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Abstract

We continue the study of amplification of average-case complexity within NP, and we focus
on the uniform case.

We prove that if every problem in NP admits an efficient uniform algorithm that (averaged
over random inputs and over the internal coin tosses of the algorithm) succeeds with probability
at least 1/2 + 1/(log n)α, then for every problem in NP there is an efficient uniform algorithm
that succeeds with probability at least 1− 1/poly(n). Above, α > 0 is an absolute constant.

Previously, Trevisan (FOCS’03) presented a similar reduction between success 3/4 +
1/(log n)α and 1 − 1/(log n)α. Stronger reductions, due to O’Donnell (STOC’02) and Healy,
Vadhan and Viola (FOCS’04) are known in the non-uniform case.

1 Introduction

Amplification of hardness

Generally speaking, the goal of amplification of hardness is to start from a problem that is known (or
assumed) to be hard on average in a weak sense (that is, every efficient algorithm has a noticeable
probability of making a mistake on a random input) and to define a related new problem that is
hard on average in the strongest possible sense (that is, no efficient algorithm can solve the problem
noticeably better than by guessing a solution at random).

For decision problems, Yao’s XOR Lemma [Yao82] is a very powerful result on amplification of
hardnes. In the XOR Lemma, we start from a Boolean function f : {0, 1}n → {0, 1} and define a
new function f⊕k(x1, . . . , xk) := f(x1) ⊕ · · · ⊕ f(xk), and the Lemma says that if every circuit of
size ≤ S makes at least a δ fraction of errors in computing f(x) for a random x, then every circuit
of size ≤ S · poly(δε/k) makes at least a 1/2− ε fraction of errors in computing f⊕k(), where ε is
roughly Ω((1− δ)k).

Various proofs of the XOR Lemma are known [Lev87, BL93, Imp95, GNW95, IW97], and none of
them is completely uniform, that is, none of them describes a uniform reduction that transforms an
algorithm that solves f⊕k() on more than an 1/2+ε fraction of inputs into an algorithm that solves
f() on more than a 1−δ fraction of inputs.1 Due to a connection between amplification of hardness

∗luca@cs.berkeley.edu. U.C. Berkeley, Computer Science Division.
1Some reductions, however, can be implemented uniformly provided that the distribution (x, f(x)) can be sampled

by an efficient uniform sampler.
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and coding theory discussed in [Imp02, TV02, Vio03, Tre03], no amplification result proved using
uniform “black-box” reductions can start from a decision problem for which every efficient algorithm
errs on at least a .2499 fraction of inputs and construct a new decision problem for which every
efficient algorithm errs on at least a .2501 fraction of inputs. For specific problems, however, it is
possible to prove uniform amplification results that are as strong as the XOR Lemma; for example,
in [TV02] we show that this is possible for PSPACE-complete and EXP-complete problems, using
the fact that such problems have instance checkers.2

Amplification of Hardness in NP

Suppose now that we want to study the average-case complexity of problems in NP, and that we
would like to prove an amplification result of the following type: if L is a language in NP such that
every efficient algorithm (or small family of circuits) errs on at least a 1/poly(n) fraction of inputs
of length n, then there is a language L′ also in NP such that every efficient algorithm (or small
circuit) errs on a 1/2−1/nΩ(1) fraction of inputs. The XOR Lemma does not help us prove a result
of this kind, because if we define the language L′ made of k-tuples (x1, . . . , xk) such that an odd
number of xi are in L, then we see that the language L′ has the required average-case hardness but
it is not clear that L′ is in NP.3

In order to prove amplification of hardness results within NP, O’Donnell [O’D02] proves the fol-
lowing result: for every balanced Boolean function f : {0, 1}n → {0, 1} (e.g. the characteristic
function of an NP problem) and positive parameters ε, δ, there is an integer k = poly(1/ε, 1/δ)
and a monotone function g : {0, 1}k → {0, 1} such that if every circuit of size S makes at least
a δ fraction of errors in computing f(x) given x, then every circuit of size S · poly(ε, δ) makes
at least a 1/2 − ε fraction of errors in computing fg,k := g(f(x1), . . . , f(xk)) given (x1, . . . , xk).
Note that if f(·) is the characteristic function of an NP language L on inputs of length n, then
fg,k is the characteristic function of another NP language L′ on inputs of length nk, and so this
result indeed proves amplification of hardness in NP, albeit only for balanced decision problems,
that is, for problems such that, for a random instance of a given length, there is a probability
1/2 that the answer is YES and a probability 1/2 that the answer is NO. For balanced problems,
O’Donnell proves an amplification of hardness results from 1 − 1/poly(n) to 1/2 + 1/n1/2−ε. He
also introduces a padding argument to remove the restriction to balanced problems; for general
problems the amplification goes from 1− 1/poly(n) to 1/2 + 1/n1/3−ε. O’Donnell’s proof is based
on Impagliazzo’s [Imp95] result about “hard-core” distributions of inputs for problems that are
weakly hard on average. Impagliazzo’s results appear to use non-uniformity in an essential way.

O’Donnell’s results were recently improved by Healy and others [HVV04]. For balanced problems
in NP, [HVV04] prove amplification from 1−1/poly(n) to 1/2+1/poly(n). More generally, they are
able to start from the assumption that every balanced problem in NP can be solved on a 1/2+1/s(n)
fraction of inputs by circuits of size s(n), and derive the conclusion that every balanced problem
in NP can be solved on a 1− 1/poly(n) fraction of inputs by circuits of size roughly s(n2). These

2Such results, based on the non-uniform results of [STV01], are actually stronger than the XOR Lemma because
relate worst-case to strong average-case complexity, instead of relating a weak form of average-case complexity to a
strong form. The approach of [TV02] is unlikely to be useful within NP: on the one hand, it is considered unlikely that
the kind of worst-case to average-case reductions presented in [STV01] can be generalized to NP-complete problems,
and, on the other hand, it is considered unlikely that NP-complete problems have instance checkers.

3In fact, if L is NP-complete then L′ cannot be in NP unless NP = coNP.
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results of [HVV04] also use Impagliazzo’s hard core distributions, and the reductions in [HVV04]
also appear to be inherently non-uniform.

Previous Work on Uniform Amplification of Hardness in NP

A weak uniform version of O’Donnell’s result appears in [Tre03].

In [Tre03], we first give an “advice efficient” presentation of Impagliazzo’s proof, from which we
derive an amplification from 1 − δ to 1/2 + ε using only poly(1/ε, 1/δ) “bits of non-uniformity.”
This result is stated in a precise form below as Lemma 4. We then show how to eliminate the non-
uniformity and how to do amplification from 1− 1/(log n)α to 3/4 + 1/(log n)α, where α > 0 is an
absolute constant. As discussed above, 3/4 is a natural barrier for uniform black box amplification
results.

The Results of This Paper

In this paper we prosent a uniform amplification result from 1−1/poly(n) to 1/2+1/(log n)α. That
is, we break through the 3/4 barrier in one direction and we achieve the “right” bound 1−1/poly(n)
in the other direction. Formally, our result is as follows.

Theorem 1 (Main) Suppose that for every langyuage in NP there is a probabilistic polynomial
time algorithm that succeeds with probability 1/2+1/(log n)α on inputs of length n. Then for every
language in NP and polynomial p there is a probabilistic polynomial time algorithm that succeeds
with probability 1− 1/p(n) on inputs of length n. The value α > 0 is an absolute constant.

2 Overview of the Proof

Here is an overview of our proof. For a function f : {0, 1}n → {0, 1} and an odd integer k, define
fmaj,k(x1, . . . , xk) = majority{f(x1), . . . , f(xk)}.

1. We begin by showing that if f : {0, 1}n → {0, 1} is balanced, then an efficient algorithm that
solves fmaj,k on a 1−O(δ

√
k) fraction of inputs yields an efficient algorithm that solves f on

a 1− δ fraction of inputs, provided that k ≤ O(δ−2/7).

For example, if there is no efficient algorithm that solves f on a 1 − 1/n fraction of inputs,
then there is no efficient algorithm that solves fmaj,k on a 1− 1/(12 · n6/7) fraction of inputs,
where k = n2/7.

This is established in Lemma 5, proved in Section 4.

This uniform analysis of amplification of hardness using the majority function is the main
new technical result of this paper.

2. By repeated applications of Lemma 5 we show how to start from a balanced function f :
{0, 1}n → {0, 1} and define a new function F : {0, 1}n1+O(t) → {0, 1} such that an efficient
algorithm that solves F on a 1−ε fraction of inputs yields an efficient algorithm that solves f
on a 1− 1/nt fraction of inputs, where ε > 0 is an absolute constant. This remains true even
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if f is only 1/nO(t)-close to be balanced. We prove this fact in Lemma 6 that, for simplicity,
is specialized to the case t = 1/5.

To see, very informally, how this works, let us start from a function f : {0, 1}n → {0, 1} that
is hard to solve on more than a 1−1/nt fraction of inputs: then we define f1 := fmaj,n2t/7

, we
have that f1 has inputs of length n1+2t/7 and it is hard to solve on more than a 1 − 1/n7t/8

fraction of inputs (assuming n is large enough). Then we can define f2 := fmaj,nt·(7/8)·(2/7)

1 ,
and this new function, defined on inputs of length n1+t·(2/7)+t·(2/7)·(7/8) is hard to solve on
more than a 1 − 1/nt·(7/8)2 fraction of inputs. Repeating this process i times we get to fi,

which has inputs of length n
1+t· 2

7
·
�
1+ 7

8
+( 7

8)
2
+···+( 7

8)
i−1

�
and is hard to solve on more than a

1− 1/nt·(7/8)i
fraction of inputs. When i ≈ log log n, fi has inputs of length n1+O(t) and it is

hard to solve on more than a 1− ε fraction of inputs, where ε > 0 is an absolute constant.

One must, of course, be careful in composing a super-constant number of reductions: if
each reduction increased the running time by, say, a factor of n then from a polynomial
time algorithm for F we would only deduce a nO(log log n) time algorithm for f . The precise
statement of Lemma 5 ensures us that at step i we only need to lose a multiplicative factor
of nO(t·(7/8)i) in efficiency.

3. We use a padding trick from [O’D02] to generalize Lemma 6 to the case of general, not
necessarily almost balanced, functions, at the price of a small amount of non-uniformity.

To summarize: the reasoning described so far shows that if for every problem in NP there
is an efficient algorithm that solves the problem on a 1− ε fraction of inputs of each length,
then for every problem in NP and every polynomial p() there is an efficient algorithm that
solves the problem on a 1 − 1/p(n) fraction of inputs of length n with a small amount of
non-uniformity.

Combined with a result of [Tre03], we can reach the same conclusion under the weaker as-
sumption that for every problem in NP there is an efficient algorithm that solves the problem
on a 1/2 + 1/(log n)α fraction of inputs of length n.

Combined with a result from [BDCGL92], from that weaker assumption we can reach the
stronger conclusion that for every search problem in NP and every p() there is an efficient
algorithm that solves the search problem on a 1− 1/p(n) fraction of inputs of length n with
a small amount of non-uniformity.

Finally, we eliminate the non-uniformity by enumerating all possible advice strings, and
accepting if and only if one we find a witness using one of the advice strings. This (and the
use of a search-to-decision reduction) is the “non-black-box” step of our argument.

3 Preliminaries

If L is a language, then we denote by Ln : {0, 1}n → {0, 1} the characteristic function of L restricted
to inputs of length n.

We use the following notion of average-case tractability. We say that a (uniform, probabilistic)
algorithm A succeeds with probability p(n) on a language L if for, every n,

Pr[A(x) = Ln(x)] ≥ p(n)
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where the probability is taken both over the choice of x ∼ {0, 1}n and over the internal coin tosses
of A. We also introduce a notion of average case tractability for “slightly non-uniform” probabilistic
algorithms.

Definition 2 An probabilistic algorithm A solves a language L with agreement p(n) and ambiguity
D if, on input 1n, A outputs a list of ≤ D circuits and, with high probability over the internal coin
tosses of A, at least one of the circuits agrees with Ln on at least a p(n) fraction of inputs.

If we do not care about the size of the list, then the “high probability” in the above statement
can be easily amplified by running the algorithm several times independently and then taking the
union of the lists.

Note that if we have an algorithm that solves L with ambiguity 1 and agreement 1 − δ, then we
also have, for a stronger reason, an algorithm which succeeds with probability ≈ 1 − δ: on input
x, construct the circuit and evaluate x on it. The success probability is at least 1 − δ minus the
probability of error of the algorithm, that is, the probability that the output circuit does not agree
with L on a 1− δ fraction of inputs of length n. (To prove the claim, note that the randomnes used
to pick a random x is independent of the internal coin tosses of the algorithm, and we may think of
x as being chosen after the circuit.) If we want to reduce the probability of error of the algorithm
while keeping the list of size 1, we can run the algorithm several times independently, obtain circuits
C1, . . . , CK and then define C ′(x) = maj{C1(x), . . . , CK(x). If there was a probability, say, at least
1−ε that a random Ci agrees with L on a 1−δ fraction of inputs, then there are at least 1−3(δ+ε)
inputs x such that L(x) has a probability at least 2/3 of agreeing with Ci(x). Therefore there is a
probability at least 1 − e−Ω(k·(ε+δ)2) that C ′, as described above, agrees with L on at least, say, a
1− 4(δ + ε) fraction of inputs.

Lemma 3 (Decision Versus Search, [BDCGL92]) Let L be an NP language and R be an NP
relation that defines L, let w(n) be a polynomial that bounds from above the length of a witness for
a YES instance of L of length n. Then there is a language L′, a polynomial l() and a probabilistic
polynomial time algorithm A that, given in input a circuit C ′ that solves L′ on a 1− δ fraction of
inputs of length l(n), outputs with probability at least 1−2−poly(n) a circuit C that solves the search
version of L (with respect to R) on a 1−O(δ · (w(n))2) fraction of inputs of length n.

Lemma 3 was stated in a somewhat different form in [BDCGL92]. A statement similar to the one
above appears in [BT03]. We will also need the following result from [Tre03].

Lemma 4 ([Tre03]) For every language L in NP there is a language L′ such that if there is
a probabilistic polynomial time algorithm for L′ that succeeds with probability 1/2 + 1/(log n)α,
then there is a probabilistic polynomial time algorithm that solves L with poly(n) ambiguity and
1− 1/(log n)α agreement. The value α > 0 is an absolute constant.

4 The Main Reduction

In this section we prove the following result. Recall that we defined

fmaj,k(x1, . . . , xk) = majority{f(x1), . . . , f(xk)} .
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Lemma 5 (Main) There is a probabilistic polynomial time algorithm that on input a parameter
δ > 0 and integer parameters n, k, where k is odd and c ≤ k ≤ δ−2/7, and a circuit C of size s
with nk inputs, returns a circuit C ′ of size O(s · poly(1/δ)) such that the following is true. (c is an
absolute constant.)

If there is a balanced function f : {0, 1}n → {0, 1} such that C agrees with fmaj,k on a 1− δ
√

k/12
fraction of inputs, then there is a probability at least 1−2−1/δ over the randomness of the algorithm
that the output circuit C ′ agrees with f on a 1− δ fraction of inputs.

Let us start by considering to following, much simpler, scenario: we are given oracle access to fmaj,k

itself, and, given x, we want to compute f(x). Here, the natural approach is to construct a random
k-tuple (X1, . . . , Xk) by picking at random I ∈ {1, . . . , k}, setting XI = x, and picking at random
Xj for j 6= I; then we compute fmaj,k(X1, . . . , Xk) and we output the result.

To analyze the above process, we need to consider the distribution of |{j 6= I : f(Xj) = 1}|. If
there are precisely (k − 1)/2 values of j 6= I such that f(Xj) = 1, and precisely (k − 1)/2 such
that f(Xj) = 0, then fmaj,k(X1, . . . , Xk) = f(XI) = f(x), and we find the right value. Note that,
under our assumption that f is balanced, this happens with probability pk :=

(
k−1

(k−1)/2

)
· 2−(k−1).

Otherwise, if |{j 6= I : f(Xj) = 1}| ≥ (k − 1)/2 + 1 then we output 1 regardless of the value of
f(x), and if |{j 6= I : f(Xj) = 1}| ≤ (k− 1)/2− 1 then we output 0 regardless of the value of f(x);
note that these two events have the same probability. Overall, our output is correct conditioned
on a certain event (that happens with probability pk), and our output is a fair coin conditioned on
the event not happening. Overall, we have probability 1/2 + pk/2 of giving the correct answer. By
Stirling’s approximation, the probability is at least 1/2 + (1 − o(1))/

√
2 · π · (k − 1), which is at

least 1/2 + 1/3
√

k if k is sufficiently large.

It is helpful to think of the above analysis as follows. Define a bipartite graph that has a node on
the left for each element of {0, 1}n, and a node on the right for each k-tuple in ({0, 1}n)k. For each
j = 1, . . . , k and for each k-tuple x1, . . . , xk we put an edge between the vertex xj on the left and
the vertex (x1, . . . , xk) on the right. (Note that there are some parallel edges.) In total, there are
k · 2nk vertices, and the graph is bi-regular with degree k · 2n·(k−1) on the left and k on the right.
We have proved that if we label each vertex x on the left with the label f(x), and each vertex
(x1, . . . , xk) on the right with the label fmaj,k(x1, . . . , xk), then each vertex on the left has a label
that agrees with at least a 1/2 + 1/3

√
k fraction of the labels of its neighbors.

Suppose now that, instead of having oracle access to fmaj,k we have oracle access to a function C
that is α-close to fmaj,k, with α := δ

√
k/12. Let us go back to the graph we defined above, and let

us label each vertex (x1, . . . , xk) on the right with C(x1, . . . , xk). We say that a vertex x on the
left is bad if its label agrees with fewer than 1/2+1/12

√
k fraction of the labels of its neighbor. We

will argue that only a O(α/
√

k) fraction of vertices on the left are bad.

Let B be the set of bad vertices, define β := |B|/ · 2n, and let A, with |A| ≤ α · 2nk be the set of
inputs on which C differ from fmaj,k. For each bad vertex x in B, at least a (1/2−1/3

√
k)− (1/2−

1/12
√

k) = 1/4
√

k fraction of its outgoing edges are in S, and so there are at least

1
4
β ·

√
k · 2nk

edges between B and A. Considering that there is a total of only kα2kn edges going into A, we
note that this already implies β < 4

√
kα.
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The crucial observation is now that most vertices in the neighborhood of B are unique neighbors.
Indeed, there are

β · (1− β)k−1 · k · 2kn > β(1− kβ)k2kn

vertices on the right having exactly one neighbor in B. To see why, consider the experiment of
picking a random vertex on the right, that is, a random k-tuple, and then see what is the probability
that precisely one element of the k-tuple lands in a set of density β.

Of these unique neighbors, at least β(1 − kβ)k2kn − |A| are outside A, and so at least as many
edges from B land in the complement of A. Considering that there are βk2kn edges going out of
B, it follows that the number of edges between B and A is at most

βk2kn − (β(1− kβ)k2kn − |A|) = β2k22kn + α2kn

Combining the relations that we have discovered so far we get

1
4
β ·

√
k · 2kn < α2kn + β2k22kn ≤ α2kn + 16α2k32kn .

Where the last inequality follows from β ≤ 4α
√

k, a fact that we proved earlier. Recall that we
defined α := δ

√
k/12, and so we get

β <
1
3
δ +

1
9
δ2k3.5 ≤ 1

2
δ

where the last inequality follows from the assumption δ ≤ k−3.5.

Wrapping up, for at least a 1−β > 1− δ/2 fraction of ertices x on the left we have that Pr[f(x) =
C(x1, . . . , xk)] ≥ 1/2+1/12

√
k, where the probability is taken over the choice of a random neighbor

(x1, . . . , xk) of x.

We are finally ready to describe the algorithm claimed in the lemma. The algorithm operates as
follows. It fixes t = O(k/δ) and it picks at random t sequences of k strings of {0, 1}n. For each
such sequence x1, . . . , xk it picks at random i ∈ {1, . . . , k} and then it defines a circuit that on
input x gives the output of C(x1, . . . , xi−1, x, xi+1, . . . , xk). Finally, the output circuit C ′ is the
majority of these circuits. If we look at each x 6∈ B, the probability, over the random choices,
that C ′(x) = f(x) is, by Chernoff bounds, 1 − 2−Ω(t/k) and, by Markov inequality, there is a
probability at least 1 − 2−Ω(t/k) > 1 − 2−1/δ that C ′ is such that C ′ agrees with f() on at least a
1 − 2−Ω(t/k) > 1 − δ/2 fraction of the inputs x that are not in B. By our choice of t and by our
bound on B it follows that there is a probability at least 1− 2−1/δ that C ′ agrees with f on a 1− δ
fraction of inputs. Finally, if the size of C was s, then the size of C ′ is poly(1/δ) · s.

5 Recursive Application of the Reduction

In this section, we show how to compose the reduction with itself, and prove the following result.

Lemma 6 Let language L in NP. Then there is a language L′, a polynomially bounded efficiently
computable function `(n), and a probabilistic polynomial time algorithm that given in input a circuit
C ′ that solves L′ on a ≥ 1 − ε (where ε is an absolute constant) fraction of inputs of length `(n),
returns with high probability a circuit C that solves L on a ≥ 1− 2/n1/5 fraction of inputs of length
n, provided that L is 1/

√
n-close to balanced on inputs of length n.
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We choose a such that if δ < a and we set k = δ−2/7, then k ≥ c (the constant of Lemma 5) and
δ7/8 < δ6/7/20. We fix ε := a8/7/2.

For a boolean function f : {0, 1}n → {0, 1}, we inductively define functions fi : {0, 1}ni → {0, 1}
as follows. Define

δ0 =
1

n1/5
f0 = f

ki =
1

δ
2/7
i−1

δi = δ
7/8
i−1 fi = fmaj,ki

i−1 ni = ni−1 · ki

Unfolding the recursion, we get

ki = n
1
5
· 2
7
·( 7

8)
i−1

δi =
1

n
1
5
·( 7

8)
i

Let r be the largest index such that δr < a. Then δr ≥ a8/7 = 2ε.

The input length of fr is

n · k1 · k2 · · · kr < n
1+ 1

5
· 2
7
·
�
1+ 7

8
+( 7

8)
2
+···( 7

8)
r
�
≤ n1+ 1

5
· 2
7
·8 = n1+ 16

35

Alternatively, we can view fr to be defined as

fr(x1, . . . , xK) = g(f(x1), . . . , f(xK))

where g() is a recursive majority and K ≤ n16/35.

Suppose that we are given a circuit Cr such that Cr agrees with fr on a 1 − 2ε > 1 − δr fraction
of inputs. Then, by applying the algorithm of Lemma 5 to Cr with parameter δr we get, with
high probability, a circuit Cr−1 that agrees with fr−1 on at least a 1− δr−1 fraction of inputs. By
repeatedly applying the algorithm of Lemma 5, we eventually get, still with high probability, a
circuit C0 that agrees with f on at least a 1− δ0 = 1− 1/n1/5 fraction of inputs.

Let now L be a language in NP, and for every input length n define Ln : {0, 1}n → {0, 1} to be the
characteristic function of L restricted to inputs of length n. Define Ln,r : {0, 1}nK → {0, 1} based
on Ln in the same way as we define fr based on f above. (Again, K ≤ n16/35.) Finally, let L′ be
the language such that x ∈ L′ if and only if Ln,r(x) = 1 for some n.

Suppose that we are given a circuit Cr that agrees with Ln,r on a 1 − a fraction of inputs. Let f
be a balanced function that agrees with Ln on a 1 − 1/

√
n fraction of inputs. Then, fr and Ln,r

agree on at least 1−K/
√

n = 1− o(1) fraction of inputs and, in particular, fr and Cr agree on at
least a 1− 2a = 1− ε fraction of inputs if n is large enough. If we repeatedly apply the algorithm
of Lemma 5 to Cr then, as explained above, we eventually construct a circuit C that agrees with
f on at least a 1 − 1/n1/5 fraction of inputs. We conclude that C agrees with Ln on at least a
1− 1/n1/5 − 1/

√
n > 1− 2/n1/5 fraction of inputs.

6 The Main Result

6.1 Dealing With Problems That Are Not Balanced

As first step, we present a version of Lemma 6 that has no balance condtion, but that introduces
a small amount of non-uniformity. This follows an idea from [O’D02].
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Lemma 7 For every language L in NP and polynomial p there is a language L′ such that if there
is a probabilistic polynomial time algorithm that solves L′ with agreement ≥ 1 − ε and polynomial
ambiguity, then there is a probabilistic polynomial time algorithm that solves L with agreement
1− 1/p(n) and polynomial ambiguity. The constant ε is the same as in Lemma 6

Proof: Let t be such that p(n) ≤ nt+1/6 for every sufficiently large n. We define a new language
Lbal ∈ NP such that to each input length of L there “corresponds” an input length of Lbal on which
Lbal is nearly balanced.

Specifically, Lbal is defined as follows. Let x = (x0, x1, . . . , xN−1) be an input of length N . Let n
be the largest integer such that N ≥ nt+1 and let m = N − nt+1, then

• If m > nt then x 6∈ Lbal;

• If x0 = 0 then x is in Lbal if and only (x1, . . . , xn) is one of the first m ·2n/nt strings of {0, 1}n

in lexicographic order;

• If x0 = 1 then x ∈ Lbal if and only if (x1, . . . , xn) ∈ L.

To see the connection between Lbal and L, let n be an input length, and define pn := Prx∈Bn [Ln(x)]
the fraction of inputs of length n that are in L. Let N = nt+1 + bnt · pnc. We observe the following
two important points.

Claim 8 Lbal is 1/nt-close to balanced on inputs of length N , because between a 1 − pn and 1 −
pn +1/nt fraction of inputs of the form 0zy are in Lbal, and a pn fraction of inputs of the form 1zy
are in Lbal. Considering that N < (n + 1)t+1, we have that Lbal is O(1/N t/(t+1))-close to balanced
and, in particular, 1/

√
N -close to balanced if n is large enough.

Claim 9 Suppose that we had an algorithm that succeeds with probability 1− δ on inputs of length
N of Lbal; then we could get an algorithm that succeeds with probability 1− 2δ on inputs of length
n of L as follows: on input z, pick y at random and pass 1zy to the algorithm for Lbal. Similarly,
if we are given a circuit C ′ that agrees with Lbal on a 1− δ fraction of inptus of length N , then we
can find with high probability a circuit C that agrees with L on, say, a 1− 6δ fraction of inputs of
length n.4

In summary, if we were able to solve Lbal well on average even only on the input lengths on which
it is almost balanced, and if we knew at least an approximation to the values pn, we could solve L
well on average on all input lengths.

Starting from Lbal, we apply Lemma 6 and we get a language L′ and a length function `(). Suppose
that L′ can be solved with agreement 1− ε and polynomial ambiguity. Then we have an algorithm
for Lbal that, given an N on which that Lbal is 1/

√
N -close to balanced, returns a polynomial

number of circuits such that one of them agrees with Lbal on a ≥ 1− 1/N1/5 fraction of inputs of
length N . (To see that this claim is true, given N , run the assumed algorithm for L′ on `(N), and

4To prove the second statement, pick y1, . . . , yk at random, and then define C(x) = maj{C′(1xy1), . . . , C
′(1xyk)}.

It is easy to see that the probability that C() does not have agreement 1− 6δ with L on inputs of length n is at most
e−Ω(k).
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get a list of polynomially many circuits such that one of them agrees with L′ on a 1 − ε fraction
of inputs of length `(N). Then apply the algorithm of Lemma 6 to each circuit, and get a list
of polynomially many circuits such that one of them agrees with Lbal on a 1 − 1/N1/5 fraction if
inputs of length N , provided that Lbal was 1/

√
N -close to balanced on inputs of length N .)

Now, let n be an input length for L. We “guess” the value bPr[Ln(x) = 1] ·ntc by trying all values
of m = 0, . . . , nt. For each such m, we set N = nt+1 +m and we use the above described procedure
to construct a list of polynomially many circuits for Lbal on inputs of length N (when we use the
correct value of m, at least one circuit in the list solves Lbal on a 1 − 1/N1/5 fraction of inputs),
and then we construct a circuit for L on inputs of length n from each such circuit as in Claim 9.
For the correct value of m and for the correct circuit in the list, we construct a circuit for L that
is correct on a ≥ 1− 6/N1/5 ≥ 1− 1/p(n) fraction of inputs. �

6.2 Proof of Theorem 1

Suppose that for for every problem in NP there is a probabilistic polynomial time algorithm that
succeeds with probability 1/2 + 1/(log n)α

From Lemma 4, we have that for every problem L in NP there is a probabilistic polynomial time
algorithm that solves it with polynomial ambiguity and 1−ε agreement. (In fact, recall that Lemma
4 has an even stronger conclusion.)

From Lemma 7, we get that for every polynomial p() and NP problem L there is a probabilistic
polynomial time algorithm that solves L with polynomial ambiguity and agreement 1− 1/p(n).

The previous statement and Lemma 3 imply that for every NP search problem L and polynomial p()
there is a probabilistic polynomial time algorithm that on input 1n outputs a list of polynomially
many circuits such that, with high probability, at least one of them solves the search problem on a
1− 1/p(n) fraction of inputs. (That is, except possibly for a fraction 1/p(n) of inputs, the circuit,
given an input x, finds a certificate for x if such a certificate exists.) As discussed in Section 3, the
“high probability” could be made, say, ≥ 1− 1/2n while keeping the list of polynomial size.

After constructing such a list of circuits C1, . . . , CK , consider the circuit C that, on input x, accepts
if and only if Ci(x) outputs a witness for x for some i. The new circuit is still of polynomial size,
always rejects NO instances, and the only YES instances that are rejected are those on which all
the circuits Ci fail to solve the search problem, including the circuit that we assumed failed on
≤ 1/p(n) fraction of inputs. Overall, C is correct on a ≥ 1− 1/p(n) fraction of inputs.

Summing up, we have proved that, under the assumption of the theorem, for every language L
in NP and every polynomial p() there is a probabilistic polynomial time algorithm that solves L
with ambiguity 1 and agreement 1 − 1/p(n), and whose probability of error is at most 1/2n. The
conclusion of the Theorem now follows from observations in Section 3.

7 Concluding Remarks

There is a standard way (cf. [Imp02, TV02, Vio03, Tre03]) to view“black box” amplification of
hardness results as methods to convert an error correcting code that corrects a small number of
errors into an error correcting code that corrects a larger number of errors. Uniform reductions

10



give unique decoding algorithms for such codes.5

The results of Section 4 could be seen as a way of constructing an error-correcting code that
can correct up to a δ

√
k/12 fraction of errors from a “balanced” error-correcting code that can

correct up to a δ fraction of errors.6 The analysis would also give an error-reduction algorithm
that given a string that has agreement 1 − δ

√
k/12 with a codeword of the new code produces a

string that has agreement 1− δ with the original code. One may see some similarity between what
we do and the error-reduction code used in the construction of super-concentrator codes [Spi96].
In both cases, each bit of the new code depends on a small number of bits of the old code, and
the correspondence is given by a graph that is a good unique-neighbor expander. The property
of being a unique-neighbour expander is used in the analsys of the error-reduction algorithm, that
performs a simple local computation. The way in which we recursively compose the construction
with itself in Section 5 also bears some similarity with the way the basic error-reduction code is
used to construct super-concentrator codes.
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