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Abstract

Impagliazzo and Wigderson [17] recently gave the first
construction of pseudorandom generators from auniform
complexity assumption onEXP (namelyEXP 6= BPP).
Unlike results in the nonuniform setting, the result of [17]
does not provide a continuous trade-off between worst-case
hardness and pseudorandomness, nor does it explicitly es-
tablish an average-case hardness result.

In this paper:

• Our main resultis a new, andoptimal, worst-case
to average-case complexity reduction forEXP: if
EXP 6⊆ BPTIME(t(n)), then we show thatEXP

has problems that are very hard to solve on fraction
1/2 + 1/t′(n) of the inputs byBPTIME(t′(n)) al-
gorithms, fort′ = poly(t).

• We also observe a generalization of the proof of
[17] to arbitrary time bounds, yielding a pseudo-
random generator generator that stretchesn bits
to ≈ t(n) bits under the assumptionEXP 6⊆
BPTIME(t(t(n)) (rather than the “optimal” as-
sumptionEXP 6⊆ BPTIME(t(n))). The same gen-
erator can be constructed under the assumption that
#P 6⊆ BPTIME(t(n)). Properties of the genera-
tor construction can be used to show that, under ei-
ther assumption, there is a problem inEXP that is
hard to solve on a fraction1/2 + 1/t′(n) of the in-
puts byBPTIME(t′(n)) algorithms fort′ ≈ t. (This
is weaker than our main hardness amplification result,
but it can be proved using only the techniques of [17].)

• We prove, directly, the existence of aPSPACE-
complete downward self-reducible and random self-
reducible problem, thus slightly simplifying and
strengthening the generalization of [17] to arbitrary
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time bounds (which used a#P-complete problem,
namely thePERMANENT).

• We argue that the results in [17] and in this paper can-
not be proved via “black-box” uniform reductions.

1 Introduction

Pseudorandomness, Average-case Hardness,
Worst-case Hardness

Over the past two decades, a rich body of work has in-
vestigated the relationship between three basic questionsin
complexity theory:

1. The existence of problems of high worst-case com-
plexity in classes such aEXP,

2. The existence of problems of high average-case com-
plexity in such classes, and

3. The existence of good pseudorandom generators im-
plying sub-exponential time or even polynomial time
deterministic simulations ofBPP.

One of the exciting accomplishments of this body of
work has been to showequivalenceof the above three state-
ments in thenonuniformsetting. That is,EXP or E =
DTIME(2O(n)) contains problems of high worst-casecir-
cuit complexityiff it contains problems of high average-
case circuit complexity iff there are strong pseudoran-
dom generators against non-uniform distinguishers [22, 5].
This equivalence has become increasingly tight quantita-
tively, with weak (i.e. slightly superpolynomial) circuit
lower bounds implying slight derandomization (BPP ⊂
SUBEXP), strong (2Ω(n)) circuit lower bounds imply-
ing complete derandomization (BPP = P), and a smooth
tradeoff between these two extremes [13, 1, 16, 27, 15, 23].

Since proving unconditional circuit lower bounds seems
out of reach, an important question is to what extent the
nonuniformityis really necessary for such results? The re-
sults are proven by reductions showing how breaking the
generators implies good average-case “algorithms” forE,
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and how this in turn implies good worst-case “algorithms”
for E. Almost all of these reductions are nonuniform and,
as we discuss below, this is necessary for reductions that
are “black box,” that is, that work without making any as-
sumptions on the hard problem being used and on the dis-
tinguisher being postulated.

Uniform Reductions

An exciting recent work of Impagliazzo and Wigderson
[17] has broken out of this mould of nonuniformity, and
their paper is the starting point of our investigation. They
prove that under theuniform assumptionEXP 6= BPP,
it is possible to simulateBPP algorithms deterministi-
cally in subexponential time (on most inputs, for infinitely
many input lengths). This result stands out as an iso-
lated example of using of uniform hardness assumptions
in derandomization,1 and suggest that perhaps nonunifor-
mity can be completely removed from this area. However,
there is a contrasting result due to Impagliazzo, Kabanets
and Wigderson [14], stating thatNEXP 6= MA2 if and
only if NEXP 6⊆ P/poly. In words, the only way to
prove a subexponential time derandomization ofMA (or a
subexponential time derandomization of promise-BPP) is
to prove (or assume) nonuniform lower bounds forNEXP.
Contrary to [17], this suggests that circuit lower bounds are
necessaryfor derandomization. Where does the truth lie?

Hardness versus randomness results in the uniform set-
ting thus stand at the border of what is provable without
using circuit complexity lower bounds, and there is hope
that ultimately they may lead to unconditional results (both
in the form of derandomization and in the form of circuit
lower bounds), or at least of interesting nonrelativizing re-
sults about classes that may not even have to do with ran-
domness directly.3 As we argue below, uniform reductions
proving pseudorandomness and/or average-case complex-
ity cannot be “black-box” reductions, and we believe that
the pseudorandom generator construction of [17] and the
results of this paper are not only impossible via black-box
reductions, but also nonrelativizing.

The uniform result by Impagliazzo and Wigderson [17]
uses many previous theorems in complexity theory, some
of which do not appear related to derandomization. In ad-
dition, unlike previous (and subsequent) derandomization
results in the nonuniform setting, it was not stated as giving

1Here we do not include the works on “cryptographic” pseudorandom
generators which are based on the stronger assumption that one-way func-
tions exist [8, 31, 12], but are indeed uniform.

2
MA is a probabilistic version ofNP; it is the class of languages for

which membership has short proofs that can be checked inprobabilistic
polynomial time.

3Indeed, [14] use derandomization techniques to obtain the result
NEXP ⊆ P/poly ⇒ NEXP = EXP, which a priori has nothing
to do with randomness; the stronger implicationNEXP ⊆ P/poly ⇒

NEXP = MA is also true, and known to be non-relativizing.

a continuous tradeoff between hardness and randomness. It
also was not proved by (explicitly) presenting a uniform re-
duction from worst-case to average-case hardness, which is
typically the first step in previous derandomization results.
Thus, their work leaves several intriguing open questions:

• What is the best tradeoff between hardness and deran-
domization in the uniform setting? In particular, can
a sufficiently strong uniform lower bound onE yield
a polynomial-timedeterministic simulation ofBPP?
By analogy with the nonuniform setting, we might
hope to prove that ifE 6⊂ BPTIME(t(n)), then
there is a pseudorandom generator that mapping≈ n
bits into roughly≈ t(n) bits fooling uniform distin-
guishers running in time≈ t(n) (which implies a time
2O(t−1(n)) simulation ofBPP).

• Of the several previous results that are being used, how
many are really necessary, and what are the properties
of EXP that are essential to the proof?

• Is it possible to prove, along similar lines, that if
EXP 6= BPP thenEXP contains problems that are
hard on average? What is the best tradeoff for this
worst-case vs. avg-case problem in the uniform set-
ting?

Our Results

Generalizing [17]. We first revisit, in Section 3, the ar-
guments of Impagliazzo and Wigderson [17], and make the
following observations.

1. Generalizing [17], we can obtain a pseudorandom
generator that stretches≈ n bits into ≈ t(n) bits
which fools distinguishers running in timet(n), un-
der the assumption thatEXP 6⊆ BPTIME(t(t(n)))
(roughly). (Recall that “ideal” result would havet(n)
instead oft(t(n)).)

2. The “ideal” derandomization can be obtained from
uniform lower bounds on#P (instead ofEXP). That
is, the same generator as above can be obtained un-
der the hypothesis that#P 6⊂ BPTIME(t(n)). The
key property of#P that is used in [17] is that it con-
tains a complete problem which is both “random self-
reducible” and “downward self-reducible”, namely the
PERMANENT [30].

3. Result 1 above is obtained by constructing two pseudo-
random generators, one from anEXP-complete prob-
lem and one from the PERMANENT. If there is a time
t(n) distinguisher for both generators, then they can
be combined in a sophisticated way (not just by a uni-
form “reduction”) to obtain a timet(t(n)) algorithm
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for EXP. This step makes crucial use of Toda’s The-
orem thatΣ2 ⊆ P#P [28].

4. Using our restatement of these results, we can also ob-
tain a uniform worst-case to average-case connection
for EXP: if every problem inEXP admits a proba-
bilistic algorithm that runs int(n) time and solves the
problem in a1/2 + 1/t(n) fraction of inputs of length
n, then (roughly)EXP ⊆ BPTIME(t(t(n)). This
is another result that cannot be proved via black-box
reduction.

These observations set the stage for our other results.
One main goal is to remove thet(t(n)) lower bounds that
are needed above, for they are far from matching the “ideal”
tradeoff. They give nothing, for example, witht(n) =
2nǫ

, and more generally limitst to being at mosthalf-
exponential[21]. In terms of derandomization, this means
that we cannot get anything near a polynomial-time deter-
ministic simulation ofBPP from such results.

Derandomization from PSPACE-hard problems. In
Section 4, we give a direct construction of aPSPACE-
complete problem which is both random self-reducible and
downward self-reducible. This simplifies the proof of
the Impagliazzo–Wigderson result, eliminating the use of
Valiant’s Theorem and Toda’s Theorem, and also strength-
ens Item 2 by replacingP#P with PSPACE. Our con-
struction is based on the ideas using in provingIP =
PSPACE [20, 24].

Optimal Average-Case Hardness forEXP. In Section
5 we present our main result: a new, uniform, worst-case
to average-case reduction forEXP that whose parameters
match the state-of-the-art in the nonuniform setting [27].
Specifically, we prove that if every problem inE can be
solved in timet(n) on a1/2 + 1/t(n) fraction of inputs,
then every problem inE can be solved in time roughlyt(n).
Our result is based on combining the nonuniform version of
the result from [27] with results aboutinstance checkersfor
EXP.

Black-box Reductions. In Appendix A, we argue that the
uniform pseudorandom generator constructions and the uni-
form worst-case to average-case connections in [17] and
here cannot be obtained by black-box reductions. The basic
reason for this is that (nonuniform or uniform) black-box
reductions can be interpretedinformation theoretically, and
give rise torandomness extractorsin the case of pseudo-
random generators [29] anderror-correcting codesin the
case of worst-case-to-average-case reductions. We show
that uniform black-box reductions yield such objects with
absurd parameters.

This means that to achieve these uniform results, one
must exploit special properties of either the hard function
or the “adversary” in the reductions. For example, Im-
pagliazzo and Wigderson [17] used the fact that the PER-
MANENT is downward and random self-reducible. Since
only problems inPSPACE have downward self-reducible
problems, this suggests that to obtain better results from
the hardness ofEXP, we should try to identify special
properties ofEXP-complete problems which can be ex-
ploited. Our optimal hardness amplification identifies one
such property, namelyinstance checkability. We do not
know whether this suffices for getting optimal derandom-
ization. If not, hopefully it at least will point the direction
to other properties ofEXP that can be used.

2 Preliminaries

For notational convenience, all of the time boundst(·)
in this paper are assumed to satisfy several niceness condi-
tions:n ≤ t(n) ≤ 2n, t(n) is monotone increasing,t(n) is
computable in timepoly(n), andt(O(n)) ≤ poly(t(n)) ≤
t(poly(n)). All functions of the formnc, nc logn, n(log n)c

,
2cn, 2nc

satisfy these conditions.
Now we define several of the classes of languages we

will be examining throughout the paper. Sometimes we will
abuse notation and refer to them as classes of functions,
and we will sometimes identify a language with its char-
acteristic function.BPTIME(t(n)) denotes the class of
languages solvable by probabilistic algorithms with 2-sided
error running in timet(n). SIZEt(n) denotes the class of
languages which can be decided by (nonuniform) Boolean
circuits of sizet(n). Σkt(n) denotes the class of problems
that can be solved by timet(n) alternating machines withk
alternations (starting with an existential one).

We will also consider two notions of average-case com-
plexity of functions. The first captures the idea that
a function is “easy on average” for deterministic algo-
rithms: f ∈ avgDTIME(t(n)) if there is a time
t(n) deterministic algorithmA such that for every prob-
abilistic sampling algorithmG which runs in timet(n),
Pr [A(G(1n)) = f(G(1n))] ≥ 1 − 1/t(n). Thus, the
statementBPP ⊆ avgDTIME(t(n)) for some small
(e.g. quasipolynomial or even subexponential) time bound
t means that we have a good deterministic simulation of
BPP — it is even hard to generate instances on which the
simulation will fail.

The other notion of average-case complexity weĺl look
at is meant to capture strong average-casehardnessrather
than easiness: We say thatL ∈ advBPTIME(t) if there
is a probabilistic algorithmA running int(n) time such that
for everyn

Pr[A(x) = L(x)] ≥ 1/2 + 1/t(n)
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where the probability is taken both over the coin tosses of
A and over the uniform distribution of inputsx in {0, 1}n.
Thus, if L /∈ advBPTIME(t) it means thatL is very
hard-on-average. Indeed, it means that no probabilistic time
t algorithm can decide membership inL with a significant
advantageover random guessing (for infinitely many input
lengths); hence the notationadvBPTIME. Constructing
such hard-on-average languages (or, equivalently, Boolean
functions) is typically the first step in a pseudorandom gen-
erator construction.

A prefix of i.o. to a complexity class means the class
of languages which can be solved oninfinitely m2any input
lengthsby algorithms within the stated resource bounds.

For f : {0, 1}∗ → {0, 1}, we denote the restriction off
to inputs of lengthn by fn.

Definition 2.1 f : {0, 1}∗ → {0, 1} is downward self-
reducibleif there is a (deterministic) polynomial time algo-
rithmA such that for allx ∈ {0, 1}n, Afn−1(x) = fn(x).

Definition 2.2 f : {0, 1}∗ → {0, 1} is random self-
reducible if there is a constantc and a probabilistic
polynomial-time algorithmA such that ifg : {0, 1}n →
{0, 1} is any function that agrees withfn on at least a
1 − 1/nc fraction of inputs,Pr [Ag(x) = f(x)] ≥ 2/3 for
all x ∈ {0, 1}n. (The probability is just over the coin tosses
ofA.)

Pseudorandom Generators. We define pseudorandom
generators in a slightly nonstandard way to facilitate the
presentation of our results. We say a functionG :
{0, 1}∗ → {0, 1}∗ hasstretchm(·) if |G(x)| = m(|x|)
for all x. We say thatD distinguishesG in timet(·) (resp.,
sizet(·)) if D runs in timet(n) (resp., is computable by a
circuit of sizet(n)) on inputs of lengthm(n) and

Pr
x←Un

[D(x,G(x)) = 1]− Pr
(x,y)←U

n+m(n)

[D(x, y) = 1] >
1

t(n)
,

for all sufficiently largen. Clearly, a “good” pseudoran-
dom generator will have no efficient distinguisher. Note
that, by this definition, ifG cannot be distinguished in time
t, it means that every timet algorithm fails to distinguish
G infinitely often. Note also that we give the distinguisher
the seed to the pseudorandom generator. This makes sense
here because this line of work (starting from [22]) pseudo-
random generators for derandomization (as opposed to, e.g.,
cryptography) works with generators whose running time is
greater than that of the distinguisher. Indeed, all pseudoran-
dom generators in this paper are computable in time2O(n)

on seeds of lengthn.
The above convention about feeding the distinguisher the

seed means that every pseudorandom generator gives rise to
a hard-on-average function.

Lemma 2.3 If there is an algorithmA which runs in time
t(·) (resp., computed by a circuit of sizet(·)) such that

Pr
x←{0,1}n

[

A(x) = G(x)|m(n)

]

>
1

2m(n)
+

1

t(n)

for somem(·) and all n, then there is an algorithm which
distinguishesG in time t(·) (resp., in sizet(·)). Here
G(x)|m(n) denotes the firstm(n) bits ofG(x).

In particular, if there is a generatorG which cannot be
distinguished in timet(n), then the first bit ofG defines a
language which is not inadvBPTIME(t(n)).

3 Extensions of [17]

In this section, we describe the results of Impagliazzo
and Wigderson [17], and, in the process, generalize them to
larger time bounds.

The starting point for pseudorandom generation from
Boolean functions of high circuit complexity was the con-
struction of Nisan and Wigderson [22], whbich builds a
pseudorandom generator from an average-case hard func-
tion.

Lemma 3.1 ([22]) For every t(·) and every random self-
reducible functionf , there is aG with stretcht(n) such
that

• G(x) can be computed in timepoly(t(n)) on inputs of
lengthn, with oracle access tof .

• If G can be distinguished in sizet(n), then f is in
SIZE(t(poly(n))).

Quantitatively better results that eliminate thepoly(n)
in SIZE(t(poly(n))) are now known [16, 27, 15, 23], but
we use the above for simplicity. The random self-reducible
hard functionf can be obtained from any hard functionf
by taking the low-degree extension:

Lemma 3.2 ([6, 5]) For every functionf , there is a random
self-reducible function such thatf reduces tof ′ in linear
time, andf ′ can be computed in linear space with oracle
access tof .

The first new ingredient in [17] was the observation that
the circuit complexity conclusion of Lemma 3.1 can be re-
placed with a uniform conclusion aboutlearnability.

Lemma 3.3 ([17]) For every t(·) and every random self-
reduciblef , there is aG with stretcht(n) such that

• G(x) can be computed in timepoly(t(n)) on inputs of
lengthn, with oracle access tof .
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• If G can be distinguished in timet(n), then
f is in LEARNmem(t(poly(n))), where
LEARNmemt(n) denotes the class of languages
L which can be (exactly)learnedwith membership
queries by a probabilistic algorithmA running in time
t(n).4

The next new ingredient of [17] was showing that the
learnability can be turned into standard uniform easiness if
the functionf is downward self-reducible.

Lemma 3.4 ([17]) If f is downward self-reducible andf ∈
LEARNmem(t(n)), thenf ∈ BPTIME(poly(t(n))).

The problem with this is that all downward self-reducible
problems lie inPSPACE, but we would like to start with a
hard function inEXP. The way this is overcome in [17] is
to assume thatEXP has polynomial-sized circuits (for oth-
erwise we’re already done by Lemma 3.1). Under this as-
sumption, a version of the Karp–Lipton Theorem, attributed
to Albert Meyer, collapsesEXP to Σ2. Generalizing this
to higher time bounds gives:

Lemma 3.5 (Meyer [18]) If EXP ⊂ SIZE(t(n)), then
EXP ⊂ Σ2(poly(t(n))).

Once EXP collapses toΣ2, we get a random self-
reducible and downward self-reducible function from the
following:

Lemma 3.6 ([30, 28, 19])There is a random self-reducible
and downward self-reducibleΣ2-hard problem, namely, the
PERMANENT.

Combining all these, we get the following generalization
of the [17] Theorem.

Theorem 3.7 (generalizing [17])There is a generatorG
with stretcht(·) which cannot be distinguished in timet(·)
unlessEXP ⊂ BPTIME(t(t(poly(n)))).

Proof sketch: Let f1 be a random self-reducibleEXP-
complete problem (from Lemma 3.2) and letf2 be the
PERMANENT. Use Lemma 3.1 to construct a generator
G1 with stretcht(·) from f1, and use Lemma 3.3 to con-
struct a generatorG2 with stretcht(·) from f2. If both
G1 andG2 can be distinguished in timet(·), thenf1 ∈
SIZE(t(poly(n))), f2 ∈ LEARNmem(t(poly(n))).
Since f2 is downward self-reducible, Lemma 3.4 gives
f2 ∈ BPTIME(t(poly(n))). Sincef1 isEXP-complete,
Lemma 3.5 givesf1 ∈ Σ2(t(poly(n))). By Lemma 3.6,f1
reduces tof2 in time t(poly(n)), from which we conclude
f1 ∈ BPTIME(t(t(poly(n)))). ✷

4That is, with high probability,ALn (1n) outputs a circuit which com-
putesLn within time t(n), whereLn denotes the restriction of language
L to inputs of lengthn.

A generator which fools uniform algorithms can be used
to obtain an average-case derandomization ofBPP.

Corollary 3.8 (generalizing [17]) If EXP 6⊂
BPTIME(t(t(poly(n)))), then
BPP ⊆ i.o.-avgDTIME(2t−1(n)).

Note that this only gives a deterministic simulation ofBPP

infinitely often. In most previous works on derandomiza-
tion, it is also possible to obtain a simulation for all input
lengths by assuming thatEXP has a problem that is hard
for all but finitely many input lengths, i.e.EXP is not in
i.o.-BPTIME(t(n)) for a smallt′. However, one of the
steps of the above proof, namely Lemma 3.4, breaks down
if we try to work with an infinitely-often hypothesis.

We also observe that a uniform hardness amplification
result now follows from Theorem 3.7 via Lemma 2.3.

Corollary 3.9 If EXP 6⊂ BPTIME(t(t(poly(n)))),
thenEXP 6⊂ advBPTIME(t(poly(n))).

In Section 5, we improve this result in two ways. First,
we eliminate the composition oft (along with other quan-
titative improvements) to obtain a result that matches best
known nonuniform result. Second, we obtain an version
which says thatEXP has a problem that is worst-case hard
for almost all input lengths, then it has a problem that is
average-case hard for almost all input lengths (in contrast
to the above, which is only implies hardness “infinitely of-
ten”).

4 A Downward and Random Self-Reducible
PSPACE-complete Problem

The proof of Impagliazzo and Wigderson in Section 3
makes use of many previous results, and it is unclear how
much of that machinery is really necessary for the result.
By isolating the essential ingredients, we may ultimately
succeed in removing the deficiencies described in the in-
troduction. In this section, we show that Valiant’s Theo-
rem and Toda’s Theorem, which were used in Lemma 3.6,
are not necessary. Instead, we show that there is a ran-
dom self-reducible and downward self-reducible complete
problem forPSPACE. At first, this seems easy. The
canonicalPSPACE-complete problem QBF is downward
self-reducible, and Lemma 3.2 says thatPSPACE also
has a random self-reducible complete problem. However,
the Impagliazzo–Wigderson proof appears to need asin-
gle complete problem which has both properties simulta-
neously. In this section, we obtain such a problem by a
careful arithmetization of QBF, using the ideas underlying
the interactive proof system forPSPACE [20, 24].

In what follows,Fn is the finite field of size2n. It is
known that a representation of this field (i.e. an irreducible
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polynomial of degreen over GF(2)) can be found deter-
ministically in timepoly(n) [25].

Lemma 4.1 For some polynomialst andm, there is a col-
lection of functions{fn,i : (Fn)t(n,i) → Fn}i≤m(n) with
the following properties:

1. (Self-Reducibility) Fori < m(n), fn,i can be eval-
uated with oracle access tofn,i+1 in time poly(n).
fn,m(n) can be evaluated in timepoly(n).

2. (PSPACE-hardness) For every languageL in
PSPACE, there is a polynomial-time computable
function g such that for allx, g(x) = (1n, y) with

y ∈ F
t(n,0)
n , andfn,0(y) = χL(x).

3. (Low Degree)fn,i is a polynomial of total degree at
mostpoly(n).

Proof sketch: Consider the interactive proof system for
PSPACE-complete problem QBF, as presented in [26].
In the construction of the proof system, a QBF instance
φ = ∃x1∀x2 · · · ∃/∀xnψ(x1, . . . , xn) induces a sequence
f0, f1, . . . , fm (m = poly(n)) of multivariate polynomi-
als over any sufficiently large finite field, sayFn. fm =
fm(x1, . . . , xn) is an arithmetization of the propositional
formula ψ(x1, . . . , xn), and for j < n, fj is defined in
terms offj+1 using one of the rules:

fj(x1, . . . , xℓ) = fj+1(x1, . . . , xℓ, 0) · fj+1(x1, . . . , xℓ, 1)

fj(x1, . . . , xℓ) = 1 − (1 − fj+1(x1, . . . , xℓ, 0)) · (1 − fj+1(x1, . . . , xℓ, 1))

fj(x1, . . . , xk, . . . , xℓ) = xk · fj(x1, . . . , 1, . . . , xℓ) + (1 − xk) · fj(x1, . . . , 0, . . . , xℓ).

(Which rule is used depends solely oni andn in an easily
computable way). The construction provides the following
guarantees:

• If fj depends onℓ variables, then whenx1 . . . , xℓ

take on Boolean values,fj(x1, . . . , xℓ) equals the truth
value ofφ with the firstℓ quantifiers removed.f0 is a
constant polynomial, and thus equals the truth value of
φ (with all quantifiers present).

• fm can be evaluated in timepoly(|φ|).

• Forj < m, fj can be evaluated in timepoly(|φ|) given
oracle access tofj+1. (This follows from the three
possible rules which definefj in terms offj+1.)

• Eachfj is of total degree at mostpoly(|φ|).

However, this does not yet accomplish what we want
since these polynomials depend onφ, and not just its length.
To solve this, we incorporate the formulaφ into the arith-
metization (as done for PCP’s in, e.g. [4, 10] for different
reasons). We do this by defining a single “universal” quan-
tified formulaΦn which has somefree variables such that

by setting these free variables appropriately,Φn can be spe-
cialized to any instance of QBF. Specifically,Φn has2n2

free variables{yi,j, zi,j : 1 ≤ i, j ≤ n}, and is defined as
follows:

Φn(y, z) = ∃x1∀x2 · · · ∃/∀xn

n
∧

i=1

n
∨

j=1

(yi,j∧xj)∨(zi,j∧¬xj)

Now let φ be any instance of QBF. Without loss
of generality, we may assumeφ is in the form φ =
∃x1∀x2 · · · ∃/∀xnψ(x1, . . . , xn), whereψ is a CNF for-
mula with at mostn clauses. (These restrictions still pre-
serve the fact that QBF is aPSPACE-complete problem.)
Definey(φ) andz(φ) as follows: yi,j(φ) = 1 iff the i’th
clause ofψ containsxj , andzi,j(φ) = 1 iff the i’th clause
of ψ contains¬xi. Then, by inspection,

Φn(y(φ), z(φ)) ≡ φ (1)

Now we define the polynomialsfn,0, fn,1, . . . , fn,m

(m = m(n)) to be the sequence of polynomials obtained by
applying theIP = PSPACE arithmetization toΦn. Un-
like a standard instance of QBF,Φn has some free variables
y, z. However, the construction still applies, and eachfn,i

will have variables corresponding to these free variables in
addition tox-variables corresponding to the quantifiers that
have been “stripped off”. The resulting sequence of poly-
nomials has the following properties:

• If fj depends on ℓ x-variables, then when
y, z, and x1 . . . , xℓ take on Boolean values,
fn,j(y, z, x1, . . . , xℓ) equals the truth value ofΦn with
the firstℓ quantifiers removed.fn,0 depends on none
of thex-variables, and thusfn,0(y, z) = Φn(y, z) on
Boolean inputs.

• fn,j can be computed in timepoly(n) given oracle ac-
cess tofn,j+1.

• Eachfn,j is of total degree at mostpoly(n).

• fn,m(n) can be evaluated in timepoly(n).

This establishes the self-reducibility and low degree prop-
erties. ThePSPACE-hardness, This completes the proof.

✷

Now, to deduce the final result, we simply combine the
functionsfn,i from Lemma 4.1 into a single functionF ,
with a careful ordering of input length so as to turn the “up-
wards” reductions fromfn,i to fn,i+1 into a downward self-
reduction forF . Details are in Appendix B.

Theorem 4.2 PSPACE has a complete problem which is
both random self-reducible and downward self-reducible.
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In addition to removing some steps from the
Impagliazzo–Wigderson proof, Theorem 4.2 has the
consequence that we can obtain the “right” derandom-
ization of BPP from a uniform assumption about hard
problems inPSPACE (as opposed toP#P, as follows
from [17]) .

Corollary 4.3 There is a generatorG with stretch
t(·) which cannot be distinguished in timet(·) unless
PSPACE ⊂ BPTIME(t(poly(n))).

Corollary 4.4 If PSPACE 6⊂ BPTIME(t(poly(n))),
thenBPP ⊆ i.o.-avgDTIME(2t−1(n)).

5 Uniform Hardness Amplification

In this section we will prove that if every problem in
EXP has aBPTIME(t(n)) algorithm that solves the
problem on a fraction1/2 + 1/t(n) of the inputs of length
n, thenEXP is contained inBPTIME(t(poly(n))). We
will also prove a similar result forPSPACE.

We will prove our result in a series of steps. First, we
observe that the non-uniform worst-case to average-case re-
duction in [27] actually uses a “logarithmic amount of non-
uniformity.” More precisely, the reduction can be imple-
mented by using a probabilistic algorithm that first picks
its randomness, then receives a logarithmically long advice
string (that depends only on the randomness), and finally re-
ceives and solves the input. We formalize this slightly non-
standard notion of nonuniform probabilistic computation as
follows.

Definition 5.1 (nonuniform BPP) For functionst anda,
we say that a languageL is in BPTIME(t)//a if there is
an algorithmA and a functionf such that for every input
x of lengthl, Prr[A(r, x, f(r)) = L(x)] ≥ 3/4, A runs in
t(n) time, and|f(r)| ≤ a(n).

Using the above notation, we can restate the main result
of Section 4 of Sudan, Trevisan, and Vadhan [27] in the
following way:

Theorem 5.2 (implicit in [27]) For every languageL we
can define a languageL′ such that

• L is reducible toL′ (via a linear time Karp reduction);

• L′ on inputs of lengthn is solvable in2O(n) time given
oracle access toL (and all oracle queries are of size
Θ(n));

• if L′ is in advBPTIME(t(n)), then L′ is in
BPTIME(poly(t(n)))//O(log t(n)).

Proof sketch: In [27], L′ is based on a low-degree poly-
nomial encodingf of L over a field of sizepoly(t(n)). It
is shown that the only nonuniformity required is the value
of the polynomial at a single random point, which comes to
O(log t(n)) bits. ✷

We note that earlier methods for achieving strong
average-case hardness, namely, versions of Yao’s XOR
Lemma [31, 11, 13, 16], all appear to use much nonuni-
formity.

Finally, we show that ifL (and so L′) is EXP-
complete or PSPACE-complete, thenL′ can be in
BPTIME(poly(t(n)))//O(log(t(n))) only if it is also in
BPTIME(t(poly(n))). This will be a consequence of the
fact thatEXP-complete andPSPACE-complete prob-
lems have instance checkers.

Definition 5.3 (instance checker [7])An instance checker
C for a languageL is a polynomial time probabilistic ora-
cle machine whose output is eitherpass or fail and such
that

• for all inputsx, and all oraclesL′, if L′(x) 6= L(x)
thenPr[CL′

(x) = fail] ≥ 3/4;

• for all inputsx, Pr[CL(x) = fail] = 0.

Intuitively, if L has an instance checker, then machineC,
given an inputx and an oracle that purports to decideL,
with high probability will be able to verify the validity of
the oracle onx.

As observed in [4], the proof ofMIP = NEXP in
[4] implies the existence of instance checker for allEXP-
complete problems, and the proof ofIP = PSPACE in
[20, 24] implies the existence of instance checkers for all
PSPACE-complete problems.

Theorem 5.4 ([4],[20, 24])Every EXP-complete prob-
lem and everyPSPACE-complete problem has an in-
stance checker.

A result related to the existence of instance checkers for
EXP5 has been used in complexity theory before, for ex-
ample in [5] and [9]. Our use below, to eliminate limited
non-uniform, seems, however, new.

Lemma 5.5 LetL ∈ BPTIME(t)//a be a problem ad-
mitting an instance checker.
ThenL ∈ BPTIME(t(polyn) · 2a(polyn)).

5Specifically, the fact that every problem inEXP has a PCP-type
proof systems where the proof has exponential length and theverifier runs
in polynomial time, with the additional property that validproofs for YES-
instances can be computed in exponential time.
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Proof: Let C be the instance checker, and letnc be an
upper bound on the length of oracle queries made byC for
inputs of lengthn, let A(·, ·, ·) be the algorithm forL and
let f be the advice function. LetC′ be the instance checker
obtained by runningC O(a(nc)) times, and passing if and
only if C always passes. ThenC′ also asks oracle queries of
length at mostnc, the running time ofC′ is poly(n) ·a(nc),
and the error probability is, say,2−a(nc)−2.

On inputx, we pickr at random, and consider the2a(nc)

possible advice stringss for the computation of inputs of
size at mostnc, and runCA(r,·,s)(x). Let s∗ be the lexi-
cographically smaller string for whichCA(r,·,s)(x) outputs
pass; then we outputA(r, x, s∗). We output a random an-
swer if there is no strings for which the output ispass.
With high probability overr, and for the cases = f(r),
the oracle is correctly computingL, andC outputspass;
furthermore, except with probability≤ 1/4, in all cases in
whichC outputspass, the answer is right.

We can now put together all the results, and prove our worst-
case to average-case reduction in the uniform setting.

Theorem 5.6 If EXP ⊆ advBPTIME(poly(t(n)))
thenEXP ⊆ BPTIME(t(poly(n))).

Proof: Fix an EXP-complete languageL, and
construct L′ as in Theorem 5.2. ThenL′ is also
EXP-complete, and thus instance-checkable, and also
we haveL′ ∈ advBPTIME(poly(t(n))) and then
L′ ∈ BPTIME(poly(t(O(n))))//O(log t(O(n))). Us-
ing Lemma 5.5, we haveL′ ∈ BPTIME(t(poly(n))),
and, from theEXP-completeness ofL′, we haveEXP ⊆
BPTIME(t(poly(n))).

Notice that the above theorem is not as strong as it could
be. For example, it would be nice to prove thatE 6⊆
BPTIME(2o(n)) implies E 6⊆ advBPTIME(2o(n)),
however Theorem 5.6 does not imply such a result. In order
to do such finer worst-case to average-case reductions, we
need to re-examine our argument very carefully. We state
a stronger result that can be proved this way, and, in this
extended abstract, only sketch the proof.

Theorem 5.7 If E ⊆ advBPTIME(poly(t(n))) then
E ⊆ BPTIME(poly(t(n))).

Proof: [Sketch] Fix a languageL that isE-complete un-
der linear-time reductions, for exampleL is the set of
triples (M,x, 1n) such that machineM accepts inputx
in at most2n steps. ConstructL′ as in Theorem 5.2,
thenL′ is alsoE-complete under linear-time reductions.
From the assumption of the theorem, we have thatL′ ∈
advBPTIME(t(n)), and from Theorem 5.2 we have that
also

L′ ∈ BPTIME(poly(t(O(n))))//O(log t(O(n))) . (2)

From a stronger version of Theorem 5.4, it follows that
L′ has an instance checker that given an input of length
n only makes oracle queries of sizeO(n). (Such a re-
sult does not seem to follow from [4], however it can be
derived from the proof of the PCP theorem [3, 2] and, in
fact, the results of [3] are enough.) Using Equation (2), the
strong instance checker ofL′, and a more careful version
of the proof of Lemma 5.5, we conclude thatL′ is also in
BPTIME(poly(t(O(n)))), and now the theorem follows
from the niceness oft and theE-completeness ofL′ under
linear-time reductions.

Finally, we observe that the proof of Theorem 5.6 actu-
ally shows that given a languageL ∈ EXP we can con-
struct a languageL′ ∈ EXP such that in order to compute
L on all inputs of lengthn, it is enough to computeL′ well
on average on inputs of lengthnΘ(1). Standard padding
arguments can then be used to show that ifL′ is easy on
average for infinitely many input lengths, thenL is easy on
the worst case for infinitely many input lengths. Recall that
the techniques of [17] do not provide this kind of result, the
Lemma 3.4

Theorem 5.8 If EXP ⊆ i.o.-advBPTIME(t(polyn)),
then EXP ⊆ i.o.-BPTIME(t(polyn)). If
E ⊆ i.o.-advBPTIME(poly(t(n)) then E ⊆
i.o.-BPTIME(poly(t(n)).
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[12] J. Håstad, R. Impagliazzo, L. A. Levin, and M. Luby. A
pseudorandom generator from any one-way function.SIAM
J. Comput., 28(4):1364–1396 (electronic), 1999.

[13] R. Impagliazzo. Hard-core distributions for somewhathard
problems. In36th Annual Symposium on Foundations of
Computer Science, pages 538–545, Milwaukee, Wisconsin,
23–25 Oct. 1995. IEEE.

[14] R. Impagliazzo, V. Kabanets, and A. Wigderson. In search
of an easy witness: Exponential time vs. probabilistic poly-
nomial time. InProceedings of the Sixteenth Annual Con-
ference on Computational Complexity. IEEE, June 18–21
2001.

[15] R. Impagliazzo, R. Shaltiel, and A. Wigderson. Extractors
and pseudo-random generators with optimal seed length. In
Proceedings of 32nd ACM Symposium on Theory of Com-
puting, 2000.

[16] R. Impagliazzo and A. Wigderson.P = BPP if E requires
exponential circuits: Derandomizing the XOR lemma. In
Proceedings of the Twenty-Ninth Annual ACM Symposium
on Theory of Computing, pages 220–229, El Paso, Texas,
4–6 May 1997.

[17] R. Impagliazzo and A. Wigderson. Randomness vs. time:
De-randomization under a uniform assumption. In36th An-
nual Symposium on Foundations of Computer Science, Palo
Alto, CA, November 8–11 1998. IEEE.

[18] R. M. Karp and R. J. Lipton. Turing machines that take ad-
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A Black-Box Reductions

In this section, we argue thatuniform, black-boxreduc-
tions cannot be used to prove the pseudorandom genera-
tor constructions and the worst-case-to-average-case reduc-
tions given in [17] and this paper. We conjecture that these
negative results can be extended to actually show that the
constructions are nonrelativizing. The fact that we are us-
ing reductions which cannot be black-box suggests that sig-
nificant, and possibly unexpected results could come out of
further studies of uniform reductions in this field.

Let us briefly explain what we mean by black-box re-
ductions, and why uniform black-box reductions have very
strong limitations. Suppose we want to construct a pseudo-
random generatorGf : {0, 1}n → {0, 1}t(n) based on a
hard functionf ; our approach (following [22] and all sub-
sequent papers on the subject) could be to show that giving
a distinguishing procedureD that distinguishes the output
of Gf from the uniform distribution, it is possible to con-
struct an oracle procedureP , which may be nonuniform
(and indeed typically is), such thatPD computesf well
on average. Now, iff is hard on average, andP is efficient,
it cannot be the case thatD is efficient. So no efficient pro-
cedure distinguishes the output ofGf from uniform, andG
is a pseudorandom generator. The oracle procedureP im-
plements the reduction from the task of breaking the gen-
erator to the task of computing the hard functionf . Even
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though we are interested only in the case in whichD is ef-
ficient, andf is in some bounded complexity class (such as
EXP), a “black-box” reduction will establish the existence
of a predictorP for every functionf and for every distin-
guisherD. As shown in [29], pseudorandom generator con-
structions having this type of black-box analysis also have
very nice information-theoretic properties, and they yield
randomness extractors. Now, if we follow the [29] argu-
ment in the case where the predictorP is auniformoracle
machine (or even a machine that uses limited advice), then
we get randomness extractors with impossible parameters,
and so we have to conclude thatP has to be non-uniform.
Basically, [29] proves that if (the truth table of)f is cho-
sen randomly, from some arbitrary distribution having min-
entropy at leastk, wherek is (roughly) the number of bits of
advice used byP , then the output of the generator is close to
uniform. For information-theoretic reasons, we must have,
roughly,n+ k ≥ t(n), ork ≥ t(n)− n, and soP has to be
highly non-uniform.

We can do a similar argument for worst-case to average-
case reductions. A black-box reduction would involve a
transformationH , such that given a functionf that is hard
in the worst case, the functionHf is hard on average. The
latter means that for every procedureA that computesHf

on a fraction1/2 + 1/t of the inputs, there is an oracle pro-
cedureR (implementing the reduction) such thatRA com-
putesf everywhere. Now, we can think of (the truth table
of) Hf as an error-correcting encoding off , and ofR as
a way of uniquely specifyingf (and henceHf ) given an
oracle that may have a distance up to1/2 − 1/t from Hf .
This would imply thatHf is an error-correcting code with
minimum distance1− 2/t which is impossible (codes with
minimum distance larger than1/2 can only contain a finite
amount of codewords). In fact, results from coding theory
can be used to argue thatRmust useΩ(log t) bits of advice,
a bound that is met by [27].

B Proof of Theorem 4.2

We will combine the functionsfn,i from Lemma 4.1 into
a single functionF , with a careful ordering of input lengths.
Initially, we won’t defineF on all input lengths.

For i ≤ m(n), defineh(n, i) inductively as follows:

• h(1,m(1)) = t(1,m(1)).

• For n > 1, h(n,m(n)) = max{h(n − 1, 0) + 1, n ·
t(n,m(n)) + ⌈logn⌉}.

• For n > 1, i < m(n), h(n, i) = max{h(n, i + 1) +
1, n · t(n, i) + ⌈logn⌉}.

Note thath is one-to-one, andh(n, i) ≤ poly(n). For
i ≤ m(n), we defineFh(n,i) to encode the functionfn,i.

Specifically,Fh(n,i)(x, j) is the j’th bit of fn,i(x). Note
thatx takesn · t(n, i) bits to represent andj takes⌈logn⌉
bits, so together they can indeed be represented by a string
of lengthh(n, i).

For lengthsm not of the formh(n, i), we defineFm to
equalFh whereh = max{h(n, i) : h(n, i) ≤ m}. (Thus,
Fm will ignore the lastm − h bits of its input.) It can be
verified thath can be computed in timepoly(m).

The downward self-reducibility andPSPACE-
hardness ofF follow immediately from the corresponding
properties in Lemma 4.1. The random self-reducibility
follows from the well-known self-corrector for low-degree
multivariate polynomials [19].
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