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Abstract In this paper we show that any black-box proof of the
XOR Lemma or of the Direct Product Lemma gives a way
We show that Yao’s XOR Lemma, and its essentiallyto derive error-correcting codes with strong list-decgdin
equivalent rephrasing as Birect Product Lemmgacan be  algorithms from error-correcting codes with weak unique-
re-interpreted as a way of obtaining error-correcting cede  decoding algorithms. Applying this idea directly to thersta
with good list-decoding algorithms from error-correcting dard form of the Direct Product Lemma would give codes
codes having weak unique-decoding algorithms. To getwith very large encoding length and with decoding algo-
codes with good rate and efficient list decoding algorithms rithms producing very long lists.
one needs a proof of the Direct Product Lemma that, re-  As we explain below, the encoding length can be reduced
spectively, is strongly derandomized, and uses very smallpy using aderandomized Direct Product Lemmry this,
advice. we mean a Lemma that says that there is a pseudorandom
We show how to reduce advice in Impagliazzo’s proof of distribution D of k-tuples(z1, ..., zx) such thatD can be
the Direct Product Lemma for pairwise independent inputs, sampled using fewer thark random bits, and such that if
which leads to error-correcting codes with(n?) encoding f() is hard to compute on more thanla- ¢ fraction of

length,O(n?) encoding time, and probabilisti© (n) list- inputs, then(f(z1),..., f(zx)) is hard to compute more
decoding time. (Note that the decoding time is sub-linear in than anc fraction of the times whefizy, ..., z;) is sam-
the length of the encoding.) pled fromD. Two derandomized proofs of the Direct Prod-

Back to complexity theory, our advice-efficient proof of uct Lemma are known. One, by Impagliazzo [10], works if
Impagliazzo’s “hard-core set” results yields a (weak) uni- thez; are pairwise independent. Then oaly random bits
form version of O’Donnell results on amplification of hard- are needed to samplé:auple. On the other hand, the proof
ness in NP. We show that if there is a problem in NP only works fore equal to about / (k). Another proof, by
that cannot be solved by BPP algorithms on more than a Impagliazzo and Wigderson [11], allowsto be exponen-

1 —1/(logn) fraction of inputs, then there is a problemin  tially small in &, and use€)(n) random bits to sample the
NP that cannot be solved by BPP algorithms on more than -tuple.

a3/4+1/(logn)¢ fraction of inputs, where > 0 is an ab- Regarding the length of the list, it depends on the amount
solute constant. of adviceused in the reduction that proves the Direct Prod-
uct Lemma. The proofs of Levin [12] and Goldreich et al.
[6] work even with a relatively small advice, but they re-
quire the inputs to be independent and, as mentioned above,
this translates to codes with very long encoding length. The

Yao’sXOR Lemmatates that iff : {0,1}" — {0,1}isa derand_omized proofs of Impagliazzo [10] and Impaglia_zzo
boolean function that is hard to compute on more thana ~ @nd Wigderson [11], on the other hand, use substantially
§) fraction of inputs, then computini(z1) ® - -- ® f(xx) large advice.

on more than a,/2 + ¢ fraction of thek-tuples(a1, . . . , ) The main technical contribution of this paper is an
is also hard, where is roughly (1 — §). An essentially advice-efficient version of Impagliazzo’s Direct Product

equivalentdirect productiemma states that computing the Lemma for pairwise independent inputs. Our proof gives

1. Introduction

vector f(z1), - - , f(z),) for more than am fraction of the a way to convert, say, the Sipser-Spielman codes into codes
(z1,...,2x) is hard, where againis roughly(1 — 6)*. At over large alphabet with quadratic encoding length and with
Iea’st fo;Jr proofs of this result are know [12, 10, 6, 11]. list-decoding algorithms that can handle a fraction of exro

arbitrarily close to one, and produce a list of size depend-
* Supported by a Sloan Research Fellowship and an Okawa Rimmda  ing only on the error.
Grant. As a main intermediate step, we prove an advice-efficient




version of Impagliazzo’s result about hard-core sets for We have thus described a list-decoding algorithmdoér
weakly hard-on-average functions. O’'Donnell [14] used that can correct & — ¢ fraction of errors.
Impagliazzo’s hard core set construction to prove a result  ynfortunately, the encoding length 6f is N*, where

about amplification of average-case hardness for problemsy s the length of the encoding @, and the list size is
in NP, in the non-uniform setting. We use our result to prove gnly quasi-polynomial inV.

a uniform version of O’'Donnell’s results.

1.1. Direct Product Lemma and List Decoding 1.2. Reducing the Encoding Length and List Size

Known proofs of the direct product lemma tend have

. In the above use of the Direct Product Lemma, the length
more or less the following form:

of the new code is equal to the number of possible inputs for

Ford > 0, integerk, and sufficiently large (typ- the fur!ctian, and the size of the list is the number of pos-

ically ¢ is at least some constant timgs— 4)%), sible circuitsA.

let f : [N] — {0,1} be a function, define If we think of the circuitA as a fixed uniform machine

F(z1,...,zr) = (f(x1),..., f(zx)) and letG taking advice (where the advice may depend botlf @md

be a function that agrees witfi on at least an G), then we only need to enumerate all possible advice

fraction of inputs. strings, and only the number of advice bits matters to de-
Then there is an oracle circuitd of termine the list size. In fact4d may even be a probabilis-

size poly(log N,1/¢,1/6,k) that has at most tic machine with advice, in a model where the advice string

poly(1/e,1/5) oracle gates and such that may depend on the random choicesAf(but not on the

Pr[A%(z) = f(x)] > 1 —6. input of A), as in [19]. Then we can pick randomness for

] ) A and then enumerate all possible advice strings (this ap-
Derandomized proofs have a somewhat different form p5ach leads to a probabilistic list-decoding algorithm).
that we will discuss shortly.

The application to coding theory is as follows. L@t:
M — {0,1}" be an error-correcting code having an effi-
cient decoding algorithm that can correct upty errors.
For a messagé/ € M and an index: € [N], we denote
by C'(M)|x] thez-th bit of the encoding of\/.

We define a new cod€” : M — ({0,1}*)¥" with
codewords of lengtiV* over the alphabef0, 1}*. Let us
identify indices of entries o€’ with k-tuples of elements

In such a model, the proofs by Levin [12] and by Gol-
dreich et al. [6] can be modified to yield a probabilistic al-
gorithm A that needs onlyoly(1/¢,1/4) bits of advice,
which gives a list-decoding algorithm with a list size that
is independent ofV. The encoding length, however, is still
N,

In order to reduce the encoding length, we need to con-
sider derandomized versions of the Direct Product Lemma.

) . . ) In the derandomized setting, the inputs,,...,z;) are
from [V]; thenC” is defined as follows: for a messagé, chosen accordingto a pseuc?orandon?gistribution)and anin-
C'(M)[z1, ..., z1] = (C(M)[z1] - - - C(M)[x]) put for F'() or G() i;the seed used to generéts, ..., xx)
rather than the points themselves.

Thatis,C’ (M) has an entry for everly entries ofC'(M), In the derandomized proof by Impagliazzo [10], the
and the entry of”’(M) contains a concatenation of the  are pairwise independent, so that the number of inpufs of
bits present in the correspondihgntries ofC'(M ). is only O(N?). Unfortunately the proof is inherently non-

Note that if we think ofC' (M) as a functionf : [N] — uniform, and, in the coding application, the list size isiaga
{0,1}, thenC’(M) is the functionF" : [N]* — {0, 1}* de- super-polynomial.
fined in the direct product lemma. In the derandomized proof of Impagliazzo and Wigder-

LetnowG € ({0, 1}’“)Nk be a string having agreement  son, there is a trade-off between the input lengttadnd
with C’(M). From the direct product lemma it follows that the amount of non-uniformity. Whef haspoly (V) inputs,
there is an oracle circuid of sizepoly(log N,1/¢,1/6, k) the amount of non-uniformity i&*(Y), and it gets smaller
such thatA® has agreemerit — § with C(M). GivenG, for larger inputst
we can then enumerate @pely(los N.1/6,1/0.k) circuits A
of that size, and write the corresponding function (or strin
of length V) AC. In this list of strings, at least one of them 1 The main goal in [11] is to achieve = 2~*(°k) while having the
nas agreement at leat- s with C(1). We can applyto  PuTee of T o pobnomial i frconstars. n the 2p-
each of these strings the decoding algorithni'ofind then not a problem that the circuit would have sizeV(1). The proof by
we get another list oppoly(log N,1/e,1/6.k) strings, and one Impagliazzo is “more derandomized” and uses less advideoty

of them must bé\/. achieves ~ 1/(dk).




1.3. An Advice-efficient Proof of the Pairwise In-  cent to the verticeta + b), (a + 2b), ..., (a + kb) on the
dependent Direct Product Lemma left.
We elaborate on this perspective in Section 4 and we

The main result of this paper is a proof of the Direct show that a simple modification of one of the algorithms of
Product Lemma for pairwise independent inputs in which Guruswami and Indyk leads to the completely derandom-
the algorithm A in the reduction uses randomness and ized and completely uniform direct product theorem.
poly(k,1/e,1/6) bits of advice.

The proof by Impagliazzo for the pairwise independent 1 5. Uniform Amplification of Hardness in NP
case has two steps. He first shows that for every function
thatis “weakly hard” on average there is a “hard core” sub-  O’Donnell uses Impagliazzo’s result about hard-core
set of inputs on which the function is very hard on average. sets to prove a result about amplification of average-case
Then, he uses this result to prove the Direct Product lemmacomplexity in NP. O’Donnell’s result is as follows: suppose
for pairwise independent inputs. We follow the same ap- that for every problend. in NP there is a family of poly-
proach and we show show how to reduce advice in bothnomial size circuits that solves on al/2 + 1/n->~¢ frac-
parts of the proof. tion of inputs; then for every balancégroblemL in NP

The coding-theoretic application of our result is as fol- there is a family of polynomial size circuits that solves
lows. Starting from a code with binary codewords of length on a1 — 1/poly(n) fraction of inputs. If the assumption
N and with a unique-decoding algorithm that corrects up to is strengthened to the existence, for every NP problem, of
SN errors, we get a code with codewords of lengyth, over polynomial size circuits that solve on al/2 + 1/n'/3-¢
the alphabef0, 1}* and with a list-decoding algorithm that  fraction of the inputs, then the conclusion that for every NP
produces a list of sizarelv(1/¢:1/9:1/k) and correctsuptoa  problemL (not just for balanced ones) there is a family of

fraction1 — ¢ of errors, where = Q(1/(0k)). circuits that solved. on al — 1/poly(n) fraction of in-
Starting from asymtpotically good codes, such as thoseputs.

of [15], whereN is linear in the length of the message and The result refers to circuits because the use of Impagli-

is a constant, one gets codes with quadratic encoding lengtiazzo's hard core sets makes the reduction non-uniform.

and quasi-linear list-decoding algorithm that can coreect Using our version of Impagliazzo’s result, we can prove

1 — ¢ fraction of errors, producing a list of si2&°v(1/¢), a statement of the following form:

1.4. Comparison with [2, 7, 8, 9] Suppose that for every problefm in NP there

is a probabilistic polynomial time algorithm that

The codes obtained from Direct Product Lemmas (de-  S°lvesL on al/? + e fraction of inputé for ev-
randomized or not) can be seen as a special case of a gen- 1Y inputlength; , .
eral method to obtain error-correcting codes with large-min Then for every problemZ in NP there is
imum distance from error-correcting codes with smaller a prObab'“Sg'l‘;(f‘/P?/rghm that, given, runs in
minimum distance. The method was introduced by Alon et Pgi%;((?)s .1/25) +/=1/%) time, produces a list of
al. [2] and used recently by Guruswami and Indyk [7, 8, 9]. 2 /%) circuits, and, with high probability,
Suppose we have an error-correcting cade M — one of the circuits solves on al — § fraction of
{0,1}~ in which we can correct 4 fraction of errors. Let inputs of lengthn.
G = ([N],[N], E) be a bipartite right-regular graph with Whene and? are at least /(logn)® for a sufficiently

N vertices on the left andV’ vertices on the right, and let  smallc > 0, then the list has polynomial size. We are then
k be the degree of the vertices on the right. For a vertex faced with the following task: given a list of circuits for an

on the right and an index denote byl';(v) thei-th neigh- NP problem, such that one of the circuits works well on av-

bor of v. , erage, construct a single circuit that works well on average
Then define a new code’ : M — ({0,1}*)"" as fol- If the circuits solved thesearchversion of L, then the

lows. task would be easy: run the circuits in parallel, then if at

least one of them finds a certificate accept, otherwise reject
A sensible idea would then be to use the search-to-
¢decision reduction for average-case NP problem of Ben-

C'(M)[v] = (C(M)[1(v)], -+, C(M)[Tk(v)])

The reader can verify that our construction for the case o
the standard direct product corresponds to using the graph

_ k 2 By balanced we mean that on every input length half of theantes
G . ([N]’ [N] ’E) Where. a verte>(u1, T uk) on the are YES instances and half of the instances are NO instances.
”ght IS ad]acent to the vertices, . . ., u, ON the left. 3 By this, we mean that there is an algoritbdrsuch that for a random

In the pairwise independent case the graphGis= and a random choice of randomness Aothere is a probabilityl /2 +

(IN],[N]2, E) where a vertexa,b) on the right is adja- e that A'is correct on.



David and others [3]. The procedure starts from a languageLemma 2 (Impagliazzo [10]). There is a strategy for the
L and defines a new languade such that a good-on- first player such that for every strategy for the second playe
averagelecisionalgorithm for L’ yields a good-on-average involving2¥°""’ possible functiong, the first player wins
searchalgorithm for L. The problem is that the reduction within poly(1/e,1/5) steps.

transforms an algorithm fak’ that works on a — § frac-
tion of inputs of lengthn’(n) into an algorithm forL that
works on al — O(é - m(n)) fraction of inputs of length,
wherem(n) is the length of witnesses for instances/obf
lengthn andn’(n) is polynomial inn. In particular, the re-
duction gives nothing if applied to an algorithm fbf that
succeeds only on B— 1/poly logn fraction of inputs.

We do not know how to overcome this difficulty, but we
show a way of removing non-uniformity under the stronger
assumption that for every NP problem we have an an algo-
rithm that solves it on slightly more than3g4 fraction of
inputs.

Impagliazzo uses Lemma 2 in the following way. Sup-
pose that we have a functigh: {0,1}™ — {0, 1} such that
for every setd C {0,1}" with |[H| > §2™ there is a cir-
cuit C of size < s such thatC computesf on at least a
1/2 + ¢ fraction of the elements aff. Then, we can play
the set-function game (as a mental experiment) with the first
player using the strategy of Lemma 2 and the second player
always replying with a circuit of sizel s. Then, we con-
clude thatf can be computed onla— ¢ fraction of the in-
puts by a circuit of sizes - poly(1/e,1/4). By contrapos-
itive, if it is impossible to computg on al — ¢ fraction
Ouir final result is that if for every probleiin NP there g Igp?(tf 1u}sn|ns%Shc;;g:|tr]8fcsi:iﬁ,itt2$r;i;2§rgorlr;lz;t (;))eczns o

is a probabilistic polynomial time algorithm that solvés .
on a3/4 + (1/logn)” fraction of inputs of length: then g?2p4utef on more than a/2 + ¢ fraction of the elements

for every problemL in NP there is a probabilistic polyno-
mial time algorithm that solvet on al — 1/(logn)° frac-
tion of inputs, where is an absolute constant.

The argument is inherently non-uniform, and, in fact, it
is not clear how to use Lemma 2 in a uniform setting. The
following Lemma gives a way of doing it.

Lemma 3. LetC be a distribution of circuits samplable in
timet, f : [N] — {0, 1} be afunction and let, 4, ¢ be such
that for every subsé/ C [N], |H| > dN, we have

1.6. Overview

We present an almost uniform version of Impagliazzo’s
hard-core set result in Section 2. We use this result in Sec- [

tion 3 to prove an advice-efficient direct product lemma for Pr

1
Pr | Prife) =co) z 5 +e] 2

pairwise indpendent inputs. In Section 4 we point out the et
equivalence between certain graph-based constructions of Then there is a distributiod’ of circuits samplable in
error-correcting codes and the constructions derived fromtimet - poly(1/e,1/6) such that
derandomized direct product lemmas. Finally, in Sections 5
and 6 we give a uniform amplification of hardness result for Pr [ Pr [f(z)=C(z)] >1— 5] > poly(1/e,1/9)
NP. C—C’ [z€[N]
Some proofs are omitted due to space constraints. A full proof. As a mental experiment, we are going to run Im-
version of this paper, which includes all proofs, is avdiab pagliazzo’s procedure against samples fiériwe need at

from ECCC [18]. mostt = poly(1/e,1/§) circuits, and, each time, we have a
probability~ that a circuit sampled froré is a legal move.
2. An Advice-efficient Version of Impagli- The distributionC’ is thus as follows. We compute the
azzo's Hard-Core Sets upper bound = poly(1/e,1/9) to the number of moves
in the strategy of Lemma 2. Then we pick at random
We can abstract Impagliazzo’s main result in his con- ¢ € {1,...,t} and samplei circuits C,...,C; inde-
struction of hard-core sets as follows. pendently fromC. Finally, we output the circui'(z) =
o ) ) majority {C4 (z), ..., Ci(x)}.
Definition 1 (Set-Function Game). Let N be an integer, There is a probability at least /¢) - v* thatC' computes
d,€ € (0,1/2) be fractions andf : [N] — {0,1} beafunc- ¢ ona1 — g fraction of inputs. 0
tion. Consider the following game: at every stefhe first
player produces a setf; C [N] such that #;| > N and The conclusion of the Lemma can be equivalently stated
the second player replies with a functign: [N] — {0,1} as the existence of a probabilistic algorithm that produces

such thay; and f agree on at least aih/2+ ¢ fraction of el- _ _
ements ofd;. The first pIayer wins at stefpif the function 4 The Set-Function game in [10] refers not to sets of $i2& but
v to “measures,” or, essentially, distributions of min-epir at least

g(x) = majority{gi(x),...,g:(x)} agrees withf() on at log(§N'). However Impagliazzo also shows a result about “rounding”
least al — ¢ fraction of the elements OIV]. measures to sets which implies that Lemma 2 is true as stated.



a list of (1/~)Pelv(1/2:1/9) circuits such that with high
probability one of them solveg on a1l — ¢ fraction

of inputs. The correct circuit can then be specified using
log(1/7) - poly(1/e,1/§) bits of advice, assuming a non-

uniform model like the one of [19], where a randomized ma-
chine tosses its random coins, and then receives an advice

We will give a probabilistic procedure that succeeds with
probabilitypoly(1/e,1/6,1/k).

Define thek random variabled, ..
pick at randonu, b € [N] then

o I, =1ifa+ibe HandA;(a,b) = f(a+1ib),

., F. as follows:

that depends on the randomness and on the input length, but e F; = 0 otherwise.

not on the input itself.

3. Advice-efficient Direct Product Lemma for
Pair-wise Independent Inputs

A first observation is that if there is an such that
Pr[F; = 1] ¢ §(1/2 + ~) then our task of constructing
C is quite easy.

Claim 1. Suppose thaPr[F; = 1] > 46(1/2 + ~) or

For simplicity, in this section we will refer to a specific Pr[F; = 1] < §(1/2 + 7). Then there is a circuit of size
pair-wise independent generator, even though the argumenpoly log N that makes one oracle query tband solvesf

could be applied more generally.

Suppose we have a functigh: [N] — {0,1} and that
[N] is a field (for example)NV is prime and we do opera-
tions (mod N)). Then, if we picka,b € [N] at random,
the elements + b, a + 20, ... g + kb are pairwise indepen-
dent.

Define the functiory” : [N]? — {0,1}* as

fE(a,b) = f(a+b), fla+2b),..., fla+kb) .

on al/2 + ~ fraction of H. Furthermore, there is a proba-
bilistic construction of circuits of sizpoly log N that make
one oracle query tod. With probability at leasty/2, the
construction gives a circuit solveson al/2 + /2 frac-
tion of H.

It remains to consider the case in whigfl/2 — v) <
E[F;] < 6(1/2 + ~) for everyi. We note that, of course,
E[>_, Fi] = 0k(1/2 £ ~). On the other hand, we are go-
ing to argue thad _, F; is not very concentrated around its

Then the pair-wise independent Direct Product Lemma of expectation, and so th& cannot be almost pairwise inde-

Impagliazzo [10] implies that iff is hard to compute on
more than al — ¢ fraction of inputs with circuits of size
s, then f* is hard to compute on more than anfrac-
tion of inputs with circuits of sizes - poly(1/k,d), where
e = 0(1/6k).

The proof works as follows: suppose that there is a cir-

cuit A of size s that computeg’” on more than an frac-
tion of inputs; then for everyd C [N] we show that there is
a circuit that computeg on al/2 + Q(¢) fraction of the el-
ements off, furthermore(' is of sizes + poly log N. Us-

ing the results about hard-core sets, we conclude that ther

is a circuit of sizes-poly(k, 1/0) that computeg onal — o
fraction of inputs.

Let us now see the proof in detail. The following presen-
tation is taken from [10] by specializing the analysis given
for general-wise independent generators to the case of the
particular pairwise independent generator considerdusn t
section. At every step we show how to replace non-uniform

e

pendent.

Claim 2. Suppos@®r|[F; = 1] = 6(1/2+~) forall i. Then
there are indices, j such that

5%e
>

E[Fi F;] — (E[F] E[F)]) > o1

The dependency can be exploited to computn H.

Claim 3. Under the same assumption of Claim 2, there is
a circuit of poly log N size that makes one oracle query to
A and solvesf on al/2 + 4v/3 fraction of H. There is
also a samplable distribution of circuits of sipely log N
with one oracle query tol such that the distribution pro-
duces with probability at least/6 a circuit that solvesf
onal/2+ - fraction of H.

See [18] for the proof of Claims 1, 2 and 3.
Finally, consider the following distribution over circsit

choices with random choices, and estimate the probabilitypick at random indices, j, then with probability 1/2 sam-

that random choices are correct.

Assumes > 128/6k and lety = £/256.° Let A :
[N]? — {0,1}* be a function that agrees witf* on at
least are fraction of the inputs. Le#{; (a, b) be thei-th out-
put of A. Fix a setH C [N] such thatH| = §N. Our goal
is to find a circuitC such that” computesf on at least a
1/2 + ~ fraction of the elements dfV] and such that the
size of C' is not much larger than the size af

5 We are making no attempt to optimize constants.

ple a circuit from the distribution of Claim 1 (with respect
to ) and with probability 1/2 sample a circuit from the dis-
tribution of Claim 3 (with respect tg, j).

Then, in each possible case, there is a probability
Q(de/k?) that we sample a circuit computgson at least
al/2 + ~/2 fraction of the elements dff. Notice that the
distribution is independent dff, and, indeed, the result is
true for all H such that H| = 6 N.

We can then apply Lemma 3. We summarize the result
proved in this section as follows.



Theorem 4. Let f : [N] — {0,1}, and lete, 4, k, and
fF : [N]? — {0,1}* be defined as the beginning of this
section. Let4 be a function that has agreementith f*.
There is a probabilistic algorithm that runs ey (1/:1/9).
poly log N time and produces a list afPoy(1/5.1/9) ora-
cle circuits; each circuit has sizeoly (log N, 1/¢,1/6) and
makespoly(1/e,1/4) oracle queries. With high probabil-
ity, at least one circuit in the list, when given oracle acces
to A, solvesf on al — ¢ fraction of inputs.

For the coding-theoretic application, lét : M —
{0,1}" be an error-correcting code with a linear-time de-
coding algorithm that can correctédraction of errors and
with a quadratic time (or better) encoding algorithm. For ex
ample,C could be a Sipser-Spielman code [15]. Assukhe
is prime, and considdiV] as a field.

Then, for parameters, k as the beginning of this sec-
tion, define the cod€” : M — ({0,1}¥)¥°. For a mes-
sageM and for indicesa,b € [N], the entry indexed by
(a,b) in C'(M) is thek-bit string

C'(M)[a,b) = (C(M)[a +b]---C(M)[a + kb])

Let A be a string that has agreementith C’(M). Then
there is a probabilistic algorithm that runsapely (1/=1/9) .
polylog N time and produces a list @pey(1/e:1/9) gra-
cle circuits; each circuit has sizely(log N,1/e,1/§) and
makespoly(1/e,1/6) oracle queries. With high probabil-
ity, at least one circuit in the list, when given oracle asces
to A, defines a string that agrees witt{ A7) on al — ¢ frac-
tion of entries.

In 2roly(1/.1/8) . Npoly log N time we can compute all
the strings defined by all the circuits in the list, and then ap
ply the unique decoding algorithm to each of them. This
way we get a list of sizerelv(1/¢:1/9) that contains\/.

4. Codes and Direct Product Lemmas From
Expander Graphs

Definition 5. We say that &-regular bipartite graphG =
([N],[N], E) is an(e, §)-mixer if for every subsdB of ver-
tices on the right such thaBB| > (1/2 — ¢) N, there are at
mostd N verticesv on the left such thdf'(v) N B| > k/2.

Lemma 6. There are explicit(s,d)-mixers with k
poly(1/e,1/4).

In fact, any family of expanders with goly(1/e,1/6)
eigenvalue gap is afa, ) mixer. In the Lemma above, “ex-
plicit” means that the neighborhood of a vertex can be com-
puted in time polynomial inog N and ink. The construc-
tions in [13], and, in fact, even those in [5], prove Lemma 6.

Theorem 7. Let f,, : {0,1}™ — {0,1}, e(n),d(n) > 0 be
arbitrary, andG,, = ({0,1}",{0,1}", E) be a an explicit
family of (e(n), d(n)) mixers of degreé(n).

Define the functior,, : {0,1}" — {0,1}* as

Fz) = (f(T1(2)), -+, f(Tr(2))

Suppose there is a deterministic algoritbhrunning in
timet(n) that solvesr;, on al/2 + e(n) fraction of the in-
puts.

Then there is a deterministic algorith@’ running in
time O(t - poly(k,n)) that solvesf,, on al — d(n) frac-
tion of inputs.

Notice that the new function has tlsame input length
as the original function, and the result preserves both uni-
formity and determinism. This is probably the only known
“amplification of hardness” proved with a deterministic re-
duction.

Proof. On inputz € {0,1}", algorithm A’() finds thek
neighborsyy, ...,y of z in G,, and applies algorithml ()
to each of them. The result(y1 ), . . ., A(yx) contain each
a prediction of the valug'(z). Algorithm A’ returns the
value that occurs more often among such predictions.
Let B C {0,1}™ be the set of inputg such thatA(y) #

As discussed in the introduction, codes obtained from F(y). By assumption|,B| < (1/2 — ¢)2". The inputsz €
a Direct Product Lemma can be seen as graph-based conf0, 1}" such thatd’(x) # f(x) are such that a majority of

structions of codes in the spirit of [2, 7, 8, 9]. In fact the

converse is also true: if a graph-based construction of<ode there can be at mogk™ such inputse.

has a sub-linear time error-correction procedure, thelgat a

gives a direct product result. In this section we observe tha
the decoding procedure for one of the codes in [8] has in-

their neighbors belong t&. By the mixing property of7,
O

By applying a randomness-efficient version of
Goldreich-Levin, we can also define a boolean func-

deed a sub-linear time decoding procedure, and hence waion f’ : {0, 1} +legk+O(og1/e) _, f( 1} such that a de-
derive a new direct product result from it. The resultis weak terministic algorithm that computeg on a7/8 + O(e)
in the sense that it proves only constant average-case hardfraction of inputs can be turned into a deterministic algo-

ness, but the result mompletelyderandomized, and the re-
duction is uniform and deterministic.

Consider the following definition.

rithm of comparable complexity that computésn al — §
fraction of inputs, where, k, ¢, 6 are as in the above Theo-
rem.



5. Advice-Efficient Amplification of Hardness
in NP

In this section we present the results of [14] and explain

If g : {0,1}* — {0,1} is a function computable by a
circuit of sizepoly(k), then the distributions

.- axk7g(f(‘r1)7f(x2)7 .- 7f(xk))

L1, T2, .

how to use Lemma 3 instead of Impagliazzo’s hard core setsgnd

in order to derive a uniform reduction.

5.1. O’Donnell’'s Proof

Let f : {0,1} — {0,1} be an NP function and
g : {0,1}* — {0,1} be a monotone function. Then
(1, .. xk) = g(f(x1), ..., f(zk)) is still an NP func-
tion. O’Donnell shows that for a proper choiceg#énd for
a certain range of parametersandd, if there is a circuit
A of size s that solvesf’ on an1/2 + ¢ fraction of inputs
then, for every sefl of densityd, there is a circuiC' of
sizes + poly(k, n) that solvesf on al/2 + Q(s/Vk) frac-
tion of inputs fromH. In turn, this implies that there is a
circuit of sizes - poly(1/e,1/6, k) that solvesf onal — ¢
fraction of inputs.

We sketch below a slightly different, and simpler, argu-

. .,xk,g(bl(xl),bg(m), .- '7b/€(xk))

are still computationally indistinguishable H is a hard-
core set.

O’Donnell shows that iff is a balanced function, then
for everye, ¢ there is a = poly(1/e,1/6) and a function
g : {0,1}* — {0,1} computable by a circuit of siz€(k)
such that the distributions

e Xk, g(b(x1), b(x2), ..., b(xk))

Z1, T2, -

T1,T2,.

and

1,25+, Tk, T

(wherer is a random bit) have statistical distance at nzost
Notice that this is a purely information-theoretic restigt
uses only the fact that is balanced and thdf has density

ment that shows, under the same assumption, that for every.

setH of densityd there is a circuit of size + poly(k, n)
that solvesf onal/2+¢/(dk) fraction of inputsH. Our ar-
gument is easier to adapt to the uniform setfing.

Let f : {0,1}™ — {0,1} be a function (that we think of
as being hard to compute on more thaha ¢ fraction of
inputs) and letd C {0,1}"™ be a set of sizé2™ (that we
think of as being a hard-core set ffy.

Let us define a random functidr {0,1}"™ — {0,1} as
follows: forx ¢ H, b(z) = f(z), while, forz € H, b(z)
outputs a random bit. I/ is a hard-core set fof, then
the distributions(z, f(x)) and (z, b(z)) are computation-
ally indistinguishable. More precisely, if we are given & ci
cuit of sizes that has distinguishing probabilitybetween
the two distributions, then we get a circuit of size- O(1)
that computeg on at least 4 /2 + ¢ /¢ fraction of the ele-
ments ofH.

An hybrid argument shows that the distributions

-3 Lk f(Il)v f(IQ)v .- 7f($k)

Ty, T2, ..

and

5 Tk, bi (1), b2(22), - - -, b (21)

are also computationally indistinguishable Hf is a hard-
core set. (The functiong; are independent copies of the
function b that we previously defined.) More precisely, if
we are given a circuit of sizethat has distinguishing prob-
ability e between the two distributions, then we get a circuit
of sizes+O(nk) that computeg on atleastd /2+¢/(dk)
fraction of the elements off .

T, T2, ..

6 A similar argument appears in [17].

Then we get that the distributions

. aIkvg(f(Il)vf(xQ)v .- mf(xk))

T, T2, ..

and

T1,L2y...,Tk,T

are computationally indistinguishable, which means thet t

function f'(z1,...,zr) = g(f(x1), f(x2),..., f(x)) is
very hard on average.

5.2. Our Result

In this section we prove a version of O’Donnell result
with bounded non-uniformity.

We will proceed as in [14], with a careful use of
non-uniformity. First, we state formally the information-
theoretic part of the argument of [14].

Theorem 8 ([14]). For everye,§ > 0 there is ak =
poly(1/e,q/5) and a functiong : {0,1}* — {0,1} such
that the following holds. Lef : {0,1}" — {0,1} be a
functione/k-close to balancedd C {0,1}" be of den-
sity 4, b{,...,b£ : {0,1}™ — {0,1} be independent ran-
dom functions such thaf (z) = f(z) for z ¢ H andb! (z)
outputs a random bit if: € H. Then the distributions

T1,... ,a:k,g(b{(m), . ,bi(:c))
and
Llyeoey Tk, T

have statistical distance at moat, where ther; are uni-
form and independent if0, 1}™ andr is uniform in{0, 1}.



The proof of Theorem 8 uses the following notion.

Definition 9. For a stringz € {0,1}*, denote byNs(z)
the random variable obtained by flipping each bitdhde-
pendently with probability.

Thenoise stabilityof a functiong : {0,1}* — {0,1} at
parameters, denotedNOISESTAB(g) is defined as

NOISESTAB;(g) = Prlg(z) = g(Ns(x))]

wherez is uniform.
The following two results give a proof of Theorem 8.

Lemma 10 ([14]). For everye,6 > 0 there is ak =
poly(1/¢,1/4) and a functiong : {0,1}* — {0,1} such
thatNOISESTABs/(g) < 1/2 + e foreveryd < §' < 1.

Lemma 11 ([14]). Let f : {0,1}"* — {0,1} be a bal-
anced functionH C {0,1}" be of density, b7,...,b] :
{0,1}™ — {0,1} be independent random functions such
that bf(:c) = f(z) forz ¢ H and bf(:c) outputs a ran-
dom bitifx € H. Letg : {0,1}* — {0,1} be a function
such thatNOISESTAB5/2(¢g) < 1/2 + 2¢2. Then the distri-
butions

T1yeo- ,,’Ek,g(b{(xl)a s ,b};(l’))

and

Tl ThyT

have statistical distance at mastwhere ther; are uniform
and independent if0, 1}™ andr is uniform in{0, 1}.

In order to prove Theorem 8, we just need to take into
account the fact thaf is not perfectly balanced. See [18]
for more details.

Now we are left with the reduction to the information-
theoretic case.

Lemma 12. Letg : {0,1}* — {0,1} be as in Theorem 8,
f:{0,1}™ — {0,1} bee/k-close to balanced and be a
polynomial-time algorithm such that

1
PriA(z1,...,zk) = g(f(x1),..., f(zx))] > B + 3e
Then there is a polynomial time samplable distribution of
circuits C such that for every sef C {0,1}" of densitys

we have

Pr [C(2) = f(2)] > = :

> -
pr | Pr = 20k | = ok2. 22k—1

c~C

The proof proceed as in the overview of Section 5.1.
See [18] for a complete proof.

We get our amplification of hardness result by using the

above lemma and Lemma 3 (our uniform version of Im-
pagliazzo’s hard core result).

Lemma 13. Letg : {0,1}* — {0,1} be as in Theorem 8,
f:{0,1}™ — {0,1} bee/k-close to balanced and be a
polynomial-time algorithm such that

Pr[A(zq,...

o) = g(F @), )] 2 5 42

Then there is a polynomial time samplable distribution of
circuitsC such that

Pr

rr Pr[C(z)=f(x)] >1-9§

z€H -
> 9—poly(1/e,1/3)

Finally, we want to generalize the result from the almost-
balanced case to the general case. We can do so by using
the same padding technique adopted in [14]. The reader is
referred to [14] for detalils.

Theorem 14. For every polynomial time computable func-
tionse, ¢ the following holds.

Suppose that for every languagién NP there is a prob-
abilistic algorithm A such that for every input length we
have

Then for every languagk in NP there is a probabilistic al-
gorithm A’ that on inputa runs inpoly(n, 1/e(n), 1/6(n))
time and outputs a circuit, and

Pr
C~A’(n)

Pr

ze{0,1}n[c(x) =L(z)] > 1 -6(n)

> 9-poly(1/e(n),1/5(n))

Notice that the conclusion of the theorem could be stated
equivalently as the existence of a probabilistic algorithm
running in time polynomial im and in2r°y(1/<:1/9) that
produces a list orev(1/=:1/9) circuits such that one of
them solves on at least d — § fraction of inputs.

6. Uniform Amplification of Hardness in NP

In this section we prove the following result.

Theorem 15. There is a constant > 0 such that the fol-
lowing is true. Suppose that for every NP problem there is a
probabilistic polynomial time algorithm that, on every irtp
length, succeeds on3&/4 + 1/(logn)° fraction of inputs.
Then for every balanced NP problem there is a probabilis-
tic polynomial time algorithm that, on every input length,
succeeds on & — 1/(logn)° fraction of inputs.

Given the results of the previous section, the assump-
tion of Theorem 15 implies that, for every languafen
NP, we have a probabilistic algorithm that, on inpytuns



in poly(n) time and produces a list gfoly(n) circuits of
poly(n) size such that at least one of them solvesn at
least al — ¢ fraction of inputs, wheré = 1/(logn)?™).
We would like to be able to recognize such a circuit. Unfor-
tunately, we do not know how to do that. On the other hand,

7. Conclusions

Guruswami and Indyk [7, 8, 9] present, among several
other results, error-correcting codes with linear-timeaat
ing algorithms and linear time list-decoding algorithmatth

under the assumption of the theorem, we are able to solve aorrect al — ¢ fraction of errors. As in our case, their con-

slightly weaker promise problem, and solving the promise
problem will be enough to prove the conclusion of the the-
orem.

Theorem 16. For every functionj(n) there are function
v(n), o(n) such thaty(n) < §(n)*™ ando(poly(n)) <
§(n)?(M and the following happens.

Suppose that for every balanced langudg@a NP there
is a probabilistic polynomial time algorithm that solvés
on a3/4 + o(n) fraction of the inputs of length.

Then for every balanced languade in NP there is
a probabilistic polynomial time probabilistic algorithm
such that

e For every circuit C' that solves L on at least
a 1 — §(n) fraction of the inputs of lengthn,
Pr[A(C) accepty > 3/4.

e For every circuit C' that solvesL on fewer than
a fraction 1 — ~(n) of the inputs of lengthn,
Pr[A(C) accepty < 1/4.

Of course the probability of success can be amplified from
3/4t01 — 27" See [18] for the proof. The proof of The-
orem 15 is now mostly a matter of fixing parameters. We

fix a ¢’ small enough so that, in Theorem 14, under the as-

sumption that every problem in NP can be solved &1
fraction of inputs, then for every problem L in NP there is
an algorithmA,;.; that constructs in polynomial time a list

of circuits such that at least one of them solves the prob-

lem on al — 1/(10gn)0’ fraction of inputs. Then we ap-
ply Theorem 16 withi = 1/(logn)¢’, and we see that there
are functionss, v = §(1) such that if every problem in
NP can be solved uniformly on &/4 + o fraction of in-
puts then for every problem L in NP there is an algorithm
Aqist that is able to distinguish circuits that solve the prob-
lem on> 1 — ¢ fraction of inputs from circuits that solve
the problem or< 1 — ~ fraction of inputs.

Finally, we get a good uniform algorithm far as fol-
lows. On inputx of lengthn, we run Ay, (n) to get a list
of possible circuits, then we run algorithay;s, on each
of the circuits. LetC' be the first circuit that is accepted by
Agist; then we outpu€(x). Since the generation of the cir-
cuit was independent af, and since with high probability
the circuit solved. on al — « fraction of inputs, then the
whole algorithm has a success probability closétoy. To

complete the proof of Theorem 15 we just need to choose

¢ small enough so that(n),v(n) < 1/(logn)° for suffi-
ciently largen in the above argument.

struction starts from codes with a unique decoding algo-
rithm.

The Guruswami-Indyk construction in [9] is better than
ours in any respect: shorter encoding length, faster encod-
ing time, comparable decoding time and list size.

Sudan’s [16] list-decoding algorithm for Reed-Solomon
codes gives codes that decode-& fraction of errors while
creating a list of size onlpoly(1/¢). Furthermore, using
concatenation, one can have alphabets of pide(1/¢)
(while in our case the alphabet has s2#'v(1/¢)) and
guasi-linear or linear encoding length. The decoding tisne i
polynomial in [16], but it has been improved to quasi-linear
in[4, 1].

The main point of this paper, therefore, is not to present
an improved, or even competitive, construction of list-
decodable codes, but rather to show that results from com-
plexity theory, with little manipulation, yield codes with
reasonably non-trivial properties. Quite possibly, a new
technique could be extracted by better understanding the al
gorithm presented in this paper, which could be used more
directly to devise improved list-decoding algorithms. frya
case, this connection gives a new way of looking at the list-
decoding problem, and a new language to describe and an-
alyze algorithms.

Within complexity theory, the observations and results
of this paper are a challenge to come up with a direct prod-
uct theorem fomlmost pairwise independent inpu&uch a
result would give codes with quasi-linear, and possibly lin
ear, encoding length.

The Direct Product Lemma should be provable with
only O(log(1/¢6)) bits of advice, which would lead to list-
decoding algorithm with near-optimal list size. It is an in-
teresting open question to prove such a result.

There is a lot of room for improvement in our uniform
amplification of hardness result for NP. One approachto try
and improve our results would be to devise an even more
advice-efficient version of Impagliazzo’s results.
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