughly group the models that we will study in four categories.

1. “Uniform” distributions. In these models our input instances come from a sequence of
i.i.d. choices. For example, in a problem like sorting, in which we are given a sequence
of n elements from a universe Σ, we might look at the uniform distribution over Σn.
In problems in which we are given an undirected graph over n vertices, we might look

1

http://theory.stanford.edu/~tim/f14/f14.html
http://theory.stanford.edu/~tim/w17/w17.html
https://arxiv.org/abs/1412.0348
https://arxiv.org/abs/1412.0348

at the Gn,p distribution, in which each of the possible
(
n
2

)
undirected edges exists with

probability p, and choices for different edges are independent. In a problem in which
the input is a n ×m matrix, we might look at the distribution in which the entries
are i.i.d. Gaussians. To generate an instance of k-SAT over n variable we might pick
at random m of the 2k

(
n
k

)
possible clauses, or choose independently for each possible

clause whether to include it in the formula or not, and so on.

Although these models are very simple to describe, they often lead to deep and fasci-
nating questions, and insights gained in these models can be stepping stones to anal-
yses of more realistic models, or even worst-case analyses of randomized algorithms.
For example, the analysis that quicksort with fixed pivot choice runs in expected
O(n log n) time on random sequences naturally leads to an O(n log n) runtime analy-
sis for quicksort with random pivot choice on worst-case sequences. An understanding
of properties of random Gaussian matrices is critical to the smoothed analysis of the
simplex, and an understanding of properties of Gn,p random graphs is the starting
point to develop algorithms for more realistic graph generative models, and so on.

2. Planted-solution distributions. In these models all choices are random as in (1), except
that we force the instance that we produce to have a “solution” with a certain property.
For example, in the “random graph with planted clique” problem with parameters n,
p and k, we create an undirected graph on n vertices as follows: we choose a random
set of k vertices, and add all edges between pairs of vertices in the set; all other edges
are selected i.i.d., with each possible edge having probability p of being included.
This distribution always creates graphs with a clique of size k, but it has several other
properties in common with the Gn,p model. In the “planted bisection” problem with
parameters n, p and q, we first randomly split the vertices into two equal-size sets,
then we add edges i.i.d, but edges with endpoints in the same set have probability p
and edges with endpoints in different sets have probability q. If q is smaller than p,
the cut defined by the initial partition will be much sparser than a random cut (or of
any other cut, depending on how much q is smaller than p), but otherwise the model
has a lot in common with the Gn,(p+q)/2 model.

These models “break the symmetry” of i.i.d. models. While random fluctuations are
the only source of structure in i.i.d. models, here we introduce structure by design.
In planted-solution models it is interesting to see if an algorithm is able to find not
just any good solution, but the particular solution that was created in the generative
process. Usually, this is the case because, relying on our understanding of (1), we
can establish that any solution that is significantly different from the planted solution
would not be a near-optimal (or in some cases even a feasible) solution.

These models capture problems studied in statistics, information theory and machine
learning. Generally, if an existing algorithm that works well in practice can be rigor-
ously proved to work well in a “planted-solution” model, then such a proof provides
some insight into what make the algorithm work well in practice. If an algorithm is
designed to work well in such a model, however, it may not necessarily work well in
practice if the design of the algorithm overfits specific properties of the model.

3. Semi-random distributions. In these models we have a mix of probabilistic choices,

2

which might be of type (1) or type (2) and worst-case choices. For example, we may
be generating a graph according to a distribution, often of type (2), and then allow
an adversary to add or remove a bounded number of edges. In the opposite order,
in the smoothed analysis of algorithms we may start from a worst-case instance, and
then add a bounded amount of “noise,” that is, make random changes.

Usually, performance in these models is a good predictor of real-world performance.

For an algorithm to perform well on semi-random graph models, the algorithm must
be robust to the presence of arbitrary local structures, and generally this avoids the
possibility of algorithms overfitting a specific generative model and performing poorly
in practice.

In numerical optimization problems such as linear programming, the numerical values
in the problem instance come from noisy measurements, and so it is appropriate to
model them as arbitrary quantities to which Gaussian noise is added, which is exactly
the model of smoothed analysis.

4. Parameterized models. When possible, we will endeavor to split our probabilistic
analysis in two steps: first show that the algorithm works well if the instance has
certain properties, possibly quantified by certain parameters, and then show that our
probabilistic model produces, with high probability, instances with such properties.
An advantage of this modular approach is that it allows steps of the analysis to
be reused if one is looking at a new algorithm in the same generative model, or a
different generative model for the same algorithm. Furthermore, one can validate the
assumption that instances have certain properties on real-world data sets, and hence
validate the analysis without necessarily validating the probabilistic model.

(Note that here we are straining the notion of what it means to go “beyond worst-
case analysis,” since we are essentially doing a worst-case analysis over a subset of
instances.)

We will see examples of all the above types of analysis, and for some problems like min-
bisection we will work our way through each type of modeling.

We will study exact algorithms, approximation algorithms and online algorithms, and con-
sider both combinatorial and numerical problems.

At the end of the course we will also do a review of average-case complexity and see how
subtle it is to find the “right” definition of efficiency for distributional problems, we will
see that there is a distribution of inputs such that, for every problem, the average-case
complexity of the problem according to this distribution is the same as the worst-case
complexity, and we will see some highlights of Levin’s theory of “average-case NP-hardness,”
including the surprising roles that hashing and compressibility play in it.

The course will be more a collection of case studies than an attempt to provide a unified
toolkit for average-case analysis of algorithms, but we will see certain themes re-occur,
such as the effectiveness of greedy and local search approaches (which often have very poor
worst-case performances) and the power of semidefinite programming.

3

2 Clique in Random Graphs

We will start by studying the Max Clique problem in Gn,p random graphs, starting from

the simplest case of the Gn,1/2 distribution, which is the uniform distribution over all 2(n2)

undirected graphs on n vertices.

2.1 The typical size of a largest clique

A first fact about this problem, is that, with 1− o(1) probability, the size of the maximum
clique of a graph sampled from Gn,1/2 is (2± o(1)) · log n where the logarithm is to base 2.
(This will be our standard convention for logarithms; we will use ln to denote logarithms
in base e.)

We will not provide a full proof, but note that the expected number of cliques of size k in
a graph sampled from Gn,1/2 is

1

2(k2)
·
(
n

k

)
(1)

which is at most 2k logn+ k
2
− k2

2 = 2−
k
2
·(k−1−2 logn) and, if k = 2 log n + 2, it is at most

2−Ω(logn). By applying Markov’s inequality, we get that there is a 1− n−Ω(1) that a graph
sampled from Gn,1/2 has a clique of size at most than 2 log n+ 1.

On the other hand, (1) is at least

2−
k2

2 ·
(n
ek

)k
= 2k logn−k log k−k log e− k2

2 = 2
k
2
·(2 logn−2 log k−2 log 2−k)

and if, for example, we choose k = 2 log n − 10 log log n, we see that the above quantity
goes to infinity like nΩ(log logn). Thus there is an expected large number of cliques of size
2 log n − 10 log log n in a Gn,1/2 random graph. This is not enough to say that there is at
least one such clique with probability tending to 1, but a second-moment calculation would
show that the standard deviation of the number of cliques is small, so that we can apply
Chebyshev’s inequality.

2.2 The greedy algorithm

How about finding cliques in Gn,1/2?

Consider the following simple greedy algorithm: we initialize a set S to be the empty set,
and then, while V − S is non-empty, we add an (arbitrary) element v of V − S to S, and
we delete v and all the non-neighbors of v from V . When V − S is empty, we output S.

The algorithm maintains the invariants that S is a clique in G and that all the elements of
S are neighbors of all the elements of V − S, so the algorithm always outputs a clique.

Initially, the set V − S has size n and S is empty and, at every step, |S| increases by 1
and V − S, on average, shrinks by a factor of 2, so that we would expect S to have size

4

log n at the end. This can be made rigorous and, in fact, the size of the clique found by the
algorithm is concentrated around log n.

In terms of implementation, note that there is no need to keep track of the set V −S (which
is only useful in the analysis), and a simple implementation is to start with an empty S,
scan the nodes in an arbitrary order, and add the current node to S if it is a neighbor to all
elements of S. This takes time at most O(n · k), where k is the size of the clique found by
the algorithm and one can see that in Gn,1/2 the expected running time of the algorithm is
actually O(n).

So, with 1−o(1) probability, the greedy algorithm finds a clique of size ≥ (1−o(1)) log n, and
the maximum clique has size at most (2+o(1)) log n meaning that, ignoring low-probability
events and lower-order terms, the greedy algorithm achieves a factor 2 approximation. This
is impressive considering that worst-case approximation within a factor n.99 is NP-hard.

Can we do better in polynomial time? We don’t know. So far, there is no known polynomial
time (or average polynomial time) algorithm able to find with high probability cliques of
size ≥ 1.001 log n in Gn,1/2 random graphs, and such an algorithm would be considered
a breakthrough and its analysis would probably have something very interesting to say
beyond the specific result.

2.3 Certifying an upper bound

Approximation algorithms with a worst-case approximation ratio guarantee have an impor-
tant property that is lost in an average-case analysis of approximation ratio like the one
we sketched above. Suppose that we have a 2-approximation algorithm for a maximization
problem that, for every instance, finds a solution whose cost is at least half the optimum.
Then, if, on a given instance, the algorithm finds a solution of cost k, it follows that the
analysis of the algorithms and the steps of its execution provide a polynomial time com-
putable and checkable certificate that the optimum is at most 2k. Note that the optimum
has to be at least k, so the certified upper bound to the optimum is off at most by a factor
of 2 from the true value of the optimum.

Thus, whenever an algorithm has a worst-case approximation of a factor of r, it is also able
to find upper bound certificates for the value of the optimum that are off at most by a
factor of r.

This symmetry between approximate solutions and approximate upper bounds is lost in
average-case analysis. We know that, almost always, the optimum of the Max Clique
problem in Gn,1/2 is about 2 log n, we know how to find solutions of cost about logn, but
we do not know how to find certificates that the optimum is at most 4 log n, or even 100 log n
or (log n)2. The best known polynomial time certificates only certify upper bounds of the
order Θ(

√
n), with the difference between various methods being only in the multiplicative

constant. There is also some evidence that there is no way to find, in polynomial time,
certificates that most graphs from Gn,1/2 have Maximum Clique upper bounded by, say,
O(n.499).

We will sketch the simplest way of finding, with high probability, a certificate that the

5

Maximum Clique of a Gn,1/2 graph is at most O(
√
n). Later we will see a more principled

way to derive such a bound.

Given a graph G sampled from Gn,1/2, we will apply linear-algebraic methods to the ad-
jacency matrix A of G. A recurrent theme in this course is that A, with high probability,
will “behave like” its expectation in several important ways, and that this will be true for
several probabilistic generative models of graphs.

To capture the way in which A is “close” to its expectation, we will use the spectral norm,
so let us first give a five-minute review of the relevant linear algebra.

If M is a symmetric n × n real valued matrix, then all its eigenvalues are real. If we call
them λ1 ≤ λ2 ≤ · · · ≤ λn, then the largest eigenvalue of M has the characterization

λn = max
x 6=0

xTMx

||x||2

and the smallest eigenvalue of M has the following characterizations

λ1 = min
x 6=0

xTMx

||x||2

The largest eigenvalue in absolute value can be similarly characterized as

max{|λ1|, . . . , |λn|} = max{−λ1, λn} = max
x 6=0

|xTMx|
||x||2

The spectral norm of a square matrix is its largest singular value, and is characterized as

||M ||2 = max
x 6=0

||Mx||
||x||

if M is symmetric and real valued, then ||M ||2 is the largest eigenvalue in absolute value,
so we have

||M ||2 = max
x 6=0

||Mx||
||x||

= max
x 6=0

|xTMx|
||x||2

Furthermore, the spectral norm of a symmetric matrix can be determined up to 1+1/poly(n)
approximation in polynomial time.

We have the following simple fact.

Lemma 1 Let G = (V,E) be a graph, A its adjacency matrix, J be the matrix all whose
entries are 1, and k be the size of the largest clique in G. Then

k ≤ 2||A− J/2||2 + 2

Proof: Let S ⊆ V be a clique of size k and let 1S be the indicator vector of S. Then

1TSA1S = k2 − k

6

and
1TSJ1 = k2

so

1TS (A− J/2)1S =
k2

2
− k

Noting that ||1S ||2 = k, we have

||A− J/2||2 ≥
|1TS (A− J/2)1S |

||1S ||2
=
k

2
− 1

�

Note that J/2 is essentially the average of A (to be precise, J/2− I/2 is the average of A,
but adding or subtracting I/2 changes the spectral norm by at most 1/2) so it remains to
show that A is usually close in spectral norm to its average. The following bound is known,
and best possible up to the value of the constant c.

Lemma 2 There is a constant c such that, with 1− o(1) probability, if we sample G from
Gn,1/2 and we let A be the adjacency matrix of G, we have

||A− J/2||2 ≤ c
√
n

More specifically, it is known that with high probability we have ||A−J/2||2 = (
√

2±o(1)) ·√
n.

Thus, with high probability, we can certify in polynomial time that a graph sampled from
Gn,1/2 has Max Clique at most O(

√
n).

7

	About This Course
	Clique in Random Graphs
	The typical size of a largest clique
	The greedy algorithm
	Certifying an upper bound

