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Abstract

We prove that the Traveling Salesperson Problem
(MIN TSP) and the Minimum Steiner Tree Problem
(MIN ST) are Max SNP-hard (and thus NP-hard to
approximate within some constant r > 1) even if all
cities (respectively, points) lie in the geometric space
R

n (n is the number of cities/points) and distances are
computed with respect to the l1 (rectilinear) metric.

The TSP hardness results also hold for any l
p

metric,
including the Euclidean metric, and in Rlogn.

The running time of Arora’s approximation scheme
for geometric MIN TSP inRd is doubly exponential in
d. Our results imply that this dependance is necessary
unless NP has sub-exponential algorithms.

We also prove, as an intermediate step, the hard-
ness of approximating MIN TSP and MIN ST in Ham-
ming spaces. The reduction for MIN TSP uses error-
correcting codes and random sampling; the reduc-
tion for MIN ST uses the integrality property of MIN-
CUT. The only previous non-approximability results
for MIN TSP and MIN ST involved metrics where all
distances are 1 or 2.
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1. Introduction

Given a metric space and a set U of points into it,
the Traveling Salesperson Problem (MIN TSP) is to
find a closed tour of shortest total length visiting each
point exactly once, while the Minimum Steiner Tree
Problem (MIN ST) is to find the minimum cost tree
connecting all the points of U ; the tree can possibly
contain points not inU , that are called “Steiner points”.

Both problems are among the most classical and
most widely studied ones in Combinatorial Optimiza-
tion, Operations Research and Computer Science dur-
ing the past few decades, and before. Important spe-
cial cases arise when the metric space is Rk and the
distance is computed according to the `1 norm (the
rectilinear case) or the `2 norm (the Euclidean case).

We establish the first non-approximability results
for this class of problems. As an intermediate step, we
prove that they are hard to approximate also in Ham-
ming spaces. The approximability of the Hamming
versions of MIN TSP and MIN ST seems to have never
been considered before. Our main contributions are:
(i) the identification of this class of metric spaces as
the “right” one to prove hardness in more natural geo-
metric spaces, and (ii) the derivation of combinatorial
results that could have some independent interest.

Our techniques prove hardness of approximation for
other problems mentioned in Arora’s paper [Aro96] on
approximation schemes for geometric problems.

We now state and discuss our results for MIN TSP
and MIN ST.

1.1. The Traveling Salesperson Problem

Interest in the MIN TSP started during the 1930’s.
In 1966, the (already) long-standing failure of devel-



oping an efficient algorithm for the MIN TSP led Ed-
monds [Edm66] to conjecture that the problem is not
in P: this is sometimes referred to as the first state-
ment of the P 6= NP conjecture. See the book of
Lawler et al. [LLKS85] for a very complete survey on
MIN TSP. Here we will only review the results that
are relevant for the present paper. The MIN TSP is
NP-hard even if the cities are restricted to lie in R2

and the distances are computed according to the `2

norm [GGJ76, Pap77]. Due to such a negative result,
research concentrated on developing good heuristics.
Recall that an r-approximate algorithm (r > 1) is a
polynomial-time heuristic that is guaranteed to deliver
a tour whose cost is at most r times the optimum cost.
A 3/2-approximation algorithm that works for any met-
ric space is due to Christofides [Chr76]. In twenty
years of research no improvement of this bound had
been found, even in the restricted case of geometric
metrics.

In the late 1980’s, the emergence of the theory of
Max SNP-hardness [PY91] gave a means of possi-
bly understanding this lack of results. Indeed, Pa-
padimitriou and Yannakakis [PY93] proved that the
MIN TSP is Max SNP-hard even when restricted to
metric spaces (as we shall see later, the result also holds
for a particularly restricted class of metric spaces), and
thus a constant � > 0 exists such that metric MIN TSP
cannot be approximated within a factor (1+�) in poly-
nomial time, unless P = NP. The complexity of ap-
proximating MIN TSP in the case of geometric metrics
remained a major open question. In his PhD thesis,
Arora noted that proving the Max SNP-hardness of
Euclidean MIN TSP inR2 should be very difficult, but
that this could perhaps be done inRk(n) for sufficiently
large k(n) [Aro94, Chapter 9]. In [GKP95], Grigni,
Koutsopias and Papadimitriou proved that the restric-
tion of the MIN TSP to shortest paths metrics of planar
graphs can be approximated within (1 + �) in time
n

O(1=�). Such an approximation algorithm is called a
Polynomial Time Approximation Scheme (PTAS). This
result led Grigni et al. [GKP95] to conjecture that
Euclidean MIN TSP has a PTAS in R2. They again
posed the question of determining the approximability
of the problem for higher dimensions. In a very re-
cent breakthrough, Arora [Aro96] developed a PTAS
for the MIN TSP in R

2 under any `

p

metric. Such
an algorithm also works in higher dimensional spaces

and, in particular, it runs in time nÕ((logd�2
n)=�

d�1
) in

R

d. Note that the dependence of the running time
on d is doubly exponential. In a preliminary version
of [Aro96] Arora asked if it was possible to develop
a PTAS for Euclidean MIN TSP in Rn or if, at least,
it was possible to have the running time being singly
exponential in d, e.g. nO(d=�).

Our Results. In this paper we essentially answer
negatively to both questions. We prove that MIN TSP
in Rlogn is Max SNP-hard using any `

p

metric. It
follows from our result that there cannot be a PTAS for
these problems (unless P= NP) and that there cannot be
(1+ �)-approximate algorithms inRd running in time
n

O(d=�) for any � > 0, unlessNP � DTIME(nO(logn)
).

The Max SNP-hardness is proved by means of a
reduction from the version of the metric MIN TSP that
was shown to be Max SNP-hard in [PY93]. The re-
duction uses a mapping (see Lemma 7) of the metric
spaces of [PY93] into Hamming spaces and the obser-
vation (see Proposition 3) that, for elements of f0; 1gn

a “gap” in the Hamming distance is preserved if dis-
tances are computed according to a `

p

metric. Our
mapping of the metric spaces of [PY91] into Ham-
ming spaces is not an approximate isometry, that is, it
does not preserve distances up to negligible distorsion.
We also suspect that such kind of mapping would be
provably impossible. Instead, our mapping introduces
a fairly high (yet constant) distorsion, but satisfies an
additional condition: cities at distance one are mapped
into cities at distance � D1; cities at distance 2 are
mapped into cities at distance � D2, and D2 is larger
thanD1 by a multiplicativeconstant factor. This is suf-
ficient to make the mapping be an approximation pre-
serving reduction. Our mapping uses error-correcting
codes (namely, Hadamard codes) to map cities into
an O(n)-dimensional Hamming space, and then ran-
dom sampling to reduce the number of dimensions to
O(logn).

The Minimum k-Cities Traveling Salesman Prob-
lem (MIN k-TSP) and the Minimum Degree-Restricted
Steiner Tree Problem (two problems mentioned in
Arora’s paper [Aro96] on approximation schemes
for geometric problems) are generalizations of the
MIN TSP. The hardness results that we prove for
MIN TSP clearly extend to them.



1.2. The Minimum Steiner Tree Problem

The origins of the MIN ST problem seem to be
even more remote than the MIN TSP’s ones: the case
when jU j = 3 and the metric space is R2 with the
`2 norm has been studied by the Italian mathemati-
cian Torricelli (a student of Galilei’s) in 17th century.
Reportedly, Gauss had an interest to this problem as
well. Recent results about this problem are similar
to the ones for MIN TSP: exact optimization is NP-
hard inR2 both in the Rectilinear (`1) case [GJ77] and
in the Euclidean (`2) case [GGJ77]. Constant-factor
approximation is achievable in any metric space (the
best factor should be 1:644 due to Karpinski and Ze-
likovsky [KZ95]), in general metric spaces the problem
is Max SNP-hard [BP89], Arora’s algorithm achieves
approximation (1+�) inRd in timenÕ((logd�2

n)=�

d�1
).

No non-approximability result was known for geomet-
ric versions of the problem.

Our Results. We prove the Max SNP-hardness of
the problem in R

n under the `1 norm. As a pre-
liminary step, we prove the hardness of the problem
restricted to Hamming spaces. The latter hardness
is proved via a reduction from the Minimum Vertex
Cover problem (MIN VC) restricted to triangle-free
graphs of maximum degree 3. The Max SNP-hardness
of this very restricted version of MIN VC is proved in
this paper and could be used as a starting point for
other non-approximability results. The reduction from
MIN VC to Hamming MIN ST uses a combinatorial
result (Claim 14) stating that for an instance where all
points have weight1 2 or 0, if a technical condition is
satisfied, there exists an optimum solution where all
Steiner points have weight 1. We remark that there ex-
ists an instance of Hamming Steiner Tree where all the
points have weight 3 or 0 and such that an optimum so-
lution must contain a Steiner point of weight at least 4.
Thus, our combinatorial result cannot be generalized
too much. Reducing from Hamming Steiner Tree to
Rectilinear Steiner Tree requires another combinato-
rial result (Theorem 16): for an instance where all the
points are in f0; 1gn � R

n, there exists an optimum
solution where all the Steiner points lie in f0; 1gn. We

1For a vector u 2 f0; 1gn, its weight is defined as the number
of non-zero coefficients, e.g. the weight of (0;1; 1; 0;1) is three.

prove this fact using the integrality property of Min-
CUT linear programming relaxations.

1.3. Discussion

We give the first non-approximability results for
geometric versions of network optimization problems.
For Euclidean MIN TSP, it is still a major open ques-
tion whether a PTAS exists in R

d for each fixed d.
Note that the case of fixed d is not Max SNP-hard,
unless NP � DTIME(npoly log n)

). A more general
question is what is the best asymptotic relation be-
tween number of dimensions and running time. A run-
ning time 22d=�poly(n) would be compatible with our
results, but if we believe that NP does not admit sub-
exponential algorithms (i.e. NP 6� DTIME(2n

o(1)
)),

then even a running time 22o(d)=�poly(n) is unfeasible.
Alternatively, our non-approximability result could be
extended to Rlogn= log log n. Much more consistent im-
provements are possible for MIN ST, however our
results at least state very clearly that the number of
dimensions does matter in the running time of an ap-
proximation scheme for these geometric problems.

We feel that one important contribution of this paper
is the recognition of Hamming spaces as a class of
metric spaces that seem to retain most of the hardness
of general metrics while having a nice combinatorial
structure. We believe that other non-approximability
results could be established using Hamming spaces
as intermediate steps. We also think that it should
be worth trying to improve Christofides algorithm in
Hamming spaces. While the well-behaved structure of
Hamming spaces should not make this task impossible,
it is likely that such an improved algorithm could give
useful ideas for more general cases.

2. Preliminaries

We denote by R the set of real numbers. For an
integer n we denote by [n] the set f1; : : : ; ng. For a
vector ~a 2 R

n and an index i 2 [n], we denote by
~a[i] the i-th coordinate of ~a, Given an instance x of an
optimization problem A, we will denote by opt

A

(x)

the cost of an optimum solution for x, we will also
typically omit the subscript. For a feasible solution y
(usually a tour or a tree) of an instance x of an opti-
mization problem A, we denote its cost by cost

A

(x; y)



or, more often, as cost(y). In this paper we will use
the notions of L-reduction and Max SNP-hardness.
Max SNP is a class of constant-factor approximable
optimization problems that includes MAX 3SAT, we
refer the reader to [PY91] for the formal definition.

Definition 1 (L-reduction) An optimization problem
A us said to be L-reducible to an optimization problem
B if two constants � and � and two polynomial-time
computable functions f and g exist such that

1. For an instance x of A, x0 = f(x) is an instance
of B, and it holds opt

B

(x

0

) � �opt
A

(x).

2. For an instance x ofA, and a solution y0 feasible
for x0 = f(x), y = g(x; y

0

) is a feasible solution
for x and it holds jopt

A

(x) � cost
A

(x; y)j �

�jopt
B

(x

0

)� cost
B

(x

0

; y

0

)j.

We say that an optimization problem is Max SNP-
hard if all Max SNP-problems are L-reducible to it.
From [ALM+92] it follows that if a problem A is
Max SNP-hard, then a constant � > 0 exists such that
(1 + �)-approximating A is NP-hard.

A function d : U � U ! R is a metric if it is non-
negative, ifd(u; v) = 0 iffu = v, if it is symmetric (i.e.
d(u; v) = d(v; u) for any u; v 2 U ), and it satisfies the
triangle inequality (i.e. d(u; v) � d(u; z)+d(z; v) for
any u; v; z 2 U ).

Definition 2 ((1; 2)�B metrics) A metric d : U �

U ! R is a (1; 2)�Bmetric if it satisfies the following
properties:

1. For any u; v 2 U , u 6= v, d(u; v) 2 f1; 2g.

2. For anyu, at mostB elements ofU are at distance
1 from u.

Papadimitriou and Yannakakis [PY93] have shown
that a constant B0 > 0 exists such that the MIN TSP
is Max SNP-hard even when restricted to (1; 2)�B0

metrics.

For an integer p � 1, the `
p

norm in Rn is defined

as jj(u1; : : : ; un)jjp =
�

P

n

i=1 juij
p

�

(1=p). The distance
induced by the `

p

norm is defined as d
p

(~u;~v) = jj~u�

~vjj

p

. For a positive integer n, we denote by d

n

H

the
Hamming metric in f0; 1gn (we will usually omit the
superscripts). We will make some use of the following
fact.

Proposition 3 Let ~u;~v 2 f0; 1gn � R

n. Then
d

p

(~u;~v) = d

H

(~u;~v)

1=p.

Before starting with the presentation of our results, we
make the following important caveat.

Remark 4 In some of the proofs of this paper we im-
plicitly make the (unrealistic) assumption that arbi-
trary real numbers can appear in an instance and that
arithmetic operations (including squared roots) can be
computed over them in constant time. However, our
results still hold if we instead assume that numbers are
rounded and stored in a floating point notation using
O(logn) bits. This fact follows from a minor modi-
fication of the argument used in [Aro96] to reduce a
general instance of Euclidean TSP or Steiner Tree into
an instance where coordinates are positive integers
whose value is O(n

2
).

3. The MIN TSP

Recall that, for any n = 2h that is a power of 2,
the Hadamard code H

n

� f0; 1gn is a set of n binary
strings of length n whose pairwise Hamming distance
is n=2. The elements of H

n

can be seen as the set of
liner functions l : f0; 1gh ! f0; 1g.

We use Hadamard codes to prove a lemma relating
(1; 2)�B metrics and Hamming metrics. The lemma
gives a “distance preserving” embedding of (1; 2)�B

metric spaces into Hamming spaces.

Lemma 5 Let U be a finite set of cardinality n, where
n is a power of two, and d be a (1; 2)�B metric over
U . Then there exists an embedding f : U ! f0; 1g2Bn

such that for any u; v 2 U :

1. If d(u; v) = 2, then d
H

(f(u); f(v)) = Bn.

2. If d(u; v) = 1, then d

H

(f(u); f(v)) = (B �

1=2)n.

Such an embedding is computable in time polynomial
in jU j.

PROOF: LetU = fu1; : : : ; ung. Recall that a (1; 2)�B
metric (U; d)can be represented as an undirected graph
G = (U;E), where fu; vg 2 E iff d(u; v) = 1 (see
[PY93]). Note thatG has maximum degree B. We say
that two edges are incident if they share an endpoint.



Claim 6 We can find in polynomial time a partition of
E into 2B matchings E1; : : : ; E2B.

PROOF: Repeatedly find a maximal matching and
delete its edges. Let E

i

be the maximal matching
removed at the i-th phase. An edge e 2 E is not
picked after i phases only if edges incident on e have
been picked in each phase. Since G has maximum de-
gree B, there can be at most 2(B � 1) edges incident
to given one. Thus, we will be always able to partition
G into (at most) 2B � 1 matchings. The bound 2B
is more convenient for notation. We may assume that
one or more matchings are empty. 2

Each node u 2 U is mapped into a string f(u) that
is the concatenation of 2B strings ~a1

u

; : : : ;~a

2B
u

2 H

n

:

f(u) = ~a

1
u

� : : : � ~a

2B
u

:

For a fixed i 2 f1; : : : ; 2Bg, the strings f~ai
u

g

u2U

are
chosen arbitrarily in H

n

such that ~ai
u

= ~a

i

v

if and
only if fu; vg 2 E

i

. Since H

n

can be generated in
polynomial time in n, the overall construction can be
carried out in poly(n) time.

Let us now compute the distance between two
strings f(u) and f(v). There are two cases to be
considered.

1. Iffu; vg 62 E, then~ai
u

6= ~a

i

v

for all i = 1; : : : ; 2B,
and so d

H

(f(u); f(v)) = 2B � n=2.

2. If fu; vg 2 E, then fu; vg 2 E

j

for some j, and
we have ~aj

u

= ~a

j

v

and ~a

i

u

6= ~a

i

v

for i 6= j. It
follows that d

H

(f(u); f(v)) = (2B � 1) � n=2.

2

The embedding described in the previous corol-
lary uses somehow too many dimensions in the tar-
get Hamming space. We can reduce them using
random sampling. The idea is as follows: let
b1; : : : ; bn 2 f0; 1g be unknown values. If we pick
a random subset b

i1; : : : ; bim of m elements, where
m = O((log 1=�)=�2

), then with probability 1 � � it
holds

�

�

�

�

�

�

n

X

i=1

b

i

� (n=m)

m

X

j=1

b

i

j

�

�

�

�

�

�

� �n :

Now, if we pick O((logn)=�2
) coordinates from the

target Hamming space of the previous reduction, the
distance between two fixed cities will suffer a distor-
sion at mostO(�Bn) with probability (1�1=poly(n)).
In particular, there is a constant probability that all the
pairwise distances are simultaneously distorced by at
most O(�Bn). Using the oblivous sampler of Bel-
lare and Rompel [BR94] (or alternatively, the Chernoff
bound for random walks on expander graphs [Gil93])
we can find such a set of O((logn)=�2

) coordinates
deterministically in polynomial time.

Lemma 7 Let U be a finite set of cardinality n,
where n is a power of two, d be a (1; 2) � B met-
ric over U , � > 0 be a positive constant. Then
there exists an embedding f : U ! f0; 1gm (where
m = O((logBn)=�2

)) such that for any u; v 2 U :

1. If d(u; v) = 2, then (1 � �)m=2 �

d

H

(f(u); f(v))� (1 + �)m=2.

2. If d(u; v) = 1, then (1 � �)(1 � 1=2B)m=2 �

d

H

(f(u); f(v)) = (1 + �)(1� 1=2B)m=2 .

Such an embedding is computable in time polynomial
in jU j.

The following simple corollary of Proposition 3 and
of Lemma 7 is required in the proof of our hardness
result.

Corollary 8 Let p � 1 be fixed. Let U be a finite
set and d be a (1; 2)� B metric over U . Then there
exist a constant � (depending onB) and an embedding
f : U ! R

O(logn=�2
) such that for any u; v 2 U :

1. If d(u; v) = 1, then 1� � � d

p

(f(u); f(v))� 1.

2. If d(u; v) = 2, then 1+��� � d

p

(f(u); f(v))�

1 + �.

Such an embedding is computable in time polynomial
in jU j.

The main result of this section is now only a matter of
standard calculations.

Theorem 9 For any fixed p � 1, a constant �(p) > 0
exists such that the MIN TSP is NP-hard to approx-
imate within 1 + �

(p), even when restricted to the `

p

metric in Rlog n (n is the number of cities).



PROOF: From [PY93] and [ALM+92] we have the
following result: constants B0 > 0 and r0 > 1 ex-
ist such that, given an instance x of MIN TSP with a
(1; 2)�B0 metric and n cities, and given the promise
that either opt(x) = n or opt(x) � r0n, it is NP-hard
to distinguish which of the two cases holds.

Given an instance x of (1; 2) � B0 MIN TSP, we
apply the mapping of Corollary 8 with B = B0 and
� = �(r0�1)=2 (where � is the constant of Corollary 8
relative to B0). We also let �(p) = �(r0� 1)=3. In this
way, we obtain an instance x0 of geometric MIN TSP
in RO(logn). It is easily seen that if opt(x) = n, then
opt(x

0

) � n. On the other hand, if opt(x) � r0n, then
opt(x

0

) � (1� �)n + �(r0 � 1)n. An approximation
better than (1� �+ �(r0� 1)) (e.g. an approximation
1 + �

(p)) is sufficient to distinguish between the two
cases, and so is NP-hard to achieve.

The claim of the Theorem asks for the cities to
be in Rlogn, rather than in Rc logn as in the previous
construction. However, we can add (n

c

� n) new
cities, all at distance 1=nc+1 from a given one. This
perturbs the optimum in a negligible way, and gives an
instance with N = n

c cities in RlogN . 2

Using techniques of Khanna et al. [KMSV94], the
non-approximability result of Theorem 9 implies that
geometric MIN TSP in R

log n under any `

p

norm is
APX PB-hard (in particular, Max SNP-hard) under
E-reductions and APX-complete under AP-reductions
[CKST95].

4. The MIN ST Problem

The hardness of approximating MIN ST will be es-
tablished with a longish chain of reductions. The
starting point is the following hardness result, that
may have a little independent interest. Recall that
in the Minimum Vertex Cover (MIN VC) problem one
is given a graph G = (V;E) and looks for the smallest
set C � V such that C contains at least one endpoint
of any edge in E.

Theorem 10 The MIN VC problem is Max SNP-hard
even when restricted to triangle-free graphs with max-
imum degree 3 (we call this restriction MIN TF VC-3).

PROOF: The MAX 2SAT problem is Max SNP-hard
even when restricted to instances where each variable

occurs in at most 3 clauses (apply to MAX 2SAT the
reduction from MAX 3SAT to MAX 3SAT-3 described
in [Pap94]). One can assume without loss of generality
that the 3 occurrences of each variable are either one
positive occurrence and two negative occurrences, or
vice versa. We reduce MAX 2SAT-3 to MIN VC us-
ing the reduction of [PY91]: we create a graph with a
node for any occurrence of any literal, putting an edge
between two nodes if they represent literals that occur
in the same clause or if they are one the complement
of the other. See [PY91] for the proof that this is an
L-reduction. The obtained graph has maximum degree
3: each literal is adjacent to the fellow literal occurring
in the same clause and to the (at most) two occurrences
of its complement. Also, the graph is triangle-free: let
l1, l2 and l3 be any three occurrences of literals. Since
clauses contain only two literals, from pigeonhole prin-
ciple it follows that one of the three occurrences (say,
l1) does not occur in the same clause with any of other
two. Then, if l1, l2 and l3 form a triangle it follows
that l2 and l3 are both the complement of l1. Being
adjacent, they also have to occur in the same clause,
but this is a contraddiction since the literals occurring
in a clause have to be different. 2

We note in passing that, as a corollary, we obtain that
the MAX INDEPENDENT SET problem is Max SNP-
hard in the same, very restricted class of graphs. We
now move to the restriction of MIN ST to Hamming
spaces.

NOTATION: For a pair of indices i; j 2 [n] we define
~a

n

i;j

2 f0; 1gn as the n-dimensional boolean vector all
whose coordinates are zero but the i-th and the the j-th,
e.g. ~a5

1;4 = (1; 0; 0; 1; 0). Similarly, we let ~an
i

be the
the vector in f0; 1gn whose only non-zero coordinate is
the i-th, e.g. ~a4

3 = (0; 0; 1; 0). For a vector~a 2 f0; 1gn

and indices i; j 2 [n], we let red
i;j

(~a) 2 f0; 1gn be the
vector defined as follows

red

i;j

(~a)[h] =

8

>

<

>

:

0 if (h = i_ h = j)^

~a[i] = ~a[j] = 1
a[h] otherwise.

In other words, red
i;j

(~a) is equal to ~a unless a has a
one in the i-th and the j-th coordinate. In this latter
case, the i-th and the j-th coordinate of red

i;j

(~a) are set
to zero. For example red1;3(0; 1; 1; 1) = (0; 1; 1; 1),



while red2;3(0; 1; 1; 1) = (0; 0; 0; 1). We will make
use of the following simple combinatorial lemma.

Lemma 11 For any ~a;~b 2 f0; 1gn, for any i; j 2 [n],
d

H

(red
i;j

(~a); red
i;j

(

~

b)) � d

H

(~a;

~

b).

PROOF: Case analysis. 2

Theorem 12 The MIN ST problem is Max SNP-hard
when restricted to Hamming spaces.

PROOF: We give an L-reduction from MIN TF VC-3.
Let G = (V;E) be a triangle-free graph of maximum
degree 3, assume V = [n] and let m = jEj. We
define an instance of Hamming MIN ST as follows:
the number of dimensions is n and the set of points is

U = f

~0g [ f~an
ij

: fi; jg 2 Eg

where ~0 is the vector with all zero entries.

Claim 13 Given a vertex cover C � V in G it is
possible to find a Steiner tree for U of cost m+ C.

PROOF:[Of Claim 13] LetS = f~a

n

i

: i 2 Cg. Consider
the graph whose vertex set is S [U and such that two
vertices are adjacent iff their Hamming distance is one.
We claim that this graph is connected: indeed all the
nodes of S are clearly adjacent to ~0; furthermore any
node in U is adjacent to some node in S (since C is
a vertex cover), thus all the nodes are connected to ~0.
Since the graph is connected it admits a spanning tree,
that is also a Steiner tree for U . All the edges of such
Steiner tree have cost 1, and there are jCj+m of them
(because the tree has jSj+ jU j = jCj+m+ 1 nodes),
so the claim follows. 2

From the above claim it follows that opt(U) � m +

opt(G) � 4opt(G), and we have established the first
condition of the L-reducibility. As usual, the other
condition is more difficult to prove.

Claim 14 Given a Steiner tree T for U it is possible
to find in polynomial time another Steiner tree T 0 such
that: (i) cost(T 0

) � cost(T ) and (ii) all the edes of
T

0 have cost one and all the Steiner nodes of T 0 are
weight-one vectors.

PROOF:[Of Claim 14] We first make sure that all edges
have cost 1: any edge of cost d > 1 is broken into
a length-d path using d � 1 additional Steiner nodes.
Let S be the new set of Steiner vertices. We now
reduce the number of non-zero coordinates of Steiner
vertices. For any fi; jg 62 E we map each point ~a 2
S[U into red

i;j

(~a); this mapping only changes Steiner
points (by definition of red

i;j

, definition of U , and
the fact that fi; jg 62 E). From Lemma 11 we also
have that any phase does not increase the cost of the
tree. At the end of this set of transformations, we run
a “clean-up” phase that does the following: if some
transformation has collapsed one node onto another,
we take only one node (if a Steiner node is collapsed
onto a node in U we clearly take the node in U ). If
the transformation creates cycles, we break them (e.g.
finding a spanning tree of the final graph), and, again,
this does not increase the cost. It remains to see that,
after this process, no Steiner node can have more than
one non-zero coordinate. If a Steiner node has some set
of k non-zero coordinates, then they must correspond
to a clique in G (otherwise, at some phase, some of
them would have been changed by the application of
the red operator): since G is triangle-free, k � 2, but
if k = 2 then the Steiner node would be equal to a
node of U , and thus would have been removed in the
clean-up phase. It follows that k = 1. 2

From the above claim, the next one, whose proof we
omit, follows quite easily.

Claim 15 Given a Steiner tree T for U it is possible
to find in polynomial time a vertex cover C for G such
that jCj � cost(T )�m

If T is any Steiner tree of U , the vertex cover C for G
computed according the previous claim satisfies

cost(C)� opt(G)

� (cost(T )�m)� (opt(U)�m)

= cost(T )� opt(U)

and so also the second condition of the L-reduction is
satisfied. 2

If the following conjecture holds, then we can reduce
MIN VC-B to Hamming MIN ST (without imposing
the triangle-free restriction).



Conjecture 1 Let U � f0; 1gn be an instance of
Hamming MIN ST such that ~0 2 U and all vectors
of U have weight at most 2. Then there exists an opti-
mum solution where all the Steiner nodes have weight
at most 2.

Janos Körner proposed a further generalization: if U
is contained in the Hamming sphere centered in some
~u 2 U and of radius k, then there exists an opti-
mum solution all whose Steiner nodes lie in the same
sphere. This seemed to be a reasonable combinatorial
analog of the fact that if the points are in Rk and dis-
tances are computed according to the Euclidean met-
ric, the Steiner points of an optimum solution will be
in the convex hull of the points of the instance. Sub-
sequently, Janos refuted the generalized conjecture.
The instance U = f(0; 0; 0; 0); (0; 1; 1; 1); (1; 0; 1; 1);
(1; 1; 0; 1); (1; 1; 1; 0)g refutes the generalized conjec-
ture even for k = 3. An optimum solution of cost 7
uses the Steiner node (1; 1; 1; 1). Computational ex-
periments show that any solution without (1; 1; 1; 1)
has cost at least 8.

To approach the MIN ST in `1 normed spaces we
use a reduction from the Hamming case. Note that for
points in f0; 1gn the `1 distance equals the Hamming
distance. However, the reduction is non-trivial since
R

n contains so many points that are not in f0; 1gn and
we have to argue that having much more choice for
the Steiner nodes does not make the problem easier.
The Rectilinear MIN ST problem looks very much like
a relaxation of the Hamming MIN ST problem; our
reduction makes use of a rounding scheme proving
that the relaxation does not change the optimum.

Theorem 16 LetU � f0; 1gn � R

n be an instance of
Rectilinear MIN ST all whose points are in the Boolean
cube. Let T be a feasible solution for U . Then it is
possible to find in polynomial time (in the size of T )
another solutionT 0 such that cost(T 0

) � cost(T ) and
all the Steiner nodes of T 0 are in f0; 1gn.

Before proving the theorem, we note the following
relevant consequence.

Corollary 17 For any instance U � f0; 1gn of Rec-
tilinear MIN ST, an optimum solution exists all whose
Steiner points are in f0; 1gn.

We now prove Theorem 16.

PROOF:[Of Theorem 16] Let S = f~s1; : : : ; ~smg be
the set of Steiner points of T , and let E be the set
of edges of T . For any ~s

j

2 S we will find a new
point ~s0

j

2 f0; 1gn, so that if we let T 0 be the tree
obtained from T by substituting the ~s points with the
corresponding ~s

0 points, the cost of T 0 is not greater
than the cost of T . The latter statement is equivalent
to

X

(~s

j

;~u)2E;~u2U

jj~s

j

� ~ujj1 +
X

(~s

j

;~s

h

)2E

jj~s

j

� ~s

h

jj1

�

X

(~s

0

j

;~u)2E;~u2U

jj~s

0

j

� ~ujj1 +
X

(~s

0

j

;~s

0

h

)2E

jj~s

0

j

� ~s

0

h

jj1

We will indeed prove something stronger, namely, that
for any i 2 [n] it holds

X

(~s

j

;~u)2E;~u2U

j~s

j

[i]� ~u[i]j+

X

(~s

j

;~s

h

)2E

j~s

j

[i]� ~s

h

[i]j

�

X

(~s

0

j

;~u)2E;~u2U

j~s

0

j

[i]� ~u[i]j+

X

(~s

0

j

;~s

0

h

)2E

j~s

0

j

[i]� ~s

0

h

[i]j

(1)
Let i 2 [n] be fixed, we now see how to find values

of ~s01[i]; : : : ; ~s
0

m

[i] 2 f0; 1g such that (1) holds. We
express as a linear program the problem of finding
values of ~s01[i]; : : : ; ~s

0

m

[i] that minimize the right-hand
side of (1). For any j 2 [m] we have a variable x

j

(representing the value to be given to ~s

0

j

[i]) and for

any edge e = (~a;

~

b) such that at least one endpoint
is in S we have a variable y

e

, representing the lenght
j~a[i]�

~

b[i]j. The linear program is as follows

min
P

e

y

e

s.t.
y

e

� x

j

� x

h

8e = (~s

j

; ~s

h

) 2 E

y

e

� x

h

� x

j

8e = (~s

j

; ~s

h

) 2 E

y

e

� x

j

8e = (~s

j

; ~u

h

) 2 E.~u
h

[i] = 0
y

e

� 1� x

j

8e = (~s

j

; ~u

h

) 2 E.~u
h

[i] = 1
x

j

� 0
y

e

� 0

(LP):

Setting x

j

= s

j

[i] and setting y

(~a;

~

b)

= j~a[i] �

~

b[i]j

yields a feasible solution, and its cost is the left-hand



side of (1). Let (~x

�

; ~y

�

) be an optimum solution
for (LP). From the previous observation we have that
setting ~s0

j

[i] = x

�

j

we satisfy (1). It remains to be seen
that (LP) has an optimum solution where all variables
take value from f0; 1g. This follows from the fact
that (LP) is the linear programming relaxation of an
undirected Min-CUT problem, where all the ~u such
that ~u[i] = 0 (respectively, ~u[i] = 1) are identifed
with the source (respectively, the sink), each ~s

j

is a
node, and the edges are like in T . It is well known
(see e.g. [PS82]) that a Min-CUT linear programming
relaxation has optimum 0/1 solutions, and that such a
solution can be found in polynomial time. 2

Remark 18 There seems to be no natural analog of
Theorem 16 in other norms. Even in R2, using the
Eulcidean metric, we have that the optimum solution
of the instancef(0; 0); (1; 0); (0; 1)gmust use a Steiner
point not in f0; 1g2.

Theorem 19 Rectilinear MIN ST is Max SNP-hard.

PROOF: We reduce from Hamming MIN ST. The re-
duction leaves the instance unchanged. For an instance
U � f0; 1gn, we let opt

H

(U) (respectively, opt
R

(U))
be the cost of an optimum solution for U , when seen
as an instance of Hamming MIN ST (respectively, of
Rectilinear MIN ST). Clearly, we have that opt

R

(U) �

opt

H

(U). Given a solutionT for U , we find a solution
T

0 as in Theorem 16. Since in f0; 1gn the distance
induced by the `1 norm equals the Hamming distance,
we have that cost

H

(T

0

) = cost

R

(T

0

) � cost

R

(T ).
We have an L-reduction with � = � = 1. 2

5. Conclusions and Open questions

We do not know how to extend our non-
approximability result for MIN ST to the Euclidean
case. Arora [Aro96] notes that, by inspecting the way
his algorithm works, it is possible to claim that, for
any instance of Euclidean MIN ST, there exists a near-
optimal solution where the Steiner points lie in some
well-specified positions (either at “portals” or in po-
sitions chosen at the bottom of the recursion). This
observation could perhaps be a starting point.

We don’t have explicit estimations of the constants
to within which it is hard to approximate geometric

MIN TSP and rectilinear MIN ST. The constant for
MIN TSP should be only slightly smaller than the cor-
responding constant for the (1; 2)�B case (estimated
around 1 + 10�5). The constant for MIN ST is more
likely to be around 1+10�4. Finding much stronger es-
timations (comparable to the 3=2 bound of Christofides
and the 1:644 bound of Karpinski and Zelikovsky)
is an open and challenging question. It appears that
MIN TSP and MIN ST lack the nice logical definability
that allows to prove very strong non-approximability
results for MAX CUT and MAX 3SAT using so-called
“gadget reductions” [BGS96, TSSW96, Hås97].
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