
Compression of Samplable Sources

Luca Trevisan∗

Computer Science Division
U.C. Berkeley
615 Soda Hall

Berkeley, CA 94720
luca@cs.berkeley.edu

Salil Vadhan†

Division of Engineering & Applied Sciences
Harvard University
33 Oxford Street

Cambridge, MA 02138
salil@eecs.harvard.edu

David Zuckerman‡

Department of Computer Science
University of Texas

1 University Station C0500
Austin, TX 78712

diz@cs.utexas.edu

Abstract

We study the compression of polynomially sam-
plable sources. In particular, we give efficient
prefix-free compression and decompression algo-
rithms for three classes of such sources (whose
support is a subset of{0, 1}n).

1. We show how to compress sourcesX sam-
plable by logspace machines to expected
lengthH(X) + O(1).

Our next results concern flat sources whose support
is in P.

2. If H(X) ≤ k = n − O(log n), we show
how to compress to lengthk + δ · (n − k)
for any constantδ > 0; in quasi-polynomial
time we show how to compress to lengthk +
O(polylog log(n − k)) even if k = n −
polylog(n).

3. If the support ofX is the witness set for a self-
reducibleNP relation, then we show how to
compress to expected lengthH(X) + 4.

∗ Supported by NSF Grant CCR-9984783, a Sloan Research
Fellowship and an Okawa Foundation Grant.

† Supported by NSF Grant CCR-0133096 and a Sloan Re-
search Fellowship.

‡ Supported in part by NSF Grants CCR-9912428 and CCR-
0310960 and a David and Lucile Packard Fellowship for
Science and Engineering.

1. Introduction

Data compression has been studied exten-
sively in the information theory literature (see e.g.
[7] for an introduction). In this literature, the goal is
to compress a random variableX , which is called a
random source. Non-explicitly, the entropyH(X)
is both an upper and lower bound on the expected
size of the compression (to within an additivelog n
term). For explicit (i.e. polynomial-time) compres-
sion and decompression algorithms, this bound
cannot be achieved for general sources. Thus, ex-
isting efficient data-compression algorithms have
been shown to approach optimal compression for
sources X satisfying various stochastic “nice-
ness” conditions, such as being stationary and er-
godic, or Markovian. In this paper, we focus on the
feasibility of data compression for sources satisfy-
ing computationalniceness conditions, most no-
tably efficient samplability. Goldberg and Sipser [9]
were the first to study compression of sources sat-
isfying computational, rather than stochastic,
conditions. Actually, they did not explicitly dis-
cuss random sources, but focused on compressing
languages in P, and thus implicitly consider-

ing sources uniformly distributed on alln-bit
strings in such a language.

We extend and generalize their study. We fo-
cus on sources which are polynomiallysamplable,
i.e. can be generated by a probabilistic polynomial-
time algorithm. Samplability captures a very gen-
eral class of sources, and it is arguably a reasonable
model for probability distributions generated by
various natural and man-made processes. When a
distribution is not samplable, the problem of gener-
ating the distribution is computationally intractable,
and this seems unlikely for “natural” sources.

The languages corresponding to the supports of
samplable sources need not be inP. Indeed, while
Goldberg & Sipser show that every sparse language
in P can be compressed at least slightly, this is
unlikely to be true for all polynomially samplable
distributions.1 Therefore, while seeking classes of
samplable distributions that can be optimally com-
pressed, we need to impose computational con-
straints that rule out the possibility of sampling
pseudorandom distributions.

Logspace Samplers

We first study sources that can be sampled by
a sampling algorithm that useslogarithmic space.
(As is usual when studying randomized logspace,
we only allow the algorithm one-way access to the
random tape.) Such sources generalize Markovian
sources (that can be thought of as being sampled by
a constant-space sampling algorithm). On the other
hand, it is known that no such source can be pseu-
dorandom [17].

We show the existence of a universal compres-
sion algorithm for such sources that compresses op-
timally, up to an additive constant factor, in polyno-
mial time. The compression algorithm is universal
in the sense that it optimally compresses a sourceX
without being given a sampler forX , and just know-
ing the existence of a sampling algorithm and an
upper bound to the space used by the sampler. If
the sampler is known, we usearithmetic encoding,
a well known optimal compression method that can
be used on any source for which it is possible to
compute thecumulative probabilitydistribution of
the source. Our result is then obtained by giving

1 In particular, as first observed by Levin, pseudorandom dis-
tributions are incompressible and, if pseudorandom genera-
tors exist, then there are polynomially samplable pseudoran-
dom distributions. See Section 3 for more details.

an algorithm for computing cumulative probabili-
ties for sources sampled by logarithmic space algo-
rithms.

We also prove a general result showing that if
optimal compression is possible for a class of sam-
plable distributionsgiven the samplerthen, with
only an additive constant loss, optimal compression
is also possible without being given the sampler, i.e.
it is possible to douniversal compressionfor this
class. Applying this to the result above, we obtain
a universal compression algorithm for sources sam-
plable in spacec log n for any constantc.

Sources with Membership Algorithms

We next consider samplable sources for which
membership in the support can be tested in poly-
nomial time. Without further restrictions, a mem-
bership algorithm may not be useful; for example,
the support of the source could be{0, 1}n but some
strings occur with tiny probability. We therefore re-
quire that the source be flat, i.e., uniform on its sup-
port. Observe that a membership algorithm rules out
the possibility that such a distribution is pseudo-
random. Indeed, the membership algorithm gives a
way to distinguish the source from any other source
of higher entropy.

The case of flat distributions with membership
algorithms was studied by Goldberg and Sipser [9]
who showed that every such sourceX on {0, 1}n
could be compressed tok+3 logn bits provided that
the entropy ofX is smaller thank = n−O(log n).
We show how to improve the compression length to
k+δ ·(n−k) for an arbitrarily small constantδ > 0,
which saves more than a constant factor in overhead
if k = n−o(log n). While Goldberg and Sipser use
arithmetic encoding, we use a completely different
method relying on recent constructions of expander
graphs with expansion close to the degree [5]. In
addition, our compression algorithm is determinis-
tic, whereas the Goldberg–Sipser algorithm is prob-
abilistic.

In our last main result, we show that if the sup-
port of the samplable distribution forms the wit-
ness set for aself-reducibleNP relation, then
we can compress almost optimally. As a conse-
quence, we obtain polynomial-time compression
algorithms for a wide variety of combinato-
rial structures for which sampling algorithms are
known, e.g. the set of perfect matchings in a bi-
partite graph [15]. Our compression algorithm

computes an “approximate” arithmetic coding, us-
ing ideas underlying the proof that sampling im-
plies approximate counting for self-reducible rela-
tions [16]. In fact, we show that, for self-reducible
relations, near-optimal compression isequiva-
lent to almost-uniform sampling (which in turn
is known to be equivalent to approximate count-
ing [16, 14]).

Perspective and Open Problems

There are a number of examples where the im-
position of complexity-theoretic constraints on tra-
ditionally information-theoretic problems has been
very fruitful. For example, modern cryptography
developed and flourished out of the realization that
Shannon’s classic impossibility results [23] could
be bypassed via the reasonable assumption that the
adversary is computationally bounded [8].

Our restriction tosamplablesources in particu-
lar was motivated by our work in [26], where we
consider the somewhat related problem of (deter-
ministic) random extraction, in which one is given
a source of a certain entropy and wants to devise an
algorithm that given a sample from the source out-
puts an almost uniform distribution. This determin-
istic randomness extraction problem was known to
be impossible for general sources [21, 6], and it was
known to be possible for very structured sources
like Markovian sources (just like the data compres-
sion problem). In [26], it is shown that, under cer-
tain complexity assumptions, randomness extrac-
tion is possible for samplable sources. Another, ear-
lier, work showing the promise of restricting to sam-
plable sources is that of Lipton [18], who showed
that if the distribution of errors in a channel is sam-
plable, then it is possible to transmit information re-
liably even above the capacity bound.

As noted above, for data compression, the class
of samplable sources is still too general, and thus we
have tried to impose sensible additional restrictions
that are still computational in nature, yet allow for
interesting positive results. However, we have by no
means exhausted the possibilities, and there may be
other computational constraints that are even more
relevant for data compression.

Another motivation for this line of work
comes from the general project of understand-
ing information-theoretic aspects of samplable
sources. The theory of pseudorandom generators is
naturally one major piece of this study. But sam-

plable sources and their information-theoretic prop-
erties have also come up in unexpected places,
such as in the complete problems for statisti-
cal zero knowledge [20, 10]. Understanding the
compressibility of samplable sources can con-
tribute to this general study, as it provides another
measure of the (computational) randomness in a
source. This compressibility measure was intro-
duced by Yao [28], and properties of this measure
have been recently studied by Barak and oth-
ers [4].

A few years ago, Impagliazzo [12] posed an in-
triguing question about the relationship between
compressibility and another standard measure
of computational randomness, pseudoentropy. A
source haspseudoentropyat leastk if it is compu-
tationally indistinguishable from some distribution
having entropy at leastk. A source of pseudoen-
tropy k cannot be compressed tok − ω(log n)
by an efficient algorithm, and the question is
whether the converse is true for samplable distri-
butions. That is, does low pseudoentropy imply
compressibility for samplable sources? This in-
triguing question is still an open problem. How-
ever, Wee [27] has exhibited an oracle relative to
which the answer is no. Specifically, under this or-
acle there are samplable distributions over{0, 1}n
of very low entropy and pseudoentropy that can-
not be compressed to less thann − O(log n) bits.
It would be very interesting to obtain a similar re-
sult without oracles under complexity-theoretic
assumptions.

2. Preliminaries

2.1. Basic definitions

A source X is a probability distribution on
strings of some length. We writex

R← X to in-
dicate thatx is chosen randomly according to
X . We think of X as being a member of a fam-
ily of distributions (i.e., a probabilityensem-
ble), in order for asymptotic notions to make
sense. The ensemble will usually be of the form
(Xn)n∈Z+ , in which caseXn will be distributed
on {0, 1}n.2 Sometimes we will consider ensem-

2 Note that this differs from the notation used in classical in-
formation theory, where one writesXi for an individual
symbol of an infinite stochastic processX1, X2, . . . and is
concerned with compressing a prefix(X1, X2, . . . , Xn) of
this process.

bles(Xx)x∈L indexed by strings in some language
L ⊆ {0, 1}+, in which caseXx will be dis-
tributed over{0, 1}p(|x|) for some polynomialp.
HereΣ+ = ΣΣ∗ is the set of strings overΣ, ex-
cluding the empty string.

We denoteX(a) = Pr[X = a]. Thesupportof
X is Sup(X) = {x|X(x) > 0}. A flat sourceis
uniform on its support.Un is the uniform distribu-
tion on{0, 1}n.

Definition 2.1. The entropy of a distributionX is

H(X) = E
x

R
←X

[
log
(

1
X(x)

)]
.

Here, and throughout the paper, all logs are to
base 2.

2.2. Basics of compression

Definition 2.2. For functionsEnc : Σ+ → Σ+ and
Dec : Σ+ → Σ+, we say(Enc, Dec) compresses
sourceX to lengthm if

1. For all x ∈ Sup(X), Dec(Enc(x)) = x, and

2. E[|Enc(X)|] ≤ m.

We say that the encoding isprefix-freeif for all x 6=
y in Sup(X), Enc(x) is not a prefix ofEnc(y).

All of our codes will be prefix-free. It is well
known that a prefix-free encoding is “uniquely de-
codable”; that is, commas are not needed to send
multiple samples ofX .

Definition 2.3. We say sourceX is compressibleto
lengthm if there exists functionsEnc andDec such
that (Enc, Dec) compressesX to lengthm.

It is well known that a sourceX is compress-
ible to lengthH(X) + 1 by a prefix-free encod-
ing (see e.g. [7]). If the encoding is required to
be uniquely decodable, thenX is not compressible
to length less thanH(X). Although the codes we
construct are uniquely decodable, the above def-
initions are less restrictive (often called “nonsin-
gular” compression) and allow some random vari-
ablesX to be compressed to length less thanH(X).
The biggest gap is obtained by the distributionXn

which choosesi uniformly from 0 to n-1 andy
uniformly from{0, 1}n−i−1 and outputs0i1y. The
compressed string isy, which has expected length
H(Xn)− log n. We assume the following is known
but we do not know a reference.

Lemma 2.1. A sourceXn is not compressible to
length less thanH(Xn)− log H(Xn)− 1

Proof. Convert any encodingEnc to a prefix-free
encodingEnc′ defined byEnc′(x) = ℓ(x)Enc(x),
whereℓ(x) = |Enc(x)| written in binary with lead-
ing 0’s. ThenEnc′ is prefix free, and hence uniquely
decodable. The new compression length is

E[|Enc′(Xn)|]
≤ E[|Enc(Xn)|+ log |Enc(Xn)|+ 1]

≤ E[|Enc(Xn)|] + log E[|Enc(Xn)|] + 1 .

where the last inequality is by Jensen’s inequal-
ity. By the lower bound for uniquely decodable
codes, E[|Enc′(Xn)|] ≥ H(Xn). Setting L =
E[|Enc(Xn)|], we haveL + log L ≥ H(Xn) − 1,
which implies thatL ≥ H(Xn) − log(Xn)− 1, as
desired.

Since tight non-explicit bounds are known,
the interesting issue isefficient compressibil-
ity, e.g. when Enc and Dec are computed by
polynomial-time algorithms. Indeed, much of the
field of Data Compression is centered around un-
derstanding when this is possible. In order for effi-
cient compressibility to make sense, we must spec-
ify how the source is presented. Ideally, the com-
pression algorithm is only given a random sample
from the source, and does not have any global in-
formation about the source other than the fact that
it comes from some class of sources:

Definition 2.4 (universal compression).Let C be
a class of sources (i.e. class of probability ensem-
bles Xn), and let m = m(h, n) be a function.
We say that(Enc, Dec) is a universal compres-
sion algorithm for C with compression lengthm
if for every sourceXn in C, there is a constant
c such that(Enc, Dec) compressesXn to length
m(H(Xn), n) + c.

For example, the classic Lempel–Ziv method is
a universal compression algorithm with compres-
sion lengthH(X) + o(n) for the class of station-
ary ergodic processes [29]. (That is, the LZ method
is guaranteed to effectively compressXn if there
is a stationary ergodic processY1, Y2, . . . such that
Xn = (Y1, . . . , Yn).)

Since universal compression is only known
for a fairly restricted class of sources (and for
those, only approaches the optimal compres-
sion length asymptotically), it is also of interest
to study the case when the compression algo-
rithm may depend on the entire source (rather than
a single sample). That is, the compression algo-
rithm is given a descriptiondn of the sourceXn,

and we require thatDec(Enc(x, dn), dn) = x for
all x ∈ Sup(Xn), and E[|Enc(Xn, dn)|] ≤ m.
In other words, Enc′(·) = Enc(·, dn) and
Dec′(·) = Dec(·, dn) should form a compres-
sion algorithm for Xn in the sense of Defini-
tion 2.2.

When the source is describedexplicitly (e.g. by
the list of probability masses assigned to each string
x), then standard methods, such as Huffman coding
(cf. [7]) compress to lengthH(X)+1. But here the
input size and the running time of the algorithm are
both roughly2n. Thus, it is more interesting to con-
sider the case when the source is described in some
compact,implicit form. Then the question is which
implicit representations allow for efficient compres-
sion.

One general technique for obtaining effi-
cient compression isarithmetic coding, which
is feasible if computing the cumulative distribu-
tion function is feasible.

Lemma 2.2 (arithmetic coding). Let X be a
source onΣn and ≺ a total order onSup(X).
Let F : Σn → [0, 1] be the following modi-
fication of the cumulative distribution function
of X : F (x) =

∑
a≺x X(a) + X(x)/2. De-

fine Enc(x) to be the first⌈log(1/X(x))⌉ + 1
bits of F (x). ThenEnc is one-to-one and mono-
tone, and(Enc, Enc−1) compressesX to length
H(X) + 2. The encoding is prefix-free.

For example, ifX is a Markovian source (i.e.
the sequence of symbols ofX form a Markov chain
run for n steps), then it is known that the cumula-
tive distribution function (with respect to the stan-
dard lexicographic order) can be computed in poly-
nomial time, and hence so can the arithmetic cod-
ing. (See [7].) Note that sinceEnc is monotone, if
Enc can be computed efficiently, thenEnc−1 can
also be computed efficiently by binary search. Sev-
eral of our positive results will make use of arith-
metic coding and variants.

Another useful fact is that it suffices to obtain a
decoder which decodes correctly with high proba-
bility.

Lemma 2.3. SupposeXn is a source on{0, 1}n
and the timeT computable functionsEnc andDec
satisfy

1. Pr[Dec(Enc(Xn)) = Xn] ≥ 1− ǫ, and

2. E[|Enc(Xn)|] ≤ m.

Then there exist functionsEnc′ andDec′ that com-
pressXn to length(1−ǫ)m+ǫn+1 in timeO(T). If
Enc gives a prefix-free encoding, then so doesEnc′.

For example, ifX is close (in variation distance)
to a source which is highly compressible, thenX it-
self is highly compressible.

Proof of Lemma 2.3.We constructEnc′ andDec′

such that for allx ∈ Sup(Xn), Dec′(Enc′(x)) = x.
On inputx, Enc′ first checks ifDec(Enc(x)) = x.
If so, Enc′ outputs0Enc(x) (0 concatenated with
Enc(x)). If not, Enc′ outputs1x. It is easy to see
thatEnc′ and the naturalDec′ are as required.

3. Samplable Sources

Classical results, such as those mentioned in the
previous section, show that data compression is fea-
sible for various classes of sources defined by statis-
tical or information-theoretic constraints (e.g., sta-
tionary ergodic sources or Markovian sources). We
propose to investigate classes of sources defined by
computational constraints, specifically samplabil-
ity:

Definition 3.1. A sourceXn is samplableif there
is an efficient probabilistic algorithmS such
that S(1n) is distributed according toXn. “Ef-
ficient” can be taken to mean a polynomial-time
algorithm, a logarithmic space algorithm, a uni-
form or nonuniform algorithm, or any other
complexity constraint, and will be specified in con-
text.

For sourcesXx indexed by strings, we instead
require thatS(x) is distributed according toXx.

It is natural to consider samplable sources, since
any sourceX which is polynomially compressible
to lengthH(X), and moreover for allx ∈ Sup(X),
|Enc(x)| = H(X), is polynomially samplable.
This is becauseX = Dec(UH(X)). Goldberg and
Sipser [9] also studied compression of computation-
ally constrained sources, but they focused on the
complexity of deciding membership in the support
of the source (for flat sources).

We recall that pseudorandom generators yield
samplable sources that are incompressible. (In [9],
this observation is attributed to L. Levin.)

Proposition 3.1 (Levin). If one-way functions ex-
ist, then there exist polynomial-time samplable
sourcesXn of entropy at mostnǫ that cannot be

compressed to lengthn − 3 by any probabilis-
tic polynomial-time algorithms(Enc, Dec).

Proof. (sketch) If one-way functions ex-
ist, then there exists a pseudorandom gen-
erator G : {0, 1}nǫ → {0, 1}n [11]. Let
Xn = G(Unǫ). From the pseudorandom prop-
erty ofG, it follows thatPr [Dec(Enc(Un)) = 1] ≥
Pr [Dec(Enc(Xn)) = 1] − neg(n), where
neg denotes a negligible function. The pseu-
dorandom property of G also implies that
E[|Enc(Un)|] ≤ E[|Enc(Xn)|]+neg(n) < n−2.5.
That is, (Enc, Dec) compress a1 − neg(n) frac-
tion of {0, 1}n to average lengthn − 2.5. This is
impossible by a counting argument.

Thus, we cannot hope to efficiently compress
samplable sources in full generality. Instead, we aim
to identify natural subclasses of samplable sources
for which compression is feasible. We will focus
on the case when the compression algorithms are
given the sampling algorithm. This is a natural im-
plicit description of the source (like those discussed
in Section 2.2). Moreover, efficient compression in
this case implies universal compression (for uni-
form algorithms):

Lemma 3.1. LetS ⊆ Σ∗ be a class of sampling al-
gorithms (encoded as strings) andC be the corre-
sponding class of sources. Suppose that there exist
algorithms(Enc, Dec) such that for everyS ∈ S,
(Enc(·, S), Dec(·, S)) compressesXn = S(1n) to
lengthm = m(H(Xn), n) in timepoly(n) · f(|S|)
for some functionf . Then there exists a polynomial-
time universal compression algorithm(Enc′, Dec′)
for C that compresses to lengthm + O(1). If each
encodingEnc(·, S) is prefix-free, then so is the en-
codingEnc′.

Proof. Let ◦ denote concatenation, andbinn(i) de-
note the binary representation ofi, padded
out with leading 0’s to1 + ⌊log n⌋ bits. Let
Σ∗ = {S1, S2, S3, . . .} be an enumeration of all
strings in lexicorgraphic order. Letp(n) · f(|S|) be
the running time of(Enc, Dec).

Enc′(x), on inputx ∈ {0, 1}n:

1. For eachi = 1, . . . , n

(a) RunEnc(x, Si) for p(n) · n steps, and if
it halts, letyi be the output.

(b) RunDec(yi, Si) for p(n) · n steps. If it
outputsx, setzi = binn(i) ◦ yi.

(c) If eitherEnc or Dec failed to halt within
p(n) · n steps, setzi = binn(0) ◦ x.

2. Output the shortest string among
z1, z2, . . . , zn.

Dec′(i, z): If i = 0, output z. Otherwise output
Dec(z, Si).

By inspection, the above algorithms run in poly-
nomial time. For the compression length, suppose
Xn is sampled by algorithmSk ∈ S. For all n ≥
max{k, f(|Sk|)}, Enc(x, Sk) andDec(yk, Sk) will
halt within p(n) · f(n) ≤ p(n) · f(|Sk|) steps and
thuszk will equal (k, Enc(x, Sk)). Thus, the com-
pression length will be at most

E[|Enc′(Xn)|] ≤ E[|(k, Enc(X, Sk))|]
≤ m(H(Xn), n) + O(1),

sincek is a constant. Forn ≤ max{k, f(|Sk|)}, the
compression length is bounded by a constant.

We will also allow our compression algorithms
to be randomized, and in fact allowEnc andDec
to haveshared randomness. Formally, we require
Dec(Enc(x, r), r) = 1 for all sequences of coin
tossesr, and consider the compression length to be
E[|Enc(X, R)|], where the expectation is taken over
X and the coin tossesR. This still maintains the
“spirit” of data compression (because the random-
ness is independent of the source), and moreover the
following lemma shows that the randomness can be
eliminated at small cost, under plausible complex-
ity assumptions.

Lemma 3.2. Suppose there is a function in
E = DTIME(2O(n)) of circuit complexity2Ω(n).
Then for every polynomial-time compression algo-
rithm (Enc, Dec) with shared randomness there
exists a deterministic polynomial-time compres-
sion algorithm (Enc′, Dec′) such that for ev-
ery sourceXn, if (Enc, Dec) compressesX to
lengthm = m(H(Xn), n), then(Enc′, Dec′) com-
pressesXn to lengthm + O(log n). If Enc gives a
prefix-free encoding, then so doesEnc′.

Proof. Let t(n) be a bound on the running time of
(Enc, Dec) on inputs of lengthn. Under the hy-
pothesis, there is a pseudorandom generatorG :
{0, 1}ℓ(n) → {0, 1}t(n) with ℓ(n) = O(log n) such
that no circuit of sizet(n) can distinguish the out-
put ofG from uniform with advantage greater than
ǫ = 1/t(n) [19, 13]. We defineEnc′(x) to be the
shortest string in the set{s ◦ Enc(x, G(s)) : s ∈

{0, 1}ℓ(n)}, where◦ denotes concatenation. Now
set Dec′(s ◦ y) = Dec(y, G(s)). By inspection,
Dec′(Enc′(x)) = x for all x.

For the compression length, the pseudorandom
property of G implies that for every stringx ∈
{0, 1}n,

ES [|Enc(x, G(S))|]
≤ ER[|Enc(x, R)|] + t(n) · ǫ
= ER[|Enc(x, R)|] + 1.

Thus,

E[|Enc′(Xn)|]
= EXn

[min
s
|(s, Enc(Xn, G(s)))|]

= EXn
[min

s
|Enc(Xn, G(s))|] + O(log n)

≤ EXn
[ES [|Enc(Xn, G(S))|]] + O(log n)

≤ EXn
[ER[|Enc(Xn, R)|] + 1] + O(log n)

≤ m(H(Xn), n) + O(log n)

4. Sources with Logspace Samplers

In this section we consider sources sam-
pled by logarithmic space randomized algo-
rithms. As usual in the theory of randomized
space-bounded algorithms, we consider a model
where the space-bounded machine hasone-wayac-
cess to a tape containing random bits.

It is known that no pseudorandom generator can
be implemented as a log-space machine with one-
way access to the seed [17]. (This follows from
the fact that deciding if a given string is a possi-
ble output of the generator is a problem in non-
deterministic log-space, and so it is solvable in
polynomial time.)

In the rest of this section we show that opti-
mal compression is possible for sources sampled
by one-way log-space algorithms. This comple-
ments the result of Goldberg and Sipser [9], who
showed optimal compression for flat sources whose
support isdecidableby one-way log-space ma-
chines. Moreover, logspace samplers generalize
the Markov chain model used often in compres-
sion work [29]. This is because a Markov chain
with S states can be converted to a machine us-
ing spacelog S. (S is usually viewed as a constant
so uniformity issues do not arise.)

Definition 4.1 (Space-bounded Samplable
Sources). We say that a sourceXn is sam-
plable in spaces(n) if there is a probabilistic
Turing machineM such that:

• M(1n) has the same distribution asXn;

• For every content of the random tape, the com-
putationM(1n) uses space at mosts(n)

• M hasone-wayaccess to the random tape.

We say thatM is aspace-s(n) sampler.

Notice that the bound on the space implies that
M runs in timen2O(s(n)) and uses at most as many
random bits.

The main lemma of this section says that the
cumulative probability distributions of logspace-
samplable sources can be computed in polynomial
time. (A potentially larger class of sources can be
handled using the techniques of [2].)

Lemma 4.1. There is an algorithmA that on input
a space-s(n) samplerM and stringx ∈ {0, 1}n
runs in timepoly(n, 2s(n)) and returns the cumula-
tive probabilityPr [M(1n) � x], where� denotes
lexicographic ordering.

Proof. Given M , we define a new probabilis-
tic space-bounded machineM ′ that uses space
O(s(n)) and with the property that, for ev-
eryx ∈ {0, 1}n,

Pr [M ′(1n, x) accepts] = Pr [M(1n) � x]

Given(1n, x), M ′ simulatesM(1n), and it accepts
if and only if the simulated computation outputs
a stringa such thata � x. SinceM ′ does not
have enough space to storea, we need to be care-
ful about the way the simulation is performed. Note
that if a � x anda andx have the same length,
then eithera = x or, for somei, a is a string
of the form(x1, . . . , xi−1, 0, ai+1, . . . , an), where
xi = 1. That is,a starts with a (possibly empty) pre-
fix of x, then it has a zero in a position in whichx
has a one, and then it continues arbitrarily.

At the beginning of the simulation, the head of
M ′ on the input tape is on the first bit ofx. Every
time the simulated computation ofM(1n) writes on
the output tape,M ′ compares the bit thatM(1n) is
going to write with the current bit ofx that it sees
on the output tape. If the bits are the same, thenM ′

continues the simulation and moves the input-tape
head on to the next symbol ofx. If M(1n) is about

to write a one, and the corresponding bit ofx is zero,
then the simulation halts andM ′ rejects. IfM(1n)
is about to write a zero, and the corresponding bit of
x is one, thenM ′ accepts. Also, if the simulation of
M(1n) is completed with the input-tape head mov-
ing all the way until the end ofx, then alsoM ′ ac-
cepts. It should be clear that the contents of the ran-
dom tape for whichM ′(1n, x) accepts are precisely
those for whichM(1n) outputs a string� x.

After constructingM ′, it then remains to com-
pute Pr [M(1n, x) accepts], which is a standard
problem.

We enumerate allS = n · 2O(s) possible states
of M(1n, x), and construct anS×S matrixP such
thatPi,j is the probability thatM(1n, x) goes from
statei to statej in one step. We lete be theS-
dimensional vector such thatei = 1 if i is the start
state of the machine, andei = 0 otherwise, and we
compute the vectorePS. Then, ifA is the set of ac-
cepting states of the machine, then

∑
a∈A(ePS)[a]

gives the probability that the machine accepts.

Theorem 1 (Compressing log-space Sources).
Let Xn be a source over{0, 1}n samplable in
spaceO(log n). Then there are polynomial time al-
gorithms (Enc, Dec) that compressXn to length
H(Xn) + 2. The encoding is prefix-free.

Proof. Combine Lemma 2.2 with Lemma 4.1

Corollary 4.1 (Universal Compression
of log-space Sources). For every bound
s(n) = O(log n) there are polynomial-time algo-
rithms(Enc, Enc−1) such that for every sourceXn

over {0, 1}n samplable in spaces(n), and for ev-
ery sufficiently largen, (Enc, Dec) compressXn to
lengthH(Xn) + O(1). The encoding is prefix-free.

Proof. Combine Theorem 1 with Lemma 3.1.

5. Sources with Membership Oracles

In this section, we consider an alternative ap-
proach to bypassing the impossibility of compress-
ing pseudorandom sources. Here we allow the sam-
pler to be an arbitrary probabilistic polynomial-time
algorithm, but explicitly impose the constraint that
the source is not pseudorandom.

Definition 5.1. LetXn be a flat source. We say that
Xn is a source with membership oracleif there is
a polynomial-time algorithmD such thatD(z) =
1 ⇔ z ∈ Sup(X|z|). For a sourceXx indexed

by a string x, we require instead that there is a
polynomial-time algorithmD such thatD(x, z) =
1⇔ z ∈ Sup(Xx).

Note that a source with membership oracle can-
not be pseudorandom; indeed the algorithmD dis-
tinguishes it from all sources of higher entropy.

Are all samplable sources with membership or-
acles efficiently compressible? Goldberg and
Sipser [9] showed that any source with membership
oracle can be compressed to lengthn − Θ(log n)
(providedH(Xn) < n − (3 + δ) log n). But can
they be compressed to length roughlyH(Xn)?
(Think of, say,H(Xn) = n/2.) This is an intrigu-
ing open question, which we first heard from Im-
pagliazzo [12]. Goldberg and Sipser [9] and
Wee [27] provide oracles relative to which the
n− Θ(log n) bound cannot be improved, and rela-
tive to which deterministic compression is impossi-
ble.3 We know of no other evidence regarding this
question without oracles.

In this section, we present two positive results
about sources with membership oracles. In the first,
we show how to compress better than Goldberg–
Sipser while usingdeterministiccompression and
decompression algorithms. In particular, ifXn is a
source with membership oracle andH(Xn) ≤ k =
n−O(log n), then Goldberg & Sipser showed how
to compressXn to lengthk + 3 logn with high
probability. We show how to compress to length
k + δ · (n − k) in polynomial-time, for anyδ > 0.
Thus, fork = n − o(log n) this is more than a
constant factor savings in overhead. In determinis-
tic quasi-polynomial time, we only requirek ≥ n−
(log n)O(1), and we show how to compress to length
k + O(polylog(n− k)) ≤ k + O(polylog log n).

Our technique is completely different than that
of [9]. Instead of arithmetic coding, we use the re-
cent explicit construction of constant-degree “loss-
less” expanders [5], together with an idea from dis-
tributed algorithms for routing in expander-based
networks [3].

In the second result, we show how to compress
to lengthH(X) + O(1) for a large class of sources

3 We note that Goldberg and Sipser measure compression by
the worst-case length (except for a finite number of excep-
tions, which makes no difference in the Turing machine
model), whereas our definitions involve the average-case
length, as in [27]. Nevertheless, our construction for high
entropy flat sources below actually gives a worst-case bound
on compression length.

with membership oracles, namely those whose sup-
ports are self-reducible in the sense of [22].

5.1. Compressing high entropy sources

We prove the following theorem.

Theorem 2. LetXn be a flat source with member-
ship oracle andH(Xn) ≤ k. ThenXn is compress-
ible:

1. to length k + polylog(n − k) in time
nO((n−k)/ log(n−k)), and

2. to lengthk+δ · (n−k) in polynomial time, for
any constantδ > 0, if k ≥ n−O(log n),

The encodings are prefix-free.

In particular, we get better compression ask ap-
proachesn. Yet even fork = n − polylog(n),
we achieve compression tok + O(polylog log n)
in quasi-polynomial time.

The starting idea of the proof is that we wish to
condense the input distribution, without many colli-
sions of points in the support. Lossless condensers,
first defined and constructed in [25], do exactly this.
We prove that a good condensing function can be
used to compress, and then use the expanders con-
structed by Capalbo et al. [5] as condensing func-
tions. A simple application of this approach would
only compress the source tok + O(log n) bits. Us-
ing an idea from [3], we improve the bound to
k + δ · (n− k).

We begin with the following lemma, which
shows how a good condensing function can be used
to compress.

Lemma 5.1. SupposeXn is a flat source with mem-
bership oracle andS = Sup(X). Fix a function
f : {0, 1}n×{0, 1}d→ {0, 1}m. Call z ∈ {0, 1}m
S-unique if there is exactly one element(x, r) ∈
S × {0, 1}r such thatf(x, r) = z. Suppose that
Prx∈X,r∈Ud

[Enc(x,r) is S-unique] ≥ 1 − ǫ. Then
Xn is compressible to lengthm + ǫn + 1 in time
(Tf + Tf−1)poly(n). Here Tf−1 denotes the time
to compute the setf−1(y) on inputy. The encod-
ing is prefix-free.

Proof. Let Enc(x) be0 concatenated with the lexi-
cographically firsty of the formf(x, r) which isS-
unique, or1x if there is no suchy. LetDec(1x) = x
andDec(0y) be thex ∈ S such thatf(x, r) = y.
Then Enc and Dec satisfy the conclusions of the
lemma.

The functionf is essentially a disperser. A dis-
perser is a type of expanding graph where the ex-
pansion is required only for sets of a particular size.
We will need the expansion close to the degree. For
our improvements we will needf to represent a true
expander, as defined as follows.

Definition 5.2. A bipartite graphG = (V, W, E)
is a (K, A)-expander if for allT ⊆ V , |T | ≤ K,
|Γ(T)| ≥ A|T |.

The following lemma is self-evident.

Lemma 5.2. Let G = ({0, 1}n, {0, 1}m, E) be a
(|S|, (1 − ǫ/2)DL)-expander with left degreeDL

and right degreeDR. Assume the edges are labeled
from{0, 1}d with unique labels out of a given node
in {0, 1}n. Define f(x, r) to be the neighbor of
x labeled byr. Thenf satisfies the conditions of
Lemma 5.1.

We takeG to be the expander explicitly con-
structed by Capalbo et al. [5]:

Theorem 3. [5] 4 Let N = 2n ≥ K = 2k, There
are explicitly constructible(K, (1 − ǫ/2)DL reg-
ular expandersG = ({0, 1}n, {0, 1}m, E) with
left degreeDL = 2d (d to be specified be-
low), andM = 2m = O(KDL/ǫ) such that the
set of neighbors of a vertex in{0, 1}n is com-
putable in time poly(n, DL) and the neigh-
bors of a vertex in{0, 1}m are computable in
time poly(n, DL, N/M) with either of the follow-
ing values ofd:

1. d = poly(log(n− k), log(1/ǫ)), or

2. d = δ · (n − k) + O(log(1/ǫ)), whereδ is an
arbitrarily small constant.

Settingǫ = 1/n, the expanders in Part 2 yield
compression lengthm = d+k+log(1/ǫ)+O(1) =
k + α(n − k) + O(log n) = k + O(log n) for
k = n − O(log n). This compression differs from
optimal by an additiveO(log n) term, like in [9].
This was because we had to setǫ = 1/n. We now
describe a method where we can use a largerǫ.

First note that Hall’s theorem implies that in a
(K, 1)-expander, there is a matching which matches

4 Part 2 is not stated in [5], but can be obtained by using the
extractor of [30] to construct the “small conductors” used
in the zig-zag product there. In [5], the computation time of
neighborhoods of right-vertices is also not stated, but it can
be deduced from the the computation time of neighborhoods
of left-vertices and the high-level structure of the construc-
tion.

all vertices in anyK-subset of{0, 1}n. Such a
matching may be used as the compression function.
We show that better expansion allows us to con-
struct the matching efficiently.

The idea is as follows. ForS ⊆ V , let
Uniq(S) = {w ∈ W |Γ(w) ∩ S| = 1} be the set of
unique neighbors ofS. Let S0 = S = Sup(Xn).
If there is an r such thaty = f(x, r) is S-
unique, then we encodex by the lexicographi-
cally first suchy. This gives a maximal match-
ing from S0 to Uniq(S0). If there is no such
r, let S1 denote all the unmatched elements in
S, i.e., S1 = S0 \ Γ(Uniq(S0)). We now en-
codex by the lexicographically firsty = f(x, r)
which isS1-unique, if it exists. This gives a maxi-
mal matching fromS1 to Uniq(S1).

In general, in theith stage, if we haven’t encoded
x already, we encodex by the lexicographically first
y = f(x, r) which is Si-unique, if it exists. This
gives a maximal matching fromSi to Uniq(Si). We
then setSi+1 = Si \ Γ(Uniq(Si)). We do this for
at mostt = ⌈(log n)/ log(1/ǫ)⌉ stages.

The number of stages is chosen so that all but
1/n fraction of S have been matched. This is be-
cause in each stage, a1 − ǫ fraction of nodes gets
matched, so all toldǫt ≤ 1/n nodes remain un-
matched. It suffices to compress all but1/n frac-
tion because of Lemma 2.3.

Note that the number of oracle calls to check if a
node is inSi is at most(DL · DR)i. HereDR de-
notes the right degree,DR = DLN/M .

Using the expanders from Theorem 3 gives com-
pression length

m = k + d + log(1/ǫ) + O(1)

The number of oracle calls is

(DL ·DR)t = (ND2
L/M)t

= poly(1/ǫt, (N/K)t, Dt
L).

We also need to multiplying by the time to compute
neighborhoods,poly(n, DL, N/M), which gives a
total running time of

poly(n, 1/ǫt, (N/K)t, Dt
L).

To optimize compression length, we
use the expanders from Part 1 and take
ǫ = 1/(n − k). This yields compression length
k + O(polylog(n − k)) and running time
poly(n, 1/(n − k)t, 2(n−k)·t, 2polylog(n−k)·t) =
nO((n−k)/ log(n−k)).

To optimize the running time fork ≥ n −
O(log n), we use the expanders from Part 2 and set
ǫ = 2−δ·(n−k) for an arbitrarily small constantδ >
0. This gives running timepoly(n) and compres-
sion lengthm = k+O(δ ·(n−k)) = k+δ′ ·(n−k).

We now mention a couple of types of non-flat
distributionsXn to which we can extend the above
result. Details will be given in the final version.

• The result extends to anyXn whose support is
contained in polynomial-time decidable setS
of size2k (for k satisfying the same constraints
as above). This follows because a compression
algorithm for the uniform distribution onS is
also a compression algorithm forXn. We also
can obtain results in casePr [Xn ∈ S] ≥ 1− ǫ
via Lemma 2.3.

• If, instead of having a membership oracle for
the support ofXn, we have an oracle for com-
puting the probability mass underXn, the re-
sult extends to anyXn of min-entropy at least
n − O(log n). (This requires a slightly aug-
mented version of our construction.) With a
probability-mass oracle, we also obtain non-
trivial compression for non-flat sources of low
entropy. For example, ifH(Xn) ≤ n/4, then
Xn lands in the polynomial-time setS = {x :
Xn(x) ≤ n/2} with probability at least1/2,
so we can apply the previous bullet.

5.2. Self-Reducible Sets

For a sourceXx with membership oracle, the
relationR = {(x, z) : z ∈ Sup(Xx)} is decid-
able in polynomial time. Thus sources with mem-
bership oracles correspond to the uniform distribu-
tion onNP witness sets. Many naturalNP witness
sets have the following property of self-reducibility:

Definition 5.3 ([22]). A polynomially balanced re-
lation R ⊆ Σ∗ × Σ∗ is self-reducibleif there exist
polynomial-time computable functionsσ : Σ∗ → N

andρ : Σ∗ × Σ∗ → Σ∗ such that for allx, w =
w1 · · ·wm ∈ Σ∗

1. σ(x) = O(log |x|),
2. (x, w1w2 · · ·wm) ∈ R if and only if

(ρ(x, w1 · · ·wσ(x)), wσ(x)+1 · · ·wm) ∈ R,

3. |ρ(x, w1w2 · · ·wσ(x))| ≤ |x|.
Intuitively, this definition says that the witness

set for a given input can be expressed in terms

of witness sets for smaller inputs. Specifically, the
witnesses forx which begin with initial segment
w1 · · ·wσ(x) are in one-to-one correspondence with
the witnesses for the instanceρ(x, w1 · · ·wσ(x)).
Many natural witness relations are self-reducible in
this sense, e.g. satisfying assignments of boolean
formulae and perfect matchings in bipartite graphs.
Jerrum, Valiant, and Vazirani [16] proved that, for
self-reducible relations, witnesses can be generated
almost uniformly at random if and only if approx-
imate counting of witnesses can be done in prob-
abilistic polynomial time. And, indeed, there are
now many approximate counting algorithms known
that have been obtained by first constructing almost-
uniform samplers (typically via the Markov chain
Monte Carlo method).

The main result of this section (see the Appendix
for a proofs) adds compression of the witness set to
the list of tasks equivalent to sampling and count-
ing.

Theorem 4. LetR be a self-reducible relation, and
for everyx, let Xx be the uniform distribution on
{w : (x, w) ∈ R}. If the sourcesXx are samplable,
then they can be efficiently compressed (with shared
randomness) to lengthH(Xx) + 4. The encodings
are prefix-free.

Proof. We will show how to compute an “ap-
proximate arithmetic encoding” for the sources
Xx. A similar approach was used by Gold-
berg and Sipser [9] in their main result, but as
mentioned above they were only able to com-
press to lengthn − O(log n). We use the ideas in
the reduction from approximate counting to sam-
pling [16] to obtain an almost-optimal compression
length.

The first step is to argue that we can efficiently
approximate probabilities of witness prefixes. For
an inputx and a witness prefixz = z1 · · · zσ(x), let
p(x, z) = Pr

[
Xx|σ(x) = z

]
, wherea|ℓ denotes the

first ℓ bits ofa.

Claim 5.1. There is a probabilistic al-
gorithm A(x, z, ǫ, δ) running in time
poly(|x|, 1/ǫ, log(1/δ)) such that

Pr [|A(x, z, ǫ, δ)− p(x, z)| > ǫ] ≤ δ

The algorithmA simply takespoly(1/ǫ, log(1/δ))
samples fromXx and outputs the fraction that be-
gin with prefix z. The claim follows from a Cher-
noff Bound.

Fix an input lengthn, and setδ = 2−3n, ǫ =
1/n2c, for a large constantc to be specified later.
Forx of length at mostn, z of length at mostσ(x),
and a sequencer of (poly(n)) coin tosses forA, de-
fineqr(x, z) = A(x, z, ǫ, δ; r).

Taking a union bound over allx, z, the following
holds with probability at least1− 2−n overr:

|qr(x, z)− p(x, z)| ≤ ǫ ∀|x| ≤ n, |z| = σ(x).
(1)

Our compression and decompression algo-
rithms will chooser at random, so we may as-
sume they have anr that satisfies this condition
(the exponentially rarer’s which violate this con-
dition will only increase the expected compression
length by at mostpoly(n)/2−n).

Oncer is fixed, theqr ’s induce approximating
distributionsX̂x,r via self-reducibility:

X̂x,r: Select a prefixz ∈ {0, 1}σ(x) according
to the distributionqr(x, ·). Recursively sample
z′ ← X̂ρ(x,z),r. Outputzz′.

Moreover, we can recursively compute the cu-
mulative distribution functionF̂x,r(w) for X̂x,r

with respect to the lexicographic order as fol-
lows, writingw = zz′ with |z| = σ(x):

F̂x,r(zz′) =

(∑

u<z

qr(x, u)

)
+qr(x, z)·F̂ρ(x,z),r(z

′).

Thus we can compute the arithmetic coding
(Êncx,r, D̂ecx,r) (Lemma 2.2) forX̂x,r in polyno-
mial time. Our compression algorithms(Enc, Dec)
for Xx itself are as follows:

Enc(x, w, r): Let c = Êncx,r(w). If |c| ≤ n, out-
put0c. Otherwise output1x.

Dec(x, bc, r): If b = 0, outputD̂ecx,r(c). Other-
wise outputc.

By inspection,Dec(x, Enc(x, w, r), r) = x for
all w. Thus, we only need to verify the compression
length. To do this, we argue about how wellX̂x,r

approximatesX .

Claim 5.2. With probability at least1− 1/n2 over
w← Xx, Xx(w) ≤

√
2X̂x,r(w).

To prove this claim, we call a prefixz ∈ Σσ(x)

light if Pr
[
Xx|σ(x) = z

]
≤ 1/(nc|Σ|σ(x)). Then,

by a union bound over allz ∈ Σσ(x), the probabil-
ity that z ← Xx|σ(x) is light is at most1/nc. Thus,
if we sample fromXx by first sampling a prefixz

and then recursively sampling fromXρ(x,z), we en-
counter a light prefix somewhere along the way with
probability at mostm · (1/nc), wherem = poly(n)
is a bound on the length of witnesses. For a suffi-
ciently large choice ofc, this probability is at most
1/n2.

So we only need to argue that if the sampling
of w involves no light prefixes, thenXx(w) ≤√

2X̂x,r(w). Let z be the first prefix. By Prop-
erty (1) of theqr’s, we have

qr(x, z) ≥ p(x, z)− ǫ

= p(x, z)− 1

n2c

≥ p(x, z) ·
(

1− |Σ|
σ(x)

nc

)

≥ p(x, z) ·
(

1− 1

3m

)
,

for a sufficiently large choice of the con-

stantc. ExpandingPr
[
X̂x,r = zz′

]
= qr(x, z) ·

qr(ρ(x, z), z′) · · · and similarly forXx, we have
X̂x,r(w) ≥ (1 − 1/3m)m ·Xx(w) ≥ Xx(w)/

√
2,

as desired.
We can now estimate the compression length

of Xx under(Enc(x, ·, r), Dec(x, ·, r)). Recall that
the arithmetic codinĝEncx,r(w) compresses an in-
dividual stringw to length⌈log(1/X̂x,r(w))⌉. If r
andw satisfy the Inequalities (1) and the conclu-
sion of Claim 5.2, then we can bound this length as

⌈log(1/X̂x,r(w)⌉ ≤ log(1/Xx(w)) + 3/2.

The probability thatr andw do not satisfy either
the Inequalities (1) or the conclusion of Claim 5.2
is at most2−n + 1/n2. Thus, the average compres-
sion length is at most

Ew←Xx,r
[|Enc(x, w, r)|]

= Ew←Xx,r
[max{|Êncx,r(w)|, n}] + 1

≤ Ew←Xx
[log(1/Xx(w)) + 2]

+(1/n2 + 2−n) · n + 1

= H(Xx) + 3,

for large enoughn, as desired.

The randomization in the compression algo-
rithms above can be eliminated via Lemma 3.2, un-
der a complexity assumption. However, if we do not
care for a full derandomization, and only to elimi-
nate thesharedrandomness, we can use a “random
perturbation” trick from [9] to do it without a com-
plexity assumption.

Proposition 5.1. LetR be a self-reducible relation,
and for everyx, let Xx be the uniform distribution
on {w : (x, w) ∈ R}. If the sourcesXx are sam-
plable, then they can be compressed by probabilis-
tic polynomial-time algorithms with no shared ran-
domness to lengthH(Xx) + O(log n). The encod-
ings are prefix-free.

Proof. (sketch) The reason that the shared random-
ness is needed above is so thatEnc andDec com-
pute the same approximationsqx,r. Thus, it suffices
to ensure that they compute the same approxima-
tions with high probability even if they use inde-
pendent randomness. This can be done by perturb-
ing the approximations by a random noiseη ←
[−1/na, 1/na] and then rounding the approxima-
tions to the nearest multiple of1/nb for appropriate
constantsa, b. η should be included with the com-
pressed string (toO(log n) bits of accuracy).

The above theorem actually only requires that
Xx can beapproximately sampled. That is, there
is a probabilistic algorithmS such that for allx,
the output distribution ofS(x, ǫ) is within varia-
tion distance at mostǫ of Xx, andS(x, ǫ) runs in
time poly(|x|, 1/ǫ). Thus, we obtain compression
algorithms for the wide variety of self-reducible
structures for which almost-uniform samplers are
known, most notably the set of perfect matchings
in a bipartite graph [15]. The ability to compactly
store combinatorial substructures of a graph could
be useful, for example, in storing substructures of
huge graphs such as the World Wide Web; indeed,
there have been recent efforts at compressing Web
graphs [1].

In addition, we can show that compression and
almost-uniform sampling areequivalent.

Theorem 5. LetR be a self-reducible relation, and
for everyx, let Xx be the uniform distribution on
Wx = {w : (x, w) ∈ R}. Then the following con-
ditions are equivalent:

1. Xx can be approximately sampled in polyno-
mial time.

2. Xx can be compressed to lengthH(Xx) +
O(1) by probabilistic polynomial-time com-
pression algorithms with shared randomness.

3. Xx can be compressed to length
H(Xx) + O(log n) by probabilistic
polynomial-time compression algorithms
with no shared randomness.

Proof. (sketch) We have already argued that sam-
pling (Item 1) implies compression (Items 2 and 3).
For the converse, suppose(Enc, Dec) compresses
Xx to lengthm ≤ H(Xx)+c log n with shared ran-
domness. By the results of Sinclair and Jerrum [24]
(building on [16]), approximate sampling follows if
we can approximate|Wx| to within a poly(n) ac-
curacy factor. This would be easy if we could es-
timate the average compressed lengthm; unfortu-
nately, random sampling fromXx is unavailable to
us.

Instead, we use random sampling from the com-
pressed space and decompressing. In particu-
lar, we will use random sampling to estimate
pℓ = Pry∈U≤ℓ

[Dec(y) ∈ Wx], whereU≤ℓ de-
notes the uniform distribution on{0, 1}≤ℓ, the
set of strings of length≤ ℓ. With high proba-
bility, we find the largest integer̂m such that
pm̂ ≥ 1/nc+2.

We claim that2m̂ approximates|Wx| to within
a polynomial factor. For one direction, note that
|Wx| ≥ pm̂|{0, 1}≤m̂| ≥ 2m̂/nc+2. For the other
direction, note that Markov’s inequality implies that
Prw∈Xx

[|Enc(w)| ≤ m + 1] ≥ 1/(m + 1). There-
fore, the number of encodings ofWx with length at
mostm+1 is at least|Wx|/(m+1) ≥ 2m/(nc(m+
1)) ≥ 2m+2/nc+2 > |{0, 1}≤m+1|/nc+2. Hence
m̂ ≥ m + 1 ≥ H(Xx)−O(1) and2m̂ ≥ Ω(|Wx|).

A final extension we mention is that our results
also apply to some non-uniform distributions on
the witness set{w : (x, w) ∈ R}. Specifically,
it applies to sourcesXx that are compatible with
the self-reduction in the sense that the distribution
of Xx conditioned on having prefixz is precisely
z ◦ Xρ(x,z). An example is perfect matchings on
weighted bipartite graphs, where each edge has a
nonnegative weight and the probability of matching
is proportional to the product of the weights on its
edges. The algorithm of [15] can also sample from
such distributions, and hence we can also compress
such distributions close to the entropy.

References

[1] M. Adler and M. Mitzenmacher. Toward compress-
ing web graphs. InProceedings of the 2001 Data
Compression Conference, 2001.

[2] E. Allender, D. Bruschi, and G. Pighizzini. The
complexity of computing maximal word functions.
Computational Complexity, 3(4):368–391, 1993.

[3] S. Arora, F. T. Leighton, and B. M. Maggs. On-line
algorithms for path selection in a nonblocking net-
work. SIAM Journal on Computing, 25(3):600–625,
1996.

[4] B. Barak, R. Shaltiel, and A. Wigderson. Compu-
tational analogues of entropy. In11th International
Conference on Random Structures and Algorithms,
2003.

[5] M. Capalbo, O. Reingold, S. Vadhan, and
A. Wigderson. Randomness conductors and
constant-degree lossless expanders. InProceed-
ings of the 34th Annual ACM Symposium on Theory
of Computing, pages 659–668, 2002.

[6] B. Chor and O. Goldreich. Unbiased bits from
sources of weak randomness and probabilistic com-
munication complexity.SIAM Journal on Comput-
ing, 17(2):230–261, 1988.

[7] T. M. Cover and J. A. Thomas.Elements of Infor-
mation Theory. John Wiley & Sons, Inc., 1991.

[8] W. Diffie and M. E. Hellman. New directions in
cryptography. IEEE Transactions in Information
Theory, IT-22(6):644–654, 1976.

[9] A. Goldberg and M. Sipser. Compression and rank-
ing. SIAM Journal on Computing, 20:524–536,
1991.

[10] O. Goldreich and S. Vadhan. Comparing entropies
in statistical zero-knowledge with applications to
the structure of SZK. InProc. of Conference on
Computational Complexity, pages 54–73, 1999.

[11] J. Håstad, R. Impagliazzo, L. Levin, and M. Luby.
A pseudorandom generator from any one-way func-
tion. SIAM Journal on Computing, 28:1364–1396,
1999.

[12] R. Impagliazzo, October 1999. Remarks in
Open Problem session at the DIMACS Workshop
on Pseudorandomness and Explicit Combinatorial
Constructions.

[13] R. Impagliazzo and A. Wigderson. P = BPP if
E requires exponential circuits: Derandomizing the
XOR lemma. InProceedings of the 29th Annual
ACM Symposium on Theory of Computing, pages
220–229, 1997.

[14] M. Jerrum and A. Sinclair. Approximating the per-
manent.SIAM Journal on Computing, 18(6):1149–
1178, 1989.

[15] M. Jerrum, A. Sinclair, and E. Vigoda. A
polynomial-time approximation algorithm for the
permanent of a matrix with non-negative entries. In
Proceedings of the 33rd Annual ACM Symposium
on Theory of Computing, pages 712–721, 2001.

[16] M. Jerrum, L. Valiant, and V. Vazirani. Random
generation of combinatorial structures from a uni-
form distribution. Theoretical Computer Science,
43:169–188, 1986.

[17] M. Kharitonov, A. V. Goldberg, and M. Yung.
Lower bounds for pseudorandom number genera-
tors. InProceedings of the 30th Annual IEEE Sym-
posium on Foundations of Computer Science, pages
242–247, 1989.

[18] R. Lipton. A new approach to information theory.
In Proc. o f11th Symposium on Theoretical Aspects
of Computer Science, pages 699–708, 1994.

[19] N. Nisan and A. Wigderson. Hardness vs. random-
ness. Journal of Computer and System Sciences,
49:149–167, 1994.

[20] A. Sahai and S. Vadhan. A complete problem for
statistical zero knowledge.Journal of the ACM,
50(2):196–249, March 2003. Extended abstract in
FOCS ‘97.

[21] M. Santha and U. V. Vazirani. Generating quasi-
random sequences from semi-random sources.
Journal of Computer and System Sciences, 33:75–
87, 1986.

[22] C. Schnorr. Optimal algorithms for self-reducible
problems. InProceedings of the 3rd International
Colloquium on Automata, Languages, and Pro-
gramming, pages 322–337, 1976.

[23] C. E. Shannon. Communication theory of secrecy
systems. Bell System Technical Journal, 28:656–
715, 1949.

[24] A. Sinclair and M. Jerrum. Approximate count-
ing, uniform generation and rapidly mixing Markov
chains. Information and Computation, 82:93–133,
1989.

[25] A. Ta-Shma, C. Umans, and D. Zuckerman. Loss-
less condensers, unbalanced expanders, and extrac-
tors. InProceedings of the 33rd Annual ACM Sym-
posium on Theory of Computing, pages 143–152,
2001.

[26] L. Trevisan and S. P. Vadhan. Extracting random-
ness from samplable distributions. InProceedings
of the 41st Annual IEEE Symposium on Foundations
of Computer Science, pages 32–42, 2000.

[27] H. Wee. On pseudoentropy versus compressibility.
These Proceedings, 2004.

[28] A. C. Yao. Theory and applications of trapdoor
functions. InProceedings of the 23rd Annual IEEE
Symposium on Foundations of Computer Science,
pages 80–91, 1982.

[29] J. Ziv and A. Lempel. Compression of individual
sequences by variable rate coding.IEEE Transac-
tions on Information Theory, 24:530–536, 1978.

[30] D. Zuckerman. Randomness-optimal oblivious
sampling. Random Structures and Algorithms,
11:345–367, 1997.

