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Abstract

We show that Yao’s XOR Lemma, and its essentially
equivalent rephrasing as aDirect Product Lemma, can be
re-interpreted as a way of obtaining error-correcting codes
with good list-decoding algorithms from error-correcting
codes having weak unique-decoding algorithms. To get
codes with good rate and efficient list decoding algorithms
one needs a proof of the Direct Product Lemma that, re-
spectively, is strongly derandomized, and uses very small
advice.

We show how to reduce advice in Impagliazzo’s proof of
the Direct Product Lemma for pairwise independent inputs,
which leads to error-correcting codes withO(n2) encoding
length,Õ(n2) encoding time, and probabilistic̃O(n) list-
decoding time. (Note that the decoding time is sub-linear in
the length of the encoding.)

Back to complexity theory, our advice-efficient proof of
Impagliazzo’s “hard-core set” results yields a (weak) uni-
form version of O’Donnell results on amplification of hard-
ness in NP. We show that if there is a problem in NP
that cannot be solved by BPP algorithms on more than a
1− 1/(logn)c fraction of inputs, then there is a problem in
NP that cannot be solved by BPP algorithms on more than
a 3/4+1/(logn)c fraction of inputs, wherec > 0 is an ab-
solute constant.

1. Introduction

Yao’sXOR Lemmastates that iff : {0, 1}n → {0, 1} is a
boolean function that is hard to compute on more than a(1−
δ) fraction of inputs, then computingf(x1) ⊕ · · · ⊕ f(xk)
on more than a1/2+ε fraction of thek-tuples(x1, . . . , xk)
is also hard, whereε is roughly (1 − δ)k. An essentially
equivalentdirect productlemma states that computing the
vectorf(x1), · · · , f(xk) for more than anε fraction of the
(x1, . . . , xk) is hard, where againε is roughly(1 − δ)k. At
least four proofs of this result are know [12, 10, 6, 11].
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In this paper we show that any black-box proof of the
XOR Lemma or of the Direct Product Lemma gives a way
to derive error-correcting codes with strong list-decoding
algorithms from error-correcting codes with weak unique-
decoding algorithms. Applying this idea directly to the stan-
dard form of the Direct Product Lemma would give codes
with very large encoding length and with decoding algo-
rithms producing very long lists.

As we explain below, the encoding length can be reduced
by using aderandomized Direct Product Lemma. By this,
we mean a Lemma that says that there is a pseudorandom
distributionD of k-tuples(x1, . . . , xk) such thatD can be
sampled using fewer thannk random bits, and such that if
f() is hard to compute on more than a1 − δ fraction of
inputs, then(f(x1), . . . , f(xk)) is hard to compute more
than anε fraction of the times when(x1, . . . , xk) is sam-
pled fromD. Two derandomized proofs of the Direct Prod-
uct Lemma are known. One, by Impagliazzo [10], works if
thexi are pairwise independent. Then only2n random bits
are needed to sample ak-tuple. On the other hand, the proof
only works forε equal to about1/(δk). Another proof, by
Impagliazzo and Wigderson [11], allowsε to be exponen-
tially small in k, and usesO(n) random bits to sample the
k-tuple.

Regarding the length of the list, it depends on the amount
of adviceused in the reduction that proves the Direct Prod-
uct Lemma. The proofs of Levin [12] and Goldreich et al.
[6] work even with a relatively small advice, but they re-
quire the inputs to be independent and, as mentioned above,
this translates to codes with very long encoding length. The
derandomized proofs of Impagliazzo [10] and Impagliazzo
and Wigderson [11], on the other hand, use substantially
large advice.

The main technical contribution of this paper is an
advice-efficient version of Impagliazzo’s Direct Product
Lemma for pairwise independent inputs. Our proof gives
a way to convert, say, the Sipser-Spielman codes into codes
over large alphabet with quadratic encoding length and with
list-decoding algorithms that can handle a fraction of errors
arbitrarily close to one, and produce a list of size depend-
ing only on the error.

As a main intermediate step, we prove an advice-efficient



version of Impagliazzo’s result about hard-core sets for
weakly hard-on-average functions. O’Donnell [14] used
Impagliazzo’s hard core set construction to prove a result
about amplification of average-case hardness for problems
in NP, in the non-uniform setting. We use our result to prove
a uniform version of O’Donnell’s results.

1.1. Direct Product Lemma and List Decoding

Known proofs of the direct product lemma tend have
more or less the following form:

Forδ > 0, integerk, and sufficiently largeε (typ-
ically ε is at least some constant times(1 − δ)k),
let f : [N ] → {0, 1} be a function, define
F (x1, . . . , xk) = (f(x1), . . . , f(xk)) and letG
be a function that agrees withF on at least anε
fraction of inputs.

Then there is an oracle circuitA of
size poly(log N, 1/ε, 1/δ, k) that has at most
poly(1/ε, 1/δ) oracle gates and such that
Pr[AG(x) = f(x)] ≥ 1 − δ.

Derandomized proofs have a somewhat different form
that we will discuss shortly.

The application to coding theory is as follows. LetC :
M → {0, 1}N be an error-correcting code having an effi-
cient decoding algorithm that can correct up toδN errors.
For a messageM ∈ M and an indexx ∈ [N ], we denote
by C(M)[x] thex-th bit of the encoding ofM .

We define a new codeC′ : M → ({0, 1}k)Nk

with
codewords of lengthNk over the alphabet{0, 1}k. Let us
identify indices of entries ofC′ with k-tuples of elements
from [N ]; thenC′ is defined as follows: for a messageM ,

C′(M)[x1, . . . , xk] = (C(M)[x1] · · ·C(M)[xk])

That is,C′(M) has an entry for everyk entries ofC(M),
and the entry ofC′(M) contains a concatenation of thek
bits present in the correspondingk entries ofC(M).

Note that if we think ofC(M) as a functionf : [N ] →
{0, 1}, thenC′(M) is the functionF : [N ]k → {0, 1}k de-
fined in the direct product lemma.

Let nowG ∈ ({0, 1}k)Nk

be a string having agreementε
with C′(M). From the direct product lemma it follows that
there is an oracle circuitA of sizepoly(log N, 1/ε, 1/δ, k)
such thatAG has agreement1 − δ with C(M). GivenG,
we can then enumerate all2poly(log N,1/ε,1/δ,k) circuits A
of that size, and write the corresponding function (or string
of lengthN ) AG. In this list of strings, at least one of them
has agreement at least1 − δ with C(M). We can apply to
each of these strings the decoding algorithm ofC, and then
we get another list of2poly(log N,1/ε,1/δ,k) strings, and one
of them must beM .

We have thus described a list-decoding algorithm forC′

that can correct a1 − ε fraction of errors.

Unfortunately, the encoding length ofC′ is Nk, where
N is the length of the encoding ofC, and the list size is
only quasi-polynomial inN .

1.2. Reducing the Encoding Length and List Size

In the above use of the Direct Product Lemma, the length
of the new code is equal to the number of possible inputs for
the functionF , and the size of the list is the number of pos-
sible circuitsA.

If we think of the circuitA as a fixed uniform machine
taking advice (where the advice may depend both onf and
G), then we only need to enumerate all possible advice
strings, and only the number of advice bits matters to de-
termine the list size. In fact,A may even be a probabilis-
tic machine with advice, in a model where the advice string
may depend on the random choices ofA (but not on the
input of A), as in [19]. Then we can pick randomness for
A and then enumerate all possible advice strings (this ap-
proach leads to a probabilistic list-decoding algorithm).

In such a model, the proofs by Levin [12] and by Gol-
dreich et al. [6] can be modified to yield a probabilistic al-
gorithm A that needs onlypoly(1/ε, 1/δ) bits of advice,
which gives a list-decoding algorithm with a list size that
is independent ofN . The encoding length, however, is still
Nk.

In order to reduce the encoding length, we need to con-
sider derandomized versions of the Direct Product Lemma.
In the derandomized setting, the inputs(x1, . . . , xk) are
chosen according to a pseudorandom distribution and an in-
put forF () or G() is the seed used to generate(x1, . . . , xk)
rather than the points themselves.

In the derandomized proof by Impagliazzo [10], thexi

are pairwise independent, so that the number of inputs ofF
is only O(N2). Unfortunately the proof is inherently non-
uniform, and, in the coding application, the list size is again
super-polynomial.

In the derandomized proof of Impagliazzo and Wigder-
son, there is a trade-off between the input length ofF and
the amount of non-uniformity.WhenF haspoly(N) inputs,
the amount of non-uniformity isNΩ(1), and it gets smaller
for larger inputs.1

1 The main goal in [11] is to achieveε = 2−Ω(δk) while having the
number of inputs forF polynomial inN for constantδ. In the ap-
plication to pseudorandomness for which the result was meant, it was
not a problem that the circuitA would have sizeNΩ(1). The proof by
Impagliazzo is “more derandomized” and uses less advice, but only
achievesε ≈ 1/(δk).



1.3. An Advice-efficient Proof of the Pairwise In-
dependent Direct Product Lemma

The main result of this paper is a proof of the Direct
Product Lemma for pairwise independent inputs in which
the algorithmA in the reduction uses randomness and
poly(k, 1/ε, 1/δ) bits of advice.

The proof by Impagliazzo for the pairwise independent
case has two steps. He first shows that for every function
that is “weakly hard” on average there is a “hard core” sub-
set of inputs on which the function is very hard on average.
Then, he uses this result to prove the Direct Product lemma
for pairwise independent inputs. We follow the same ap-
proach and we show show how to reduce advice in both
parts of the proof.

The coding-theoretic application of our result is as fol-
lows. Starting from a code with binary codewords of length
N and with a unique-decoding algorithm that corrects up to
δN errors, we get a code with codewords of lengthN2, over
the alphabet{0, 1}k and with a list-decoding algorithm that
produces a list of size2poly(1/ε,1/δ,1/k) and corrects up to a
fraction1 − ε of errors, whereε = Ω(1/(δk)).

Starting from asymtpotically good codes, such as those
of [15], whereN is linear in the length of the message andδ
is a constant, one gets codes with quadratic encoding length
and quasi-linear list-decoding algorithm that can correcta
1 − ε fraction of errors, producing a list of size2poly(1/ε).

1.4. Comparison with [2, 7, 8, 9]

The codes obtained from Direct Product Lemmas (de-
randomized or not) can be seen as a special case of a gen-
eral method to obtain error-correcting codes with large min-
imum distance from error-correcting codes with smaller
minimum distance. The method was introduced by Alon et
al. [2] and used recently by Guruswami and Indyk [7, 8, 9].

Suppose we have an error-correcting codeC : M →
{0, 1}N in which we can correct aδ fraction of errors. Let
G = ([N ], [N ′], E) be a bipartite right-regular graph with
N vertices on the left andN ′ vertices on the right, and let
k be the degree of the vertices on the right. For a vertexv
on the right and an indexi, denote byΓi(v) thei-th neigh-
bor ofv.

Then define a new codeC′ : M → ({0, 1}k)N ′

as fol-
lows.

C′(M)[v] = (C(M)[Γ1(v)], · · · , C(M)[Γk(v)])

The reader can verify that our construction for the case of
the standard direct product corresponds to using the graph
G = ([N ], [N ]k, E) where a vertex(u1, . . . , uk) on the
right is adjacent to the verticesu1, . . . , uk on the left.

In the pairwise independent case the graph isG =
([N ], [N ]2, E) where a vertex(a, b) on the right is adja-

cent to the vertices(a + b), (a + 2b), . . . , (a + kb) on the
left.

We elaborate on this perspective in Section 4 and we
show that a simple modification of one of the algorithms of
Guruswami and Indyk leads to the completely derandom-
ized and completely uniform direct product theorem.

1.5. Uniform Amplification of Hardness in NP

O’Donnell uses Impagliazzo’s result about hard-core
sets to prove a result about amplification of average-case
complexity in NP. O’Donnell’s result is as follows: suppose
that for every problemL in NP there is a family of poly-
nomial size circuits that solvesL on a1/2 + 1/n.5−ε frac-
tion of inputs; then for every balanced2 problemL in NP
there is a family of polynomial size circuits that solvesL
on a 1 − 1/poly(n) fraction of inputs. If the assumption
is strengthened to the existence, for every NP problem, of
polynomial size circuits that solveL on a1/2 + 1/n1/3−ε

fraction of the inputs, then the conclusion that for every NP
problemL (not just for balanced ones) there is a family of
circuits that solvesL on a 1 − 1/poly(n) fraction of in-
puts.

The result refers to circuits because the use of Impagli-
azzo’s hard core sets makes the reduction non-uniform.

Using our version of Impagliazzo’s result, we can prove
a statement of the following form:

Suppose that for every problemL in NP there
is a probabilistic polynomial time algorithm that
solvesL on a1/2 + ε fraction of inputs3 for ev-
ery input length;

Then for every problemL in NP there is
a probabilistic algorithm that, givenn, runs in
poly(n) · 2poly(1/ε,1/δ) time, produces a list of
2poly(1/ε,1/δ) circuits, and, with high probability,
one of the circuits solvesL on a1 − δ fraction of
inputs of lengthn.

When ε andδ are at least1/(logn)c for a sufficiently
smallc > 0, then the list has polynomial size. We are then
faced with the following task: given a list of circuits for an
NP problem, such that one of the circuits works well on av-
erage, construct a single circuit that works well on average.

If the circuits solved thesearchversion ofL, then the
task would be easy: run the circuits in parallel, then if at
least one of them finds a certificate accept, otherwise reject.

A sensible idea would then be to use the search-to-
decision reduction for average-case NP problem of Ben-

2 By balanced we mean that on every input length half of the instances
are YES instances and half of the instances are NO instances.

3 By this, we mean that there is an algorithmA such that for a randomx
and a random choice of randomness forA there is a probability1/2+
ε thatA is correct onx.



David and others [3]. The procedure starts from a language
L and defines a new languageL′ such that a good-on-
averagedecisionalgorithm forL′ yields a good-on-average
searchalgorithm forL. The problem is that the reduction
transforms an algorithm forL′ that works on a1 − δ frac-
tion of inputs of lengthn′(n) into an algorithm forL that
works on a1 − O(δ · m(n)) fraction of inputs of lengthn,
wherem(n) is the length of witnesses for instances ofL of
lengthn andn′(n) is polynomial inn. In particular, the re-
duction gives nothing if applied to an algorithm forL′ that
succeeds only on a1 − 1/poly log n fraction of inputs.

We do not know how to overcome this difficulty, but we
show a way of removing non-uniformity under the stronger
assumption that for every NP problem we have an an algo-
rithm that solves it on slightly more than a3/4 fraction of
inputs.

Our final result is that if for every problemL in NP there
is a probabilistic polynomial time algorithm that solvesL
on a3/4 + (1/ logn)c fraction of inputs of lengthn; then
for every problemL in NP there is a probabilistic polyno-
mial time algorithm that solvesL on a1 − 1/(logn)c frac-
tion of inputs, wherec is an absolute constant.

1.6. Overview

We present an almost uniform version of Impagliazzo’s
hard-core set result in Section 2. We use this result in Sec-
tion 3 to prove an advice-efficient direct product lemma for
pairwise indpendent inputs. In Section 4 we point out the
equivalence between certain graph-based constructions of
error-correcting codes and the constructions derived from
derandomized direct product lemmas. Finally, in Sections 5
and 6 we give a uniform amplification of hardness result for
NP.

Some proofs are omitted due to space constraints. A full
version of this paper, which includes all proofs, is available
from ECCC [18].

2. An Advice-efficient Version of Impagli-
azzo’s Hard-Core Sets

We can abstract Impagliazzo’s main result in his con-
struction of hard-core sets as follows.

Definition 1 (Set-Function Game). Let N be an integer,
δ, ε ∈ (0, 1/2) be fractions andf : [N ] → {0, 1} be a func-
tion. Consider the following game: at every stepi the first
player produces a setHi ⊆ [N ] such that|Hi| ≥ δN and
the second player replies with a functiongi : [N ] → {0, 1}
such thatgi andf agree on at least an1/2+ε fraction of el-
ements ofHi. The first player wins at stepi if the function
g(x) = majority{g1(x), . . . , gi(x)} agrees withf() on at
least a1 − δ fraction of the elements of[N ].

Lemma 2 (Impagliazzo [10]). There is a strategy for the
first player such that for every strategy for the second player
involving2No(1)

possible functionsg, the first player wins
within poly(1/ε, 1/δ) steps.

Impagliazzo uses Lemma 2 in the following way. Sup-
pose that we have a functionf : {0, 1}n → {0, 1} such that
for every setH ⊆ {0, 1}n with |H | ≥ δ2n there is a cir-
cuit C of size≤ s such thatC computesf on at least a
1/2 + ε fraction of the elements ofH . Then, we can play
the set-function game (as a mental experiment) with the first
player using the strategy of Lemma 2 and the second player
always replying with a circuit of size≤ s. Then, we con-
clude thatf can be computed on a1 − δ fraction of the in-
puts by a circuit of sizes · poly(1/ε, 1/δ). By contrapos-
itive, if it is impossible to computef on a1 − δ fraction
of inputs using a circuit of sizes, then there must be a set
H ⊆ {0, 1}n such that no circuit of sizes · poly(ε, δ) can
computef on more than a1/2 + ε fraction of the elements
of H .4

The argument is inherently non-uniform, and, in fact, it
is not clear how to use Lemma 2 in a uniform setting. The
following Lemma gives a way of doing it.

Lemma 3. Let C be a distribution of circuits samplable in
timet, f : [N ] → {0, 1} be a function and letγ, δ, ε be such
that for every subsetH ⊆ [N ], |H | ≥ δN , we have

Pr
C←C

[

Pr
x∈H

[f(x) = C(x)] ≥ 1

2
+ ε

]

≥ γ

Then there is a distributionC′ of circuits samplable in
timet · poly(1/ε, 1/δ) such that

Pr
C←C′

[

Pr
x∈[N ]

[f(x) = C(x)] ≥ 1 − δ

]

≥ γpoly(1/ε,1/δ)

Proof. As a mental experiment, we are going to run Im-
pagliazzo’s procedure against samples fromC. We need at
mostt = poly(1/ε, 1/δ) circuits, and, each time, we have a
probabilityγ that a circuit sampled fromC is a legal move.

The distributionC′ is thus as follows. We compute the
upper boundt = poly(1/ε, 1/δ) to the number of moves
in the strategy of Lemma 2. Then we pick at random
i ∈ {1, . . . , t} and samplei circuits C1, . . . , Ci inde-
pendently fromC. Finally, we output the circuitC(x) =
majority{C1(x), . . . , Ci(x)}.

There is a probability at least(1/t) · γt thatC computes
f on a1 − δ fraction of inputs.

The conclusion of the Lemma can be equivalently stated
as the existence of a probabilistic algorithm that produces

4 The Set-Function game in [10] refers not to sets of sizeδN , but
to “measures,” or, essentially, distributions of min-entropy at least
log(δN). However Impagliazzo also shows a result about “rounding”
measures to sets which implies that Lemma 2 is true as stated.



a list of (1/γ)poly(1/ε,1/δ) circuits such that with high
probability one of them solvesf on a 1 − δ fraction
of inputs. The correct circuit can then be specified using
log(1/γ) · poly(1/ε, 1/δ) bits of advice, assuming a non-
uniform model like the one of [19], where a randomized ma-
chine tosses its random coins, and then receives an advice
that depends on the randomness and on the input length, but
not on the input itself.

3. Advice-efficient Direct Product Lemma for
Pair-wise Independent Inputs

For simplicity, in this section we will refer to a specific
pair-wise independent generator, even though the argument
could be applied more generally.

Suppose we have a functionf : [N ] → {0, 1} and that
[N ] is a field (for example,N is prime and we do opera-
tions (mod N)). Then, if we picka, b ∈ [N ] at random,
the elementsa + b, a + 2b, . . . ,a + kb are pairwise indepen-
dent.

Define the functionfk : [N ]2 → {0, 1}k as

fk(a, b) = f(a + b), f(a + 2b), . . . , f(a + kb) .

Then the pair-wise independent Direct Product Lemma of
Impagliazzo [10] implies that iff is hard to compute on
more than a1 − δ fraction of inputs with circuits of size
s, then fk is hard to compute on more than anε frac-
tion of inputs with circuits of sizes · poly(1/k, δ), where
ε = O(1/δk).

The proof works as follows: suppose that there is a cir-
cuit A of sizes that computesfk on more than anε frac-
tion of inputs; then for everyH ⊆ [N ] we show that there is
a circuit that computesf on a1/2+Ω(ε) fraction of the el-
ements ofH , furthermore,C is of sizes + poly log N . Us-
ing the results about hard-core sets, we conclude that there
is a circuit of sizes·poly(k, 1/δ) that computesf on a1−δ
fraction of inputs.

Let us now see the proof in detail. The following presen-
tation is taken from [10] by specializing the analysis given
for generalr-wise independent generators to the case of the
particular pairwise independent generator considered in this
section. At every step we show how to replace non-uniform
choices with random choices, and estimate the probability
that random choices are correct.

Assumeε ≥ 128/δk and letγ = ε/256.5 Let A :
[N ]2 → {0, 1}k be a function that agrees withfk on at
least anε fraction of the inputs. LetAi(a, b) be thei-th out-
put ofA. Fix a setH ⊆ [N ] such that|H | = δN . Our goal
is to find a circuitC such thatC computesf on at least a
1/2 + γ fraction of the elements of[N ] and such that the
size ofC is not much larger than the size ofA.

5 We are making no attempt to optimize constants.

We will give a probabilistic procedure that succeeds with
probabilitypoly(1/ε, 1/δ, 1/k).

Define thek random variablesF1, . . . , Fk as follows:
pick at randoma, b ∈ [N ] then

• Fi = 1 if a + ib ∈ H andAi(a, b) = f(a + ib),

• Fi = 0 otherwise.

A first observation is that if there is ani such that
Pr[Fi = 1] 6∈ δ(1/2 ± γ) then our task of constructing
C is quite easy.

Claim 1. Suppose thatPr[Fi = 1] > δ(1/2 + γ) or
Pr[Fi = 1] < δ(1/2 + γ). Then there is a circuit of size
poly log N that makes one oracle query toA and solvesf
on a1/2 + γ fraction ofH . Furthermore, there is a proba-
bilistic construction of circuits of sizepoly log N that make
one oracle query toA. With probability at leastγ/2, the
construction gives a circuit solvesf on a1/2 + γ/2 frac-
tion ofH .

It remains to consider the case in whichδ(1/2 − γ) ≤
E[Fi] ≤ δ(1/2 + γ) for everyi. We note that, of course,
E[

∑

i Fi] = δk(1/2 ± γ). On the other hand, we are go-
ing to argue that

∑

i Fi is not very concentrated around its
expectation, and so theFi cannot be almost pairwise inde-
pendent.

Claim 2. SupposePr[Fi = 1] = δ(1/2±γ) for all i. Then
there are indicesi, j such that

E[FiFj ] − (E[Fi]E[Fj ]) ≥
δ2ε

64

The dependency can be exploited to computef onH .

Claim 3. Under the same assumption of Claim 2, there is
a circuit of poly log N size that makes one oracle query to
A and solvesf on a 1/2 + 4γ/3 fraction of H . There is
also a samplable distribution of circuits of sizepoly log N
with one oracle query toA such that the distribution pro-
duces with probability at leastγ/6 a circuit that solvesf
on a1/2 + γ fraction ofH .

See [18] for the proof of Claims 1, 2 and 3.
Finally, consider the following distribution over circuits:

pick at random indicesi, j, then with probability 1/2 sam-
ple a circuit from the distribution of Claim 1 (with respect
to i) and with probability 1/2 sample a circuit from the dis-
tribution of Claim 3 (with respect toi, j).

Then, in each possible case, there is a probability
Ω(δε/k2) that we sample a circuit computesf on at least
a 1/2 + γ/2 fraction of the elements ofH . Notice that the
distribution is independent ofH , and, indeed, the result is
true for allH such that|H | = δN .

We can then apply Lemma 3. We summarize the result
proved in this section as follows.



Theorem 4. Let f : [N ] → {0, 1}, and letε, δ, k, and
fk : [N ]2 → {0, 1}k be defined as the beginning of this
section. LetA be a function that has agreementε with fk.
There is a probabilistic algorithm that runs in2poly(1/ε,1/δ)·
poly log N time and produces a list of2poly(1/ε,1/δ) ora-
cle circuits; each circuit has sizepoly(log N, 1/ε, 1/δ) and
makespoly(1/ε, 1/δ) oracle queries. With high probabil-
ity, at least one circuit in the list, when given oracle access
to A, solvesf on a1 − δ fraction of inputs.

For the coding-theoretic application, letC : M →
{0, 1}N be an error-correcting code with a linear-time de-
coding algorithm that can correct aδ fraction of errors and
with a quadratic time (or better) encoding algorithm. For ex-
ample,C could be a Sipser-Spielman code [15]. AssumeN
is prime, and consider[N ] as a field.

Then, for parametersε, k as the beginning of this sec-
tion, define the codeC′ : M → ({0, 1}k)N2

. For a mes-
sageM and for indicesa, b ∈ [N ], the entry indexed by
(a, b) in C′(M) is thek-bit string

C′(M)[a, b] = (C(M)[a + b] · · ·C(M)[a + kb])

LetA be a string that has agreementε with C′(M). Then
there is a probabilistic algorithm that runs in2poly(1/ε,1/δ) ·
poly log N time and produces a list of2poly(1/ε,1/δ) ora-
cle circuits; each circuit has sizepoly(log N, 1/ε, 1/δ) and
makespoly(1/ε, 1/δ) oracle queries. With high probabil-
ity, at least one circuit in the list, when given oracle access
to A, defines a string that agrees withC(M) on a1−δ frac-
tion of entries.

In 2poly(1/ε,1/δ) · Npoly log N time we can compute all
the strings defined by all the circuits in the list, and then ap-
ply the unique decoding algorithm to each of them. This
way we get a list of size2poly(1/ε,1/δ) that containsM .

4. Codes and Direct Product Lemmas From
Expander Graphs

As discussed in the introduction, codes obtained from
a Direct Product Lemma can be seen as graph-based con-
structions of codes in the spirit of [2, 7, 8, 9]. In fact the
converse is also true: if a graph-based construction of codes
has a sub-linear time error-correction procedure, then it also
gives a direct product result. In this section we observe that
the decoding procedure for one of the codes in [8] has in-
deed a sub-linear time decoding procedure, and hence we
derive a new direct product result from it. The result is weak
in the sense that it proves only constant average-case hard-
ness, but the result iscompletelyderandomized, and the re-
duction is uniform and deterministic.

Consider the following definition.

Definition 5. We say that ak-regular bipartite graphG =
([N ], [N ], E) is an(ε, δ)-mixer if for every subsetB of ver-
tices on the right such that|B| ≥ (1/2 − ε)N , there are at
mostδN verticesv on the left such that|Γ(v) ∩ B| > k/2.

Lemma 6. There are explicit(ε, δ)-mixers with k =
poly(1/ε, 1/δ).

In fact, any family of expanders with apoly(1/ε, 1/δ)
eigenvalue gap is an(ε, δ) mixer. In the Lemma above, “ex-
plicit” means that the neighborhood of a vertex can be com-
puted in time polynomial inlog N and ink. The construc-
tions in [13], and, in fact, even those in [5], prove Lemma 6.

Theorem 7. Let fn : {0, 1}n → {0, 1}, ε(n), δ(n) > 0 be
arbitrary, andGn = ({0, 1}n, {0, 1}n, E) be a an explicit
family of(ε(n), δ(n)) mixers of degreek(n).

Define the functionFn : {0, 1}n → {0, 1}k(n) as

F (x) = (f(Γ1(x)), · · · , f(Γk(x))

Suppose there is a deterministic algorithmA running in
timet(n) that solvesFn on a1/2 + ε(n) fraction of the in-
puts.

Then there is a deterministic algorithmA′ running in
time O(t · poly(k, n)) that solvesfn on a 1 − δ(n) frac-
tion of inputs.

Notice that the new function has thesame input length
as the original function, and the result preserves both uni-
formity and determinism. This is probably the only known
“amplification of hardness” proved with a deterministic re-
duction.

Proof. On inputx ∈ {0, 1}n, algorithmA′() finds thek
neighborsy1, . . . , yk of x in Gn and applies algorithmA()
to each of them. The resultsA(y1), . . . , A(yk) contain each
a prediction of the valuef(x). Algorithm A′ returns the
value that occurs more often among such predictions.

Let B ⊆ {0, 1}n be the set of inputsy such thatA(y) 6=
F (y). By assumption,|B| ≤ (1/2 − ε)2n. The inputsx ∈
{0, 1}n such thatA′(x) 6= f(x) are such that a majority of
their neighbors belong toB. By the mixing property ofG,
there can be at mostδ2n such inputsx.

By applying a randomness-efficient version of
Goldreich-Levin, we can also define a boolean func-
tion f ′ : {0, 1}n+logk+O(log 1/ε) → {0, 1} such that a de-
terministic algorithm that computesf ′ on a 7/8 + O(ε)
fraction of inputs can be turned into a deterministic algo-
rithm of comparable complexity that computesf on a1− δ
fraction of inputs, wheren, k, ε, δ are as in the above Theo-
rem.



5. Advice-Efficient Amplification of Hardness
in NP

In this section we present the results of [14] and explain
how to use Lemma 3 instead of Impagliazzo’s hard core sets
in order to derive a uniform reduction.

5.1. O’Donnell’s Proof

Let f : {0, 1}n → {0, 1} be an NP function and
g : {0, 1}k → {0, 1} be a monotone function. Then
f ′(x1, . . . , xk) = g(f(x1), . . . , f(xk)) is still an NP func-
tion. O’Donnell shows that for a proper choice ofg and for
a certain range of parametersε andδ, if there is a circuit
A of sizes that solvesf ′ on an1/2 + ε fraction of inputs
then, for every setH of densityδ, there is a circuitC of
sizes + poly(k, n) that solvesf on a1/2+ Ω(ε/

√
k) frac-

tion of inputs fromH . In turn, this implies that there is a
circuit of sizes · poly(1/ε, 1/δ, k) that solvesf on a1 − δ
fraction of inputs.

We sketch below a slightly different, and simpler, argu-
ment that shows, under the same assumption, that for every
setH of densityδ there is a circuit of sizes + poly(k, n)
that solvesf on a1/2+ε/(δk) fraction of inputsH . Our ar-
gument is easier to adapt to the uniform setting.6

Let f : {0, 1}n → {0, 1} be a function (that we think of
as being hard to compute on more than a1 − δ fraction of
inputs) and letH ⊆ {0, 1}n be a set of sizeδ2n (that we
think of as being a hard-core set forf ).

Let us define a random functionb : {0, 1}n → {0, 1} as
follows: for x 6∈ H , b(x) = f(x), while, for x ∈ H , b(x)
outputs a random bit. IfH is a hard-core set forf , then
the distributions(x, f(x)) and (x, b(x)) are computation-
ally indistinguishable. More precisely, if we are given a cir-
cuit of sizes that has distinguishing probabilityε between
the two distributions, then we get a circuit of sizes + O(1)
that computesf on at least a1/2 + ε/δ fraction of the ele-
ments ofH .

An hybrid argument shows that the distributions

x1, x2, . . . , xk, f(x1), f(x2), . . . , f(xk)

and

x1, x2, . . . , xk, b1(x1), b2(x2), . . . , bk(xk)

are also computationally indistinguishable, ifH is a hard-
core set. (The functionsbi are independent copies of the
function b that we previously defined.) More precisely, if
we are given a circuit of sizes that has distinguishing prob-
ability ε between the two distributions, then we get a circuit
of sizes+O(nk) that computesf on at least a1/2+ε/(δk)
fraction of the elements ofH .

6 A similar argument appears in [17].

If g : {0, 1}k → {0, 1} is a function computable by a
circuit of sizepoly(k), then the distributions

x1, x2, . . . , xk, g(f(x1), f(x2), . . . , f(xk))

and

x1, x2, . . . , xk, g(b1(x1), b2(x2), . . . , bk(xk))

are still computationally indistinguishable ifH is a hard-
core set.

O’Donnell shows that iff is a balanced function, then
for everyε, δ there is ak = poly(1/ε, 1/δ) and a function
g : {0, 1}k → {0, 1} computable by a circuit of sizeO(k)
such that the distributions

x1, x2, . . . , xk, g(b(x1), b(x2), . . . , b(xk))

and
x1, x2, . . . , xk, r

(wherer is a random bit) have statistical distance at mostε.
Notice that this is a purely information-theoretic result,that
uses only the fact thatf is balanced and thatH has density
δ.

Then we get that the distributions

x1, x2, . . . , xk, g(f(x1), f(x2), . . . , f(xk))

and
x1, x2, . . . , xk, r

are computationally indistinguishable, which means that the
function f ′(x1, . . . , xk) = g(f(x1), f(x2), . . . , f(xk)) is
very hard on average.

5.2. Our Result

In this section we prove a version of O’Donnell result
with bounded non-uniformity.

We will proceed as in [14], with a careful use of
non-uniformity. First, we state formally the information-
theoretic part of the argument of [14].

Theorem 8 ([14]). For every ε, δ > 0 there is ak =
poly(1/ε, q/δ) and a functiong : {0, 1}k → {0, 1} such
that the following holds. Letf : {0, 1}n → {0, 1} be a
functionε/k-close to balanced,H ⊆ {0, 1}n be of den-
sity δ, bf

1 , . . . , bf
k : {0, 1}n → {0, 1} be independent ran-

dom functions such thatbf
i (x) = f(x) for x 6∈ H andbf

i (x)
outputs a random bit ifx ∈ H . Then the distributions

x1, . . . , xk, g(bf
1 (x1), . . . , b

f
k(x))

and
x1, . . . , xk, r

have statistical distance at most2ε, where thexi are uni-
form and independent in{0, 1}n andr is uniform in{0, 1}.



The proof of Theorem 8 uses the following notion.

Definition 9. For a string x ∈ {0, 1}k, denote byNδ(x)
the random variable obtained by flipping each bit ofx inde-
pendently with probabilityδ.

Thenoise stabilityof a functiong : {0, 1}k → {0, 1} at
parameterδ, denotedNOISESTABδ(g) is defined as

NOISESTABδ(g) = Pr[g(x) = g(Nδ(x))]

wherex is uniform.

The following two results give a proof of Theorem 8.

Lemma 10 ([14]). For every ε, δ > 0 there is ak =
poly(1/ε, 1/δ) and a functiong : {0, 1}k → {0, 1} such
that NOISESTABδ′(g) ≤ 1/2 + ε for everyδ ≤ δ′ < 1.

Lemma 11 ([14]). Let f : {0, 1}n → {0, 1} be a bal-
anced function,H ⊆ {0, 1}n be of densityδ, bf

1 , . . . , bf
k :

{0, 1}n → {0, 1} be independent random functions such
that bf

i (x) = f(x) for x 6∈ H and bf
i (x) outputs a ran-

dom bit ifx ∈ H . Let g : {0, 1}k → {0, 1} be a function
such thatNOISESTABδ/2(g) ≤ 1/2 + 2ε2. Then the distri-
butions

x1, . . . , xk, g(bf
1(x1), . . . , b

f
k(x))

and
x1, . . . , xk, r

have statistical distance at mostε, where thexi are uniform
and independent in{0, 1}n andr is uniform in{0, 1}.

In order to prove Theorem 8, we just need to take into
account the fact thatf is not perfectly balanced. See [18]
for more details.

Now we are left with the reduction to the information-
theoretic case.

Lemma 12. Let g : {0, 1}k → {0, 1} be as in Theorem 8,
f : {0, 1}n → {0, 1} beε/k-close to balanced andA be a
polynomial-time algorithm such that

Pr[A(x1, . . . , xk) = g(f(x1), . . . , f(xk))] ≥ 1

2
+ 3ε

Then there is a polynomial time samplable distribution of
circuits C such that for every setH ⊆ {0, 1}n of densityδ
we have

Pr
C∼C

[

Pr
x∈H

[C(x) = f(x)] ≥ ε

2δk

]

≥ ε

δk2 · 22k−1

The proof proceed as in the overview of Section 5.1.
See [18] for a complete proof.

We get our amplification of hardness result by using the
above lemma and Lemma 3 (our uniform version of Im-
pagliazzo’s hard core result).

Lemma 13. Let g : {0, 1}k → {0, 1} be as in Theorem 8,
f : {0, 1}n → {0, 1} beε/k-close to balanced andA be a
polynomial-time algorithm such that

Pr[A(x1, . . . , xk) = g(f(x1), . . . , f(xk))] ≥ 1

2
+ 2ε

Then there is a polynomial time samplable distribution of
circuitsC such that

Pr
C∼C

[

Pr
x∈H

[C(x) = f(x)] ≥ 1 − δ

]

≥ 2−poly(1/ε,1/δ)

Finally, we want to generalize the result from the almost-
balanced case to the general case. We can do so by using
the same padding technique adopted in [14]. The reader is
referred to [14] for details.

Theorem 14. For every polynomial time computable func-
tionsε, δ the following holds.

Suppose that for every languageL in NP there is a prob-
abilistic algorithmA such that for every input lengthn we
have

Pr
x∈{0,1}n

[A(x) = L(x)] ≥ 1

2
+ ε(n)

Then for every languageL in NP there is a probabilistic al-
gorithmA′ that on inputn runs inpoly(n, 1/ε(n), 1/δ(n))
time and outputs a circuit, and

Pr
C∼A′(n)

[

Pr
x∈{0,1}n

[C(x) = L(x)] ≥ 1 − δ(n)

]

≥ 2−poly(1/ε(n),1/δ(n))

Notice that the conclusion of the theorem could be stated
equivalently as the existence of a probabilistic algorithm
running in time polynomial inn and in2poly(1/ε,1/δ) that
produces a list of2poly(1/ε,1/δ) circuits such that one of
them solvesf on at least a1 − δ fraction of inputs.

6. Uniform Amplification of Hardness in NP

In this section we prove the following result.

Theorem 15. There is a constantc > 0 such that the fol-
lowing is true. Suppose that for every NP problem there is a
probabilistic polynomial time algorithm that, on every input
length, succeeds on a3/4 + 1/(log n)c fraction of inputs.
Then for every balanced NP problem there is a probabilis-
tic polynomial time algorithm that, on every input length,
succeeds on a1 − 1/(logn)c fraction of inputs.

Given the results of the previous section, the assump-
tion of Theorem 15 implies that, for every languageL in
NP, we have a probabilistic algorithm that, on inputn, runs



in poly(n) time and produces a list ofpoly(n) circuits of
poly(n) size such that at least one of them solvesL on at
least a1 − δ fraction of inputs, whereδ = 1/(log n)Ω(1).
We would like to be able to recognize such a circuit. Unfor-
tunately, we do not know how to do that. On the other hand,
under the assumption of the theorem, we are able to solve a
slightly weaker promise problem, and solving the promise
problem will be enough to prove the conclusion of the the-
orem.

Theorem 16. For every functionδ(n) there are function
γ(n), σ(n) such thatγ(n) ≤ δ(n)Ω(1) andσ(poly(n)) ≤
δ(n)Ω(1) and the following happens.

Suppose that for every balanced languageL in NP there
is a probabilistic polynomial time algorithm that solvesL
on a3/4 + σ(n) fraction of the inputs of lengthn.

Then for every balanced languageL in NP there is
a probabilistic polynomial time probabilistic algorithmA
such that

• For every circuit C that solves L on at least
a 1 − δ(n) fraction of the inputs of lengthn,
Pr[A(C) accepts] ≥ 3/4.

• For every circuit C that solvesL on fewer than
a fraction 1 − γ(n) of the inputs of lengthn,
Pr[A(C) accepts] ≤ 1/4.

Of course the probability of success can be amplified from
3/4 to 1 − 2−n. See [18] for the proof. The proof of The-
orem 15 is now mostly a matter of fixing parameters. We
fix a c′ small enough so that, in Theorem 14, under the as-
sumption that every problem in NP can be solved on a3/4
fraction of inputs, then for every problem L in NP there is
an algorithmAlist that constructs in polynomial time a list
of circuits such that at least one of them solves the prob-
lem on a1 − 1/(logn)c′ fraction of inputs. Then we ap-
ply Theorem 16 withδ = 1/(log n)c′ , and we see that there
are functionsσ, γ = δΩ(1) such that if every problem in
NP can be solved uniformly on a3/4 + σ fraction of in-
puts then for every problem L in NP there is an algorithm
Adist that is able to distinguish circuits that solve the prob-
lem on≥ 1 − δ fraction of inputs from circuits that solve
the problem on≤ 1 − γ fraction of inputs.

Finally, we get a good uniform algorithm forL as fol-
lows. On inputx of lengthn, we runAlist(n) to get a list
of possible circuits, then we run algorithmAdist on each
of the circuits. LetC be the first circuit that is accepted by
Adist; then we outputC(x). Since the generation of the cir-
cuit was independent ofx, and since with high probability
the circuit solvesL on a1 − γ fraction of inputs, then the
whole algorithm has a success probability close to1−γ. To
complete the proof of Theorem 15 we just need to choose
c small enough so thatσ(n), γ(n) ≤ 1/(logn)c for suffi-
ciently largen in the above argument.

7. Conclusions

Guruswami and Indyk [7, 8, 9] present, among several
other results, error-correcting codes with linear-time encod-
ing algorithms and linear time list-decoding algorithms that
correct a1 − ε fraction of errors. As in our case, their con-
struction starts from codes with a unique decoding algo-
rithm.

The Guruswami-Indyk construction in [9] is better than
ours in any respect: shorter encoding length, faster encod-
ing time, comparable decoding time and list size.

Sudan’s [16] list-decoding algorithm for Reed-Solomon
codes gives codes that decode a1−ε fraction of errors while
creating a list of size onlypoly(1/ε). Furthermore, using
concatenation, one can have alphabets of sizepoly(1/ε)
(while in our case the alphabet has size2poly(1/ε)) and
quasi-linear or linear encoding length. The decoding time is
polynomial in [16], but it has been improved to quasi-linear
in [4, 1].

The main point of this paper, therefore, is not to present
an improved, or even competitive, construction of list-
decodable codes, but rather to show that results from com-
plexity theory, with little manipulation, yield codes with
reasonably non-trivial properties. Quite possibly, a new
technique could be extracted by better understanding the al-
gorithm presented in this paper, which could be used more
directly to devise improved list-decoding algorithms. In any
case, this connection gives a new way of looking at the list-
decoding problem, and a new language to describe and an-
alyze algorithms.

Within complexity theory, the observations and results
of this paper are a challenge to come up with a direct prod-
uct theorem foralmost pairwise independent inputs. Such a
result would give codes with quasi-linear, and possibly lin-
ear, encoding length.

The Direct Product Lemma should be provable with
only O(log(1/εδ)) bits of advice, which would lead to list-
decoding algorithm with near-optimal list size. It is an in-
teresting open question to prove such a result.

There is a lot of room for improvement in our uniform
amplification of hardness result for NP. One approach to try
and improve our results would be to devise an even more
advice-efficient version of Impagliazzo’s results.
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