Pseudorandomness and Average-case Complexity via UniforReductions

Luca Trevisan Salil Vadhari

Abstract time bounds (which used #P-complete problem,
namely thePERMANENT).

Impagliazzo and Wigderson [17] recently gave the first
construction of pseudorandom generators froraraform
complexity assumption ddXP (namelyEXP # BPP).
Unlike results in the nonuniform setting, the result of [17]
does not provide a continuous trade-off between worst-case
hardness and pseudorandomness, nor does it explicitly es-l
tablish an average-case hardness result.

In this paper:

e We argue that the results in [17] and in this paper can-
not be proved via “black-box” uniform reductions.

Introduction

Pseudorandomness, Average-case Hardness,
e Our main resultis a new, andoptimal worst-case =~ Worst-case Hardness
to average-case complexity reduction fBXP: if

EXP ¢ BPTIME(t(n)), then we show thdEXP Over the past two decades, a rich body of work has in-
has problems that are very hard to solve on fraction vestigated the relationship between three basic questions
1/2 + 1/t'(n) of the inputs byBPTIME(t'(n)) al- complexity theory:

orithms, fort’ = poly(t). . .
g poly(t) 1. The existence of problems of high worst-case com-

e We also observe a generalization of the proof of plexity in classes suchBXP,
[17] to arbitrary time bounds, yielding a pseudo-
random generator generator that stretches bits
to &~ t(n) bits under the assumptioEXP ¢
BPTIME((t(n)) (rather than the “optimal” as- 3. The existence of good pseudorandom generators im-
sumptionEXP ¢ BPTIME(t(n))). The same gen- plying sub-exponential time or even polynomial time
erator can be constructed under the assumption that deterministic simulations dBPP.

#P ¢ BPTIME(¢(n)). Properties of the genera- . _ _

tor construction can be used to show that, under ei- ~ One of the exciting accomplishments of this body of
ther assumption, there is a problem EXP thatis Work has been to shoequivalencef the above three state-
hard to solve on a fraction /2 + 1/t/(n) of the in- ~ Ments in thgmnunifor_msetting. That isEXP or E =
puts byBPTIME(# (n)) algorithms fort’ ~ . (This D’_I‘IME(2 (_”>_) contains problems of high worst-casie

is weaker than our main hardness amplification result, Uit complexityiff it contains problems of high average-

but it can be proved using only the techniques of [17].) €&Se circuit complexity iff there are strong pseudoran-
dom generators against non-uniform distinguishers [22, 5]

e We prove, directly, the existence of RSPACE- This equivalence has become increasingly tight quantita-
complete downward self-reducible and random self- tively, with weak (i.e. slightly superpolynomial) circuit
reducible problem, thus slightly simplifying and lower bounds implying slight derandomizatioBPP C
strengthening the generalization of [17] to arbitrary SUBEXP), strong ¢(™)) circuit lower bounds imply-

ing complete derandomizatioBPP = P), and a smooth

2. The existence of problems of high average-case com-
plexity in such classes, and

*U.C. Berkeley, Computer Science Division.
|l uca@s. ber kel ey. edu. Work partly done while at Columbia trad(_':'Oﬁ betW('?en these tWO eXtre_mes [13’ 1,16, 27, 15, 23]-
University. Research supported by a Career Award and a $eaearch Since proving unconditional circuit lower bounds seems
Fellowship. out of reach, an important question is to what extent the
THarvard University, Cambridge, MA. E-mail:

i ityi 2 -
sal il @ecs. harvard, edu. Work begun at MIT and the Insti- nonuniformityis really necessary for such results? The re

tute for Advanced Study, while supported by an NSF Matherbti ~ SUlts are proven by reductions showing how .breaking the
Sciences Postdoctoral Research Fellowship. generators implies good average-case “algorithms™Hpr

and how this in turn implies good worst-case “algorithms” a continuous tradeoff between hardness and randomness. It
for E. Almost all of these reductions are nonuniform and, also was not proved by (explicitly) presenting a uniform re-
as we discuss below, this is necessary for reductions thatduction from worst-case to average-case hardness, which is

are “black box,” that is, that work without making any as- typically the first step in previous derandomization result
sumptions on the hard problem being used and on the dis-Thus, their work leaves several intriguing open questions:

tinguisher being postulated.
Uniform Reductions

An exciting recent work of Impagliazzo and Wigderson
[17] has broken out of this mould of nonuniformity, and
their paper is the starting point of our investigation. They
prove that under thaniform assumptiolEXP # BPP,
it is possible to simulatdBPP algorithms deterministi-
cally in subexponential time (on most inputs, for infinitely
many input lengths). This result stands out as an iso-
lated example of using of uniform hardness assumptions
in derandomizatiod,and suggest that perhaps nonunifor-
mity can be completely removed from this area. However,
there is a contrasting result due to Impagliazzo, Kabanets
and Wigderson [14], stating th&¥EXP # MAZ? if and
only if NEXP ¢ P/poly. In words, the only way to
prove a subexponential time derandomizatioivbA (or a
subexponential time derandomization of promBEP) is
to prove (or assume) nonuniform lower bounds¥IE X P.
Contrary to [17], this suggests that circuit lower bounds ar
necessaryor derandomization. Where does the truth lie?

e What is the best tradeoff between hardness and deran-
domization in the uniform setting? In particular, can
a sufficiently strong uniform lower bound da yield
a polynomial-timedeterministic simulation o0BPP?
By analogy with the nonuniform setting, we might
hope to prove that ifE ¢ BPTIME(¢(n)), then
there is a pseudorandom generator that mapping
bits into roughly~ t(n) bits fooling uniform distin-
guishers running in time- ¢(n) (which implies a time
20(t™' () simulation of BPP).

e Ofthe several previous results that are being used, how
many are really necessary, and what are the properties
of EXP that are essential to the proof?

e Is it possible to prove, along similar lines, that if
EXP # BPP thenEXP contains problems that are
hard on average? What is the best tradeoff for this
worst-case vs. avg-case problem in the uniform set-
ting?

_ _ Our Results
Hardness versus randomness results in the uniform set-

ting thus stand at the border of what is provable without Generalizing [17].

We first revisit, in Section 3, the ar-

using circuit complexity lower bounds, and there is hope guments of Impagliazzo and Wigderson [17], and make the
that ultimately they may lead to unconditional results fbot following observations.

in the form of derandomization and in the form of circuit
lower bounds), or at least of interesting nonrelativiziag r
sults about classes that may not even have to do with ran-
domness directly. As we argue below, uniform reductions

proving pseudorandomness and/or average-case complex-

ity cannot be “black-box” reductions, and we believe that

the pseudorandom generator construction of [17] and the
results of this paper are not only impossible via black-box

reductions, but also nonrelativizing.

The uniform result by Impagliazzo and Wigderson [17]
uses many previous theorems in complexity theory, some
of which do not appear related to derandomization. In ad-
dition, unlike previous (and subsequent) derandomization
results in the nonuniform setting, it was not stated as givin

IHere we do not include the works on “cryptographic” pseuddom
generators which are based on the stronger assumptionrtatay func-
tions exist [8, 31, 12], but are indeed uniform.

2MA is a probabilistic version dNP; it is the class of languages for
which membership has short proofs that can be checkexobabilistic
polynomial time.

SIndeed, [14] use derandomization techniques to obtain ésltr
NEXP C P/poly = NEXP = EXP, which a priori has nothing
to do with randomness; the stronger implicattVEXP C P /poly =
NEXP = MA is also true, and known to be non-relativizing.

1. Generalizing [17], we can obtain a pseudorandom
generator that stretches n bits into ~ t(n) bits
which fools distinguishers running in timgn), un-
der the assumption th&XP ¢ BPTIME(t(t(n)))
(roughly). (Recall that “ideal” result would havén)
instead oft(¢(n)).)

2. The “ideal” derandomization can be obtained from
uniform lower bounds ogtP (instead ofEXP). That
is, the same generator as above can be obtained un-
der the hypothesis th&tP ¢ BPTIME(t(n)). The
key property of#P that is used in [17] is that it con-
tains a complete problem which is both “random self-
reducible” and “downward self-reducible”, namely the
PERMANENT [30].

3. Result 1 above is obtained by constructing two pseudo-
random generators, one from BEXXP-complete prob-
lem and one from the BERMANENT. If there is a time
t(n) distinguisher for both generators, then they can
be combined in a sophisticated way (not just by a uni-
form “reduction”) to obtain a time(¢(n)) algorithm

for EXP. This step makes crucial use of Toda’s The- This means that to achieve these uniform results, one
orem thats, C P#P [28]. must exploit special properties of either the hard function
or the “adversary” in the reductions. For example, Im-
4. U_sing our restatement of these results, we can also _Ob'pagliazzo and Wigderson [17] used the fact that tE&-P
tain a uniform worst-case to average-case connectionyanenT is downward and random self-reducible. Since
for EXP: if every problem inEXP admits a proba- only problems ifPSPACE have downward self-reducible
bilistic algorithm that runs iri(n) time and solves the rgplems, this suggests that to obtain better results from
problemin al /2 + 1/t(n) fraction of inputs of length the hardness oEXP, we should try to identify special
n, then (roughly)EXP C BPTIME(¢(¢(n)). This properties ofEXP-complete problems which can be ex-
is another result that cannot be proved via black-box pojted. Our optimal hardness amplification identifies one
reduction. such property, namelinstance checkability We do not
know whether this suffices for getting optimal derandom-
ization. If not, hopefully it at least will point the directn
to other properties dEXP that can be used.

These observations set the stage for our other results
One main goal is to remove th¢t(n)) lower bounds that
are needed above, for they are far from matching the “ideal”
tradeoff. They give nothing, for example, wittin) = L .
27", and more generally limit¢ to being at moshalf- 2 Preliminaries
exponentia[21]. In terms of derandomization, this means
that we cannot get anything near a polynomial-time deter- For notational convenience, all of the time bounds
ministic simulation o BPP from such results. in this paper are assumed to satisfy several niceness condi-

tions:n < t(n) < 27, t(n) is monotone increasing(n) is
Derandomization from PSPACE-hard problems. In computable in timgoly (n), andi(O(n)) < poly(t(ln)) S
Section 4, we give a direct construction o SPACE- t(poly(n)). Allfunctions of the forma?, n®logn, nloan)”,
complete problem which is both random self-reducible and 2 2" satisfy these conditions.
downward self-reducible. This simplifies the proof of ~ Now we define several of the classes of languages we
the Impagliazzo-Wigderson result, eliminating the use of Will be examining throughoutthe paper. Sometimes we will
valiant's Theorem and Toda’s Theorem, and also strength-abuse notation and refer to them as classes of functions,

ens Item 2 by replacin®#® with PSPACE. Our con- and we will sometimes identify a language with its char-
struction is based on the ideas using in provilg = acteristic function.BPTIME(¢(n)) denotes the class of
PSPACE [20, 24]. languages solvable by probabilistic algorithms with 2esid

error running in time(n). SIZEt(n) denotes the class of
languages which can be decided by (nonuniform) Boolean
circuits of sizet(n). 3xt(n) denotes the class of problems
that can be solved by timién) alternating machines with
alternations (starting with an existential one).

We will also consider two notions of average-case com-
plexity of functions. The first captures the idea that
a function is “easy on average” for deterministic algo-
rithms: f € avgDTIME(¢(n)) if there is a time
t(n) deterministic algorithmA such that for every prob-
abilistic sampling algorithnmG which runs in timet(n),
Pr[A(G(1")) = f(G(1"))] > 1 — 1/t(n). Thus, the
statementBPP C avgDTIME(¢(n)) for some small
Black-box Reductions. In Appendix A, we argue thatthe (e.g. quasipolynomial or even subexponential) time bound
uniform pseudorandom generator constructions and the uni+ means that we have a good deterministic simulation of
form worst-case to average-case connections in [17] andBPP — it is even hard to generate instances on which the
here cannot be obtained by black-box reductions. The basiaimulation will fail.
reason for this is that (nonuniform or uniform) black-box The other notion of average-case complexit)jlvlcmk
reductions can be interpretedormation theoreticallyand at is meant to capture strong average-dzs€lnessather
give rise torandomness extractoiis the case of pseudo- than easiness: We say thate advBPTIME(t) if there
random generators [29] aretror-correcting codesn the is a probabilistic algorithra running int(n) time such that
case of worst-case-to-average-case reductions. We shovor everyn
that uniform black-box reductions yield such objects with
absurd parameters. Pr[A(z) = L(z)] > 1/24+ 1/t(n)

Optimal Average-Case Hardness folEXP. In Section

5 we present our main result: a new, uniform, worst-case
to average-case reduction fBXP that whose parameters
match the state-of-the-art in the nonuniform setting [27].
Specifically, we prove that if every problem i can be
solved in timet(n) on al/2 + 1/t(n) fraction of inputs,
then every problem iif£ can be solved in time roughtyn).

Our result is based on combining the nonuniform version of
the result from [27] with results abointstance checkerfor
EXP.

where the probability is taken both over the coin tosses of Lemma 2.3 If there is an algorithmA which runs in time

A and over the uniform distribution of inputsin {0, 1}".
Thus, if L ¢ advBPTIME(¢) it means thatl is very
hard-on-average. Indeed, it means that no probabilistie ti
t algorithm can decide membershipinwith a significant
advantageover random guessing (for infinitely many input
lengths); hence the notatierlvBPTIME. Constructing

such hard-on-average languages (or, equivalently, Boolea distinguishesG: in time i(-) (resp., in sizet(.)).
functions) is typically the first step in a pseudorandom gen-

erator construction.

A prefix of i.0. to a complexity class means the class
of languages which can be solvediofinitely m2any input
lengthsby algorithms within the stated resource bounds.

For f : {0,1}* — {0, 1}, we denote the restriction ¢f
to inputs of lengtm by f,,.

Definition2.1 f : {0,1}* — {0,1} is downward self-
reducibleif there is a (deterministic) polynomial time algo-
rithm A such that for alle € {0,1}", Af»=1(z) = f,.(2).

Definition 2.2 f {0,1}* — {0,1} is random self-
reducible if there is a constantc and a probabilistic
polynomial-time algorithmA such that ifg : {0,1}" —
{0,1} is any function that agrees witlf,, on at least a

1 — 1/n° fraction of inputs,Pr [A9(x) = f(x)] > 2/3 for

all x € {0,1}™. (The probability is just over the coin tosses
of A.)

Pseudorandom Generators. We define pseudorandom
generators in a slightly nonstandard way to facilitate the
presentation of our results. We say a functiéh :
{0,1}* — {0,1}* hasstretchm(-) if |G(x)| = m(|z|)

for all z. We say thatD distinguishegx in timet(-) (resp.,
sizet(-)) if D runs in timet(n) (resp., is computable by a
circuit of sizet(n)) on inputs of lengthn(n) and

Pr

(Ivy)‘*Unﬁ»rn(n)

Pr [D(z,G(x)) = 1]- ot

5 [D(z,y) = 1] >
for all sufficiently largen. Clearly, a “good” pseudoran-
dom generator will have no efficient distinguisher. Note
that, by this definition, ifzG cannot be distinguished in time
t, it means that every time algorithm fails to distinguish
G infinitely often Note also that we give the distinguisher

t(-) (resp., computed by a circuit of size)) such that

1

[A(z) = G(@))] > ﬁ + t(n)

P
r)

z—{0,1}"

for somem(-) and all n, then there is an algorithm which
Here
G (2)|m(n) denotes the first(n) bits of G(x).

In particular, if there is a generato&G which cannot be
distinguished in time(n), then the first bit of7 defines a
language which is not indvBPTIME(¢(n)).

3 Extensions of [17]

In this section, we describe the results of Impagliazzo
and Wigderson [17], and, in the process, generalize them to
larger time bounds.

The starting point for pseudorandom generation from
Boolean functions of high circuit complexity was the con-
struction of Nisan and Wigderson [22], whbich builds a
pseudorandom generator from an average-case hard func-
tion.

Lemma 3.1 ([22]) For everyt(-) and every random self-
reducible functionf, there is aG with stretcht(n) such
that

e G(z) can be computed in timeoly (¢(n)) on inputs of
lengthn, with oracle access t¢.

e If G can be distinguished in sizd€n), then f is in
SIZE(t(poly(n))).

Quantitatively better results that eliminate thely(n)
in SIZE(t(poly(n))) are now known [16, 27, 15, 23], but
we use the above for simplicity. The random self-reducible
hard functionf can be obtained from any hard functign
by taking the low-degree extension:

Lemma 3.2 ([6, 5]) For every functiory, there is a random
self-reducible function such thgt reduces tof’ in linear
time, andf’ can be computed in linear space with oracle
access tof.

the seed to the pseudorandom generator. This makes sense

here because this line of work (starting from [22]) pseudo-

The first new ingredient in [17] was the observation that

random generators for derandomization (as opposed t9, €.gshe circuit complexity conclusion of Lemma 3.1 can be re-

cryptography) works with generators whose running time is
greater than that of the distinguisher. Indeed, all pseardor
dom generators in this paper are computable in f¢)

on seeds of length.

The above convention about feeding the distinguisher the

placed with a uniform conclusion abdearnability.

Lemma 3.3 ([17]) For everyt(-) and every random self-
reduciblef, there is aG with stretcht(n) such that

seed means that every pseudorandom generator gives rise to ¢ G(z) can be computed in timeoly (¢(n)) on inputs of

a hard-on-average function.

lengthn, with oracle access t¢.

e If G can be distinguished in time(n), then
f is in LEARNem(t(poly(n))), where
LEARN,emt(n) denotes the class of languages
L which can be (exactlylearnedwith membership
gueries by a probabilistic algorithm running in time
t(n).A

The next new ingredient of [17] was showing that the
learnability can be turned into standard uniform easinfess i
the functionf is downward self-reducible

Lemma 3.4 ([17]) If f is downward self-reducible anfle
LEARN em(t(n)), thenf € BPTIME(poly(t(n))).

The problem with this is that all downward self-reducible
problems lie inPSPACE, but we would like to start with a
hard function inEXP. The way this is overcome in [17] is
to assume tha@XP has polynomial-sized circuits (for oth-

erwise we're already done by Lemma 3.1). Under this as-

A generator which fools uniform algorithms can be used
to obtain an average-case derandomizatioBBfP.

Corollary 3.8 (generalizing [17]) If EXP
BPTIME(t(t(poly(n)))), then

BPP C i.0.-avgDTIME(2¢ (),

Z

Note that this only gives a deterministic simulatiorBiPP
infinitely often In most previous works on derandomiza-
tion, it is also possible to obtain a simulation for all input
lengths by assuming th&#XP has a problem that is hard
for all but finitely many input lengths, i.eEXP is not in
i.0.-BPTIME(¢(n)) for a small¢’. However, one of the
steps of the above proof, namely Lemma 3.4, breaks down
if we try to work with an infinitely-often hypothesis.

We also observe that a uniform hardness amplification
result now follows from Theorem 3.7 via Lemma 2.3.

Corollary 3.9 If EXP ¢ BPTIME({(t(poly(n)))),

sumption, a version of the Karp—Lipton Theorem, attributed thenEXP ¢ advBPTIME(¢(poly(n))).

to Albert Meyer, collapseEXP to 35. Generalizing this
to higher time bounds gives:

Lemma 3.5 (Meyer [18]) If EXP < SIZE(t(n)), then
EXP C Xz (poly(t(n))).

Once EXP collapses toX,, we get a random self-
reducible and downward self-reducible function from the
following:

Lemma 3.6 ([30, 28, 19])There is a random self-reducible
and downward self-reduciblE,-hard problem, namely, the
PERMANENT.

Combining all these, we get the following generalization
of the [17] Theorem.

Theorem 3.7 (generalizing [17]) There is a generatoty
with stretcht(-) which cannot be distinguished in timg)
unlessEXP ¢ BPTIME(¢(t(poly(n)))).

Proof sketch: Let f; be a random self-reducibBXP-
complete problem (from Lemma 3.2) and gt be the
PERMANENT. Use Lemma 3.1 to construct a generator
G with stretch¢(-) from f;, and use Lemma 3.3 to con-
struct a generato€s with stretcht¢(-) from fs. If both
G and G; can be distinguished in timg-), then f; €
SIZE(t(poly(n))), fo € LEARNmem(t(poly(n))).
Since f, is downward self-reducible, Lemma 3.4 gives
f2 € BPTIME(t(poly(n))). Sincef; isEXP-complete,
Lemma 3.5 givey; € Xa(¢(poly(n))). By Lemma 3.6,
reduces tqf; in time ¢(poly(n)), from which we conclude
f1 € BPTIME(¢(t(poly(n)))). O
4That is, with high probability A~ (1™) outputs a circuit which com-

putesL,, within time ¢(n), whereL,, denotes the restriction of language
L to inputs of lengthn.

In Section 5, we improve this result in two ways. First,
we eliminate the composition @f(along with other quan-
titative improvements) to obtain a result that matches best
known nonuniform result. Second, we obtain an version
which says thaEXP has a problem that is worst-case hard
for almost all input lengths, then it has a problem that is
average-case hard for almost all input lengths (in contrast
to the above, which is only implies hardness “infinitely of-
ten”).

4 A Downward and Random Self-Reducible
PSPACE-complete Problem

The proof of Impagliazzo and Wigderson in Section 3
makes use of many previous results, and it is unclear how
much of that machinery is really necessary for the result.
By isolating the essential ingredients, we may ultimately
succeed in removing the deficiencies described in the in-
troduction. In this section, we show that Valiant’s Theo-
rem and Toda's Theorem, which were used in Lemma 3.6,
are not necessary. Instead, we show that there is a ran-
dom self-reducible and downward self-reducible complete
problem forPSPACE. At first, this seems easy. The
canonicaPSPACE-complete problem QBF is downward
self-reducible, and Lemma 3.2 says tiR8PACE also
has a random self-reducible complete problem. However,
the Impagliazzo—Wigderson proof appears to neetna
gle complete problem which has both properties simulta-
neously. In this section, we obtain such a problem by a
careful arithmetization of QBF, using the ideas underlying
the interactive proof system f&@#SPACE [20, 24].

In what follows, IF,, is the finite field of size2™. It is
known that a representation of this field (i.e. an irredweibl

polynomial of degree: over GF(2)) can be found deter-
ministically in timepoly(n) [25].

Lemma 4.1 For some polynomialsandm, there is a col-

by setting these free variables appropriat®ly,can be spe-
cialized to any instance of QBF. Specificalliy, has2n?
free variablesy; ;,z; : 1 < i,7 < n}, and is defined as

: _ _ - follows:
lection of functions{ f,, ; : (]Fn)t(”v“ — Fp}icm(n) With

the following properties:

n

®,(7,7) = I Vg - - 3/Va, [\

i=1j=

o (Wi, AV (i, A 0;)
1. (Self-Reducibility) For < m(n), f,; can be eval- 1
uated with oracle access tfi, ;11 in time poly(n).

fn.m(ny CanN be evaluated in timgoly (n). Now let ¢ be any instance of QBF. Without loss

of generality, we may assumeg is in the form¢ =
Jzq Vg - - - 3/ Ve h(xe, . .., x,), Wheret is a CNF for-
mula with at most: clauses. (These restrictions still pre-
serve the fact that QBF iSRSPA CE-complete problem.)
Definey(¢) andz(¢) as follows: y; ;(¢) = 1 iff the i'th
clause ofy) containsz;, andz; ;(¢) = 1 iff the i'th clause
of ¢) contains—z;. Then, by inspection,

®,(y(9),2(0) = ¢ (1)

Now we define the polynomialgy, o, fn1,---, fam
(m = m(n)) to be the sequence of polynomials obtained by
applying thelP = PSPACE arithmetization to?,,. Un-
like a standard instance of QB#,, has some free variables
v, z. However, the construction still applies, and eggh
will have variables corresponding to these free varialbies i
addition toz-variables corresponding to the quantifiers that
have been “stripped off”. The resulting sequence of poly-

. (PSPACE-hardness) For every languagd in
PSPACE, there is a polynomial-time computable
function g such that for allz, g(x) = (1*,y) with

10 and f0(y) = x1(2).

y ey
. (Low Degree)f,, ; is a polynomial of total degree at
mostpoly(n).

Proof sketch: Consider the interactive proof system for
PSPACE-complete problem QBF, as presented in [26].
In the construction of the proof system, a QBF instance
¢ = Jx Vo - I/Va,(xq,. .., x,) iInduces a sequence
fos f1s- -+ fm (m = poly(n)) of multivariate polynomi-
als over any sufficiently large finite field, s&y,. f,, =
fm(x1,...,2,) is an arithmetization of the propositional
formulavy(zi,...,z,), and forj < n, f; is defined in
terms off;41 using one of the rules:

FACTIE Fivr(@r, .. 2,0) - fipa(zn, ... ’%)’nwals has the following properties:
fitwr,oze) = 1= (1= fipa(zr,...,20,0)) - (1 — $i4i(zf; . .depedds on ¢ z-variables, then when
fi(@, o mpyme) = wp- fij(xe, o1 xe) + (1 — k) - Bp(aF. . &0l 21,5,)2 take on Boolean values,

fn,i (@, Z, 1, ..., x¢) equals the truth value d@f,, with
the first¢ quantifiers removedf,, o depends on none
of the z-variables, and thug, o(7,z) = ©,(7,%z) on
Boolean inputs.

(Which rule is used depends solely bandn in an easily
computable way). The construction provides the following
guarantees:

e If f; depends or? variables, then whem; ..., x,
take on Boolean valueg; (x1, . .., z,) equals the truth
value of¢ with the first/ quantifiers removedyf, is a
constant polynomial, and thus equals the truth value of
¢ (with all quantifiers present).

¢ f, ; canbe computed in timgoly(n) given oracle ac-
cess tofy, j+1-

e Eachf, ; is of total degree at mogbly(n).

o ® fn.m(n) Can be evaluated in timeoly(n).
e f., can be evaluated in timgoly(|¢|).
This establishes the self-reducibility and low degree prop
erties. ThdPSPACE-hardness, This completes the proof.
O

e Forj < m, f; can be evaluated in timsly (|¢|) given
oracle access tg;,;. (This follows from the three
possible rules which defing in terms off;11.)

Now, to deduce the final result, we simply combine the
functions f,, ; from Lemma 4.1 into a single functioR,
However, this does not yet accomplish what we want with a careful ordering of input length so as to turn the “up-
since these polynomials dependgrand not justits length. wards” reductions fronf,, ; to f,, ;41 into a downward self-
To solve this, we incorporate the formulainto the arith- reduction forF'. Details are in Appendix B.
metization (as done for PCP’s in, e.g. [4, 10] for different
reasons). We do this by defining a single “universal’ quan- Theorem 4.2 PSPACE has a complete problem which is
tified formula®,, which has somdree variables such that both random self-reducible and downward self-reducible.

e Eachf; is of total degree at mogbly(|¢|).

In addition to removing some steps from the Proof sketch: In[27], L' is based on a low-degree poly-
Impagliazzo—Wigderson proof, Theorem 4.2 has the nomial encoding’ of L over a field of sizepoly(t(n)). It
consequence that we can obtain the “right” derandom-is shown that the only nonuniformity required is the value
ization of BPP from a uniform assumption about hard of the polynomial at a single random point, which comes to
problems inPSPACE (as opposed t®@*F, as follows O(logt(n)) bits. O
from [17]) .

We note that earlier methods for achieving strong
Corollary 4.3 There is a generatorG with stretch average-case hardness, namely, versions of Yao’s XOR
t(-) which cannot be distinguished in timg.) unless Lemma [31, 11, 13, 16], all appear to use much nonuni-
PSPACE C BPTIME(¢(poly(n))). formity.

Finally, we show that if L (and soL’) is EXP-
Corollary 4.4 If PSPACE ¢ BPTIME(t(poly(n))), complete or PSPACE-complete, thenL’ can be in
thenBPP C i.0.-avgDTIME(2! (™), BPTIME(poly(t(n)))//O(log(t(n))) only if itis also in
BPTIME(t(poly(n))). This will be a consequence of the
fact that EXP-complete andPSPACE-complete prob-

5 Uniform Hardness Amplification ;
lems have instance checkers.

In this section we will prove that if every problem in
EXP has aBPTIME(t(n)) algorithm that solves the
problem on a fraction /2 + 1/¢(n) of the inputs of length
n, thenEXP is contained ilBPTIME((¢(poly(n))). We
will also prove a similar result faPSPACE.

We will prove our result in a series of steps. First, we o for all inputsz, and all oraclesL’, if L'(z) # L(x)
observe that the non-uniform worst-case to average-case re thenPr[CL' (z) = fail] > 3/4;
duction in [27] actually uses a “logarithmic amount of non-
uniformity.” More precisely, the reduction can be imple- e for all inputsz, Pr[CL(z) = fail] = 0.
mented by using a probabilistic algorithm that first picks

its randomness, then receives a logarithmically long avic |ntuitively, if L has an instance checker, then machihe

string (that depends only on the randomness), and finally re-given an inputz and an oracle that purports to decitle

ceives and solves the input. We formalize this slightly non- with high probability will be able to verify the validity of

standard notion of nonuniform probabilistic computatisna the oracle onx.

follows. As observed in [4], the proof dMIP = NEXP in
[4] implies the existence of instance checker forlRXP-

Definition 5.1 (nonuniform BPP) For functionst and a, Comp|ete prob|em8, and the proof:ﬂ? = PSPACE in

we say that a languagg is in BPTIME(¢)//aifthereis 20, 24] implies the existence of instance checkers for all
an algorithmA and a functionf such that for every input pSPACE-complete problems.

x of lengthl, Pr,.[A(r,z, f(r)) = L(z)] > 3/4, A runs in

t(n) time, and f(r)| < a(n). Theorem 5.4 ([4],[20, 24]) Every EXP-complete prob-

. . . lem and everyPSPACE-complete problem has an in-
Using the above notation, we can restate the main resultgignce checker.

of Section 4 of Sudan, Trevisan, and Vadhan [27] in the
following way:

Definition 5.3 (instance checker [7]) An instance checker
C for a languageL is a polynomial time probabilistic ora-
cle machine whose output is eithesss or fail and such
that

A result related to the existence of instance checkers for
EXP® has been used in complexity theory before, for ex-
ample in [5] and [9]. Our use below, to eliminate limited
non-uniform, seems, however, new.

Theorem 5.2 (implicit in [27]) For every languagd. we
can define a languagg’ such that

e Lisreducible tal’ (via alinear time Karp reduction);
Lemmab5.5 Let L € BPTIME(t)//a be a problem ad-
e L' oninputs of length is solvable ir2®(™) time given ~ mitting an instance checker.
oracle access td. (and all oracle queries are of size ThenL € BPTIME(¢(polyn) - 2¢(Polyn)),

O(n));
() 5Specifically, the fact that every problem BXP has a PCP-type

; /e /e i proof systems where the proof has exponential length andetiger runs
oif L' is in adePTIME(t(n) , then L” is in in polynomial time, with the additional property that vaficoofs for YES-
BPTIME(poly(t(n)))//O(logt(n)). instances can be computed in exponential time.

Proof: Let C be the instance checker, and 1€t be an
upper bound on the length of oracle queries madé'bgr
inputs of lengthn, let A(-, -, -) be the algorithm foi. and
let f be the advice function. Let’ be the instance checker
obtained by running O(a(n)) times, and passing if and
only if C always passes. Thé&r also asks oracle queries of
length at most., the running time o€ is poly(n) - a(n°®),
and the error probability is, say;, *("")—2,

On inputz, we pickr at random, and consider the(")
possible advice strings for the computation of inputs of
size at most©, and runCA(%) (). Let s* be the lexi-
cographically smaller string for whiofiA("*) (z) outputs
pass; then we outputd(r, z, s*). We output a random an-
swer if there is no string for which the output ipass.
With high probability overr, and for the case = f(r),
the oracle is correctly computing, andC' outputspass;
furthermore, except with probabilitg 1/4, in all cases in
which C outputspass, the answer is right. |

We can now put together all the results, and prove our worst-
case to average-case reduction in the uniform setting.

Theorem 5.6 If EXP C advBPTIME (poly(t(n)))
thenEXP C BPTIME(¢(poly(n))).

Proof: Fix an EXP-complete languagel., and
construct L’ as in Theorem 5.2. Therl' is also

From a stronger version of Theorem 5.4, it follows that
L’ has an instance checker that given an input of length
n only makes oracle queries of size(n). (Such a re-
sult does not seem to follow from [4], however it can be
derived from the proof of the PCP theorem [3, 2] and, in
fact, the results of [3] are enough.) Using Equation (2), the
strong instance checker @f, and a more careful version
of the proof of Lemma 5.5, we conclude thitis also in
BPTIME poly(t(O(n)))), and now the theorem follows
from the niceness afand theE-completeness of’ under
linear-time reductions. |

Finally, we observe that the proof of Theorem 5.6 actu-
ally shows that given a languade € EXP we can con-
struct a languagé’ € EXP such that in order to compute
L on all inputs of length, it is enough to computé’ well
on average on inputs of lengti(!). Standard padding
arguments can then be used to show thdt’ifs easy on
average for infinitely many input lengths, théris easy on
the worst case for infinitely many input lengths. Recall that
the techniques of [17] do not provide this kind of result, the
Lemma 3.4

Theorem 5.8 If EXP C i.o.-advBPTIME(¢(polyn)),
then EXP C i.0.-BPTIME(¢(polyn)). If
E C io.-advBPTIME(poly(t(n)) then E C
i.0.-BPTIME (poly(t(n)).

EXP-complete, and thus instance-checkable, and also

we have L’ € advBPTIME(poly(t(n))) and then
L’ € BPTIME(poly(t(O(n))))//O(logt(O(n))). Us-
ing Lemma 5.5, we havé’ € BPTIME(t(poly(n))),
and, from theEXP-completeness af’/, we haveEXP C
BPTIME(¢(poly(n))). |

Notice that the above theorem is not as strong as it could
be. For example, it would be nice to prove that ¢
BPTIME(2°™) implies E ¢ advBPTIME(2°("),
however Theorem 5.6 does not imply such a result. In order

to do such finer worst-case to average-case reductions, we

need to re-examine our argument very carefully. We state
a stronger result that can be proved this way, and, in this
extended abstract, only sketch the proof.

Theorem5.7If E C advBPTIME(poly(t(n))) then
E C BPTIME poly(t(n))).

Proof: [Sketch] Fix a languagé that is E-complete un-
der linear-time reductions, for example is the set of
triples (M, z,1™) such that machiné{ accepts input:

in at most2™ steps. Construcl’ as in Theorem 5.2,
then L’ is also E-complete under linear-time reductions.
From the assumption of the theorem, we have thiat
advBPTIME(¢(n)), and from Theorem 5.2 we have that
also

L' € BPTIME (poly (t(0(n))))//O(log t(0(n)) . (2)

Acknowledgments

We thank Avi Wigderson, Valentine Kabanets, and
Lance Fortnow for helpful discussions.

References

[1] A.E. Andreev, A. E. F. Clementi, and J. D. P. Rolim. Worst-
case hardness suffices for derandomization: A new method
for hardness-randomness trade-offs. In P. Degano, R. Gor-
rieri, and A. Marchetti-Spaccamela, editofsitomata, Lan-
guages and Programming, 24th International Colloqujum
volume 1256 ofLecture Notes in Computer Sciengages
177-187, Bologna, Italy, 7-11 July 1997. Springer-Verlag.
S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy.
Proof verification and hardness of approximation problems.
J. ACM 45(3):501-555, 1998. Preliminary versionRroc.

of FOCS'92

S. Arora and S. Safra. Probabilistic checking of prodis:
new characterization of NPJ. ACM 45(1):70-122, 1998.
Preliminary version irProc. of FOCS’92

L. Babai, L. Fortnow, and C. Lund. Nondeterministic expo
nential time has two-prover interactive protocolSomput.
Complexity 1(1):3-40, 1991.

L. Babai, L. Fortnow, N. Nisan, and A. Wigderson. BPP
has subexponential time simulations unless EXPTIME has
publishable proofs.Computational Complexity3(4):307—
318, 1993.

(2]

(3]

(4]

(5]

(6]

(7]
(8]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

D. Beaver and J. Feigenbaum. Hiding instances in multior [22] N. Nisan and A. Wigderson. Hardness vs randomness.

acle queries. Ivth Annual Symposium on Theoretical As- J. Comput. Syst. S¢ci49(2):149-167, Oct. 1994.

pects of Computer Scienoelume 415 of_ecture Notes in [23] R. Shaltiel and C. Umans. Simple extractors for all min-
Computer Sciencgages 37-48, Rouen, France, 22-24 Feb. entropies and a new pseudo-random generator.42imd
1990. Springer. Annual Symposium on Foundations of Computer Science
M. Blum and S. Kannan. Designing programs that check IEEE, 14-17 Oct. 2001.

their work. Journal of the ACM42(1):269-291, 1995. [24] A. Shamir. IP = PSPACE.J. ACM 39(4):869-877, Oct.
M. Blum and S. Micali. How to generate cryptographically 1992.

strong sequences of pseudo-random &AM J. on Com- 25] V. Shoup. New algorithms for finding irreducible polyng
puting 13(4):850—864, Nov. 1984. als over finite fieldsMath. Comp.54(189):435-447, 1990.

H. Buhrman. L. Fortnow. D. van Milkebeek and L. Toren- [26] M. Sipser.Introduction to the Theory of ComputatioRWS

; ; e ; Publishing, 1997.
liet. Using autoreducibility to separate complexity cles. '
\éIIAM 3 Ior?C(ljmput;g;ZS;'ll);Q?—lgzo 2000 prextty [27] M. Sudan, L. Trevisan, and S. Vadhan. Pseudorandom gen-

erators without the XOR lemmalournal of Computer and
System Science62:236-266, 2001. Special issue on CCC
‘99. Extended abstract B®TOC-CCC ‘99oint session.
[28] S. Toda. PP is as hard as the polynomial-time hierarchy.
SIAM J. Comput.20(5):865-877, 1991.
[29] L. Trevisan. Constructions of near-optimal extrastosing
pseudo-random generators. Pmoceedings of the Thirty-
First Annual ACM Symposium on the Theory of Computing
pages 141-148, Atlanta, Georgia, 1-4 May 1999.

U. Feige, S. Goldwasser, L. Lovasz, S. Safra, and
M. Szegedy. Interactive proofs and the hardness of approxi-
mating cliques.J. ACM 43(2):268-292, 1996.

O. Goldreich, N. Nisan, and A. Wigderson. On Yao's
XOR lemma. Technical Report TR95-050, Electronic
Colloquium on Computational Complexity, March 1995.
http://wwmv. eccc.uni-trier.del/eccc.

J. Hastad, R. Impagliazzo, L. A. Levin, and M. Luby. A

pseudorandom generator from any one-way funct&iAM [30] L. G. Valiant. The complexity of computing the permanen
J. Comput, 28(4):1364-1396 (electronic), 1999. Theoretical Computer Sciend®(2):189-201, 1979.

R. Impagliazzo. Hard-core distributions for somewhatd [31] A. C. Yao. Theory and applications of trapdoor function
problems. In36th Annual Symposium on Foundations of (extended abstract). B8rd Annual Symposium on Founda-
Computer Sciencegpages 538-545, Milwaukee, Wisconsin, tions of Computer Sciencpages 80-91, Chicago, lllinois,
23-25 Oct. 1995. IEEE. 3-5 Nov. 1982. IEEE.

R. Impagliazzo, V. Kabanets, and A. Wigderson. In skearc

of an easy witness: Exponential time vs. probabilistic pol .

nomial tin{e. InProceegings of the Sixteepnth Annual gor)(- A Black-Box Reductions

ference on Computational ComplexitffEE, June 18-21

2001. In this section, we argue thaniform, black-boxeduc-

R. Impagliazzo, R. Shaltiel, and A. Wigderson. Extaist tions cannot be used to prove the pseudorandom genera-
and pseudo-random generators with optimal seed length. Intor constructions and the worst-case-to-average-casesed
Proceedings of 32nd ACM Symposium on Theory of Com- tions given in [17] and this paper. We conjecture that these
puting 2000. . . . negative results can be extended to actually show that the
R.Impagliazzo and A. Wigderso? = BPP if E'requires — oqnqirctions are nonrelativizing. The fact that we are us-
exponential circtits: Derandomizing the XOR lemma. In ing reductions which cannot be black-box suggests that sig-

Proceedings of the Twenty-Ninth Annual ACM Symposium .~ .
on Theory of Computingages 220-229, El Paso, Texas nificant, and possibly unexpected results could come out of

4-6 May 1997. further studies of uniform reductions in this field.

R. Impagliazzo and A. Wigderson. Randomness vs. time: L€t us briefly explain what we mean by black-box re-
De-randomization under a uniform assumption36th An- ductions, and why uniform black-box reductions have very
nual Symposium on Foundations of Computer ScicRato strong limitations. Suppose we want to construct a pseudo-
Alto, CA, November 8-11 1998. IEEE. random generatof; : {0,1}" — {0,1}*(™) based on a

R. M. Karp and R. J. Lipton. Turing machines that take ad- hard functionf; our approach (following [22] and all sub-
vice. L'Enseignement Mathématique. Revue Internationale. sequent papers on the subject) could be to show that giving
lle Sérig 28(3-4):191-209, 1982. a distinguishing procedur® that distinguishes the output

R. Lipton. New directions in testing. IRroceedings of DI- - o 7 from the uniform distribution, it is possible to con-
MACS Workshop on Distributed Computing and Cryptogra- g4r,ct an oracle procedur®, which may be nonuniform
phy, 1989. (and indeed typically is), such th&” computesf well

C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic N i# is hard s efficient
methods for interactive proof system&. ACM 39(4):859— on average. Now, if is hard on average, amdis efficient,

868. Oct. 1992. it cannot be the case théatis efficient. So no efficient pro-

P. B. Miltersen, N. V. Vinodchandran, and O. Watanabe. cedure distinguishes the output@j from uniform, and>
Super-polynomial versus half-exponential circuit sizé¢hia is a pseudorandom generator. The oracle progeﬂu’m-
exponential hierarchy. I'Computing and combinatorics ~ plements the reduction from the task of breaking the gen-
(Tokyo, 1999)pages 210-220. Springer, Berlin, 1999. erator to the task of computing the hard functipnEven

though we are interested only in the case in whizls ef- Specifically, F},(,, ;) (, j) is the j'th bit of f, ;(x). Note
ficient, andf is in some bounded complexity class (such as thatx takesn - t(n, ¢) bits to represent angtakes[logn]
EXP), a “black-box” reduction will establish the existence bits, so together they can indeed be represented by a string
of a predictorP for every functionf and for every distin- of lengthh(n, 7).
guisherD. As shown in [29], pseudorandom generator con- For lengthsm not of the formh(n, i), we defineF,, to
structions having this type of black-box analysis also have equalF}, whereh = max{h(n,i) : h(n,i) < m}. (Thus,
very nice information-theoretic properties, and they ¢iel F,, will ignore the lastm — h bits of its input.) It can be
randomness extractarsNow, if we follow the [29] argu- verified thath can be computed in timgoly (m).
ment in the case where the predicfdiis auniform oracle The downward self-reducibilty andPSPACE-
machine (or even a machine that uses limited advice), thenhardness of" follow immediately from the corresponding
we get randomness extractors with impossible parametersproperties in Lemma 4.1. The random self-reducibility
and so we have to conclude th@thas to be non-uniform. follows from the well-known self-corrector for low-degree
Basically, [29] proves that if (the truth table of)is cho- multivariate polynomials [19].
sen randomly, from some arbitrary distribution having min-
entropy at least, wherek is (roughly) the number of bits of
advice used by, then the output of the generator is close to
uniform. For information-theoretic reasons, we must have,
roughly,n + k > t(n), ork > t(n) — n, and saP has to be
highly non-uniform.
We can do a similar argument for worst-case to average-
case reductions. A black-box reduction would involve a
transformationf, such that given a functiofi that is hard
in the worst case, the functiali; is hard on average. The
latter means that for every procedutethat computesi ;
on a fractionl /2 + 1/t of the inputs, there is an oracle pro-
cedureR (implementing the reduction) such th&at' com-
putesf everywhere. Now, we can think of (the truth table
of) H; as an error-correcting encoding $f and of R as
a way of uniquely specifying (and henced;) given an
oracle that may have a distance upli®2 — 1/t from Hy.
This would imply thatH ; is an error-correcting code with
minimum distancé — 2/t which is impossible (codes with
minimum distance larger thalry2 can only contain a finite
amount of codewords). In fact, results from coding theory
can be used to argue thatmust use (log t) bits of advice,
a bound that is met by [27].

B Proof of Theorem 4.2

We will combine the functiong,, ; from Lemma 4.1 into
a single function’”’, with a careful ordering of input lengths.
Initially, we won't defineF on all input lengths.

Fori < m(n), defineh(n, i) inductively as follows:

o h(1,m(1)) = t(1,m(1)).

e Forn > 1, h(n,m(n)) = max{h(n — 1,0) + 1,n -
t(n,m(n)) + [logn]}.

e Forn > 1,1 < m(n), h(n,i) = max{h(n,i+ 1) +
1,n-t(n,i)+ [logn]}.

Note thath is one-to-one, and(n,:) < poly(n). For
i < m(n), we defineFy,, ; to encode the functiotf,, ;.

10

