
Construction of Extractors Using Pseudo-Random Generators

[Extended Abstract]

Luca Trevisan
∗

Abstract

We introduce a new approach to construct extractors. Ex-
tractors are algorithms that transform a “weakly random”
distribution into an almost uniform distribution. Explicit
constructions of extractors have a variety of important ap-
plications, and tend to be very difficult to achieve.

We demonstrate an unsuspected connection between ex-
tractors and pseudorandom generators. In fact, we show
that every pseudorandom generator of a certain kind is an
extractor.

A pseudo-random generator construction due to Impagli-
azzo and Wigderson, once reinterpreted via our connection,
is already an extractor that beats most known constructions
and solves an important open question. We also show that,
using the simpler Nisan-Wigderson generator and standard
error-correcting codes, one can build even better extractors
with the additional advantage that both the construction
and the analysis are extremely simple and admit a short
self-contained treatment.

1 Introduction

An extractor is an algorithm that converts a “weak source of
randomness” into an almost uniform distribution by using
a small number of additional truly random bits. Extractors
have several applications that we briefly survey below.

The natural application of extractors is to allow the sim-
ulation of randomized algorithms even in (realistical) set-
tings where only weak sources of randomness are available.
This line of research has a long history, that dates back at
least to von Neumann’s algorithm for generating a sequence
of unbiased bits from a source of biased but identically dis-
tributed and indipendent bits. More recent work by San-
tha and Vazirani [SV86] and Vazirani and Vazirani [VV85]
considered much weaker sources of randomness (that they
call “slightly random” sources) that are still sufficient to
allow (non-trivial) simulation of arbitrary randomized algo-
rithms. These results were generalized by Chor and Gol-

∗
luca@cs.columbia.edu. Computer Science Department, Columbia

University.

This paper appears in the Proceedings of STOC’99

dreich [CG88] and Cohen and Wigderson [CW89], and fi-
nally by Zuckerman [Zuc90], who introduced the modern
definition of weak random source and a construction of
extractors (although the term extractor was coined later,
in [NZ93]). Improved constructions of extractors appeared
in [NZ93, SZ94, TS96, Zuc96b]. Neither of these construc-
tions implies an optimal simulation of randomized algo-
rithms. Dispersers are objects similar to, but less powerful
than, extractors. Randomized algorithm having one-sided
error probability can be simulated by using weak random
sources and dispersers. Saks et al. [SSZ98] give a con-
struction of dispersers that implies an optimal simulation
of one-sided error randomized algorithms with weak ran-
dom sources. Andreev et al. [ACRT97] show how to use the
dispersers of Saks et al. in order to give optimal simula-
tions of general randomized algorithms using weak random
sources. The result of Andreev et al. leaves open the ques-
tion of whether there exist a construction of extractors that
is good enough to imply directly such optimal simulations.

Extractors are also used to derandomize randomized
space-bounded computations [NZ93] and for randomness-
efficient reduction of error in randomized algorithms
(see [Zuc96b, GZ97] and references therein). They yield
oblivious samplers (as defined in [BR94]), that have appli-
cations to interactive proofs and leader election in anony-
mous networks (see [Zuc96b] and references therein). They
also yield expander graphs, as discovered by Wigderson and
Zuckerman [WZ93], that in turn have applications to su-
perconcentrators, sorting in rounds, and routing in optical
networks. Constructions of expanders via constuction of ex-
tractors and the Wigderson-Zuckerman connection appeared
in [NZ93, SZ94, TS96], among others. Extractors can also
be used to give simple proofs of certain complexity-theoretic
results [GZ97], and to prove certain hardness of approxima-
tion results [Zuc96a]. The literature on explicit construction
of extractors and dispersers is vast and technically challeng-
ing. An excellent and accessible introduction is given by a
recent survey by Nisan [Nis96] (see also [NTS98]).

In this paper we show that pseudorandom generator con-
structions of a certain kind are extractors. Using our con-
nection and some new ideas we describe constructions of ex-
tractors that improve or subsume all the previously known
constructions and that are exceedingly simpler than previ-
ous ones.

1.1 Definitions

We now give the formal definition of an extractor and state
some previous results. We first need to define the notions of

1

min-entropy and statistical difference.
We say that (the distribution of) a random variable X

of range {0, 1}n has min-entropy at least k if for every

x ∈ {0, 1}n it holds Pr[X = x] ≤ 2−k. If k is an inte-
ger, then a canonical example of a distribution having min-
entropy k is the uniform distribution over a set S ⊆ {0, 1}n

of cardinality 2k. Indeed, it is implicit in [CG88] that if a
distribution has min-entropy k then it is a convex combina-
tion of distributions each one of whom is uniform over a set
of size 2k. We will consider distributions of min-entropy k
as the formalization of the notion of weak sources of ran-
domness containing k “hidden” bits of randomness. The
use of min-entropy to measure “hidden randomness” has
been advocated by Chor and Goldreich [CG88] and, in full
generality, by Zuckerman [Zuc90]. The statistical difference
between two random variables X and Y with range {0, 1}n

is defined as

||X − Y || = max
T :{0,1}n→{0,1}

|Pr[T (X) = 1] − Pr[T (Y) = 1]|

and we say that X and Y are ε-close if ||X−Y || ≤ ε. For an
integer l we denote by Ul a random variable that is uniform
over {0, 1}l.

A function Ext : {0, 1}n × {0, 1}t → {0, 1}m is a (k, ε)
extractor if for every random variable X of min entropy at
least k it holds that Ext(X, Ut) is ε-close to the uniform
distribution over {0, 1}m. A weaker kind of combinatorial
construction has also been considered: A function Disp :
{0, 1}n × {0, 1}t → {0, 1}m is a (k, ε) disperser if for every
subset S ⊆ {0, 1}m such that |S| > ε2m and for every X of
min-enropy k it holds Pr[Disp(X) ∈ S] > 0.

One would like to have, for every n and k, constructions
where t is very small and m is as close to k as possible.
There are some limitations towards this goal: One can show
that, for a certain range of k, it must be t ≥ Ω(log(n/ε)),
and also it must be m ≤ k + t−Ω(1/ε2) (see [RTS97]). It is
possible to show (non-constructively) that for every n, k, ε,
there is a (k, ε)-extractor Ext : {0, 1}n × {0, 1}t → {0, 1}m

where t = O(log n/ε) and m = k + t − Θ(1/ε2). It is an
open question to match such bounds with polynomial-time
computable functions Ext.

In Table 1 we summarize the best known constructions,
for different combination of the parameters, and we state
the parameters of (a special case of) our construction.

1.2 Our Result

The extractors constructed in this paper work for any min-
entropy k = nΩ(1), extracts a slightly sub-linear fraction of
the original randomness (i.e. the length of the output is
m = k1−γ for an arbitrarily small γ) and use O(log n) bits
of true randomness. Indeed, a more general result holds, as
formalized below.

Theorem 1 (Main) For every n, m, k, ε we can con-
struct a polynomial-time computable (k, ε)-extractor Ext :
{0, 1}n × {0, 1}t → {0, 1}m where

t = O

(

elog k/(log k/2m) (log n/ε)2

log(k/2m)

)

.

In particular, for fixed constants ε > 0 and 0 < γ′ <
γ < 1 we have for every n an explicit (nγ , ε)-extractor Ext :

{0, 1}n × {0, 1}O(log n) → {0, 1}nγ′

.

Our construction improves on the construction of Saks,
Srinivasan and Zhou [SSZ98] since we construct an extrac-
tor rather than a disperser, and improves over the construc-
tions of Ta-Shma [TS96] since the additional randomness is
logarithmic instead of slightly super-logarithmic. The best
previous construction of extractors using O(log n) additional
randomness was the one of Zuckerman [Zuc96b], that only
works when the min-entropy is a constant fraction of the
input length, while in our construction every min-entropy of
the form nγ is admissible. Our construction shows an opti-
mal way of using weak random sources to simulate every ran-
domized procedure. In contrast to the result of [ACRT97]
we can use a weak random source to generate almost uni-
formly distributed random bits independently of the purpose
for which the random bits are to be used.1

Our construction is not yet the best possible, since we
lose part of the randomness of the source and because the
additional randomness is logarithmic only as long k = nΩ(1).

1.3 Techniques

This paper contains two main contributions.
The first one is a connection (outlined in Section 2) be-

tween pseudorandom generators of a certain kind and ex-
tractors. Our connection applies to certain pseudorandom
generator constructions that are based on the (conjectured)
existence of predicates (decision problems) that can be uni-
formly computed in time t(n) but cannot be solved by cir-
cuits of size much small than t(n). The analysis of such
constructions shows that if the predicate is hard, then it is
also hard to distinguish the output of the generator from the
uniform distribution. This implication is proved by means of
a reduction showing how a circuit that is able to distinguish
the output of the generator from the uniform distribution
can be transformed into a slightly larger circuit that com-
putes the predicate. (Impagliazzo and Wigderson [IW97]
present one such construction with very strong parameters.)
Our result is that if the (truth table of the) predicate is cho-
sen randomly, according to a distribution with sufficiently
high min-entropy, then the output of the generator is sta-
tistically close to uniform. This statement is incomparable
with standard analyses: we use a stronger assumption (that
the predicate is random instead of fixed and hard) and prove
a stronger conclusion (that the output is statistically close
to, instead of indistinguishable from, the uniform distribu-
tion). An immediate application is that a pseudorandom
generator construction of this kind is an extractor. Our re-
sult has a straightforward proof, based on a simple counting
argument. The main contribution, indeed, is the statement
of the result, rather than its proof, since it involves a new,
more general, way of looking at pseudorandom generator
constructions. The Impagliazzo-Wigderson generator, us-
ing our connection, is an extractor that beats some previ-
ous constructions and that is good enough to imply optimal
simulations of randomized algorithms. We stress that even
if the Impagliazzo-Wigderson generator is a pseudorandom
generator under unproved conjectures, it provably is a good
extractor (i.e. we do not use any complexity-theoretic as-
sumption in our work).

Our second contribution is a construction that is sim-
pler to describe and analyse (the generator of Impagliazzo

1Andreev et al. [ACRT97] show how to produce a sequence of bits
that “look random” to a specific algorithm, and their construction
works by having oracle access to the algorithm. So it is not possible
to generate random bits “offline” before fixing the application where
the bits will be used.

2

Reference Min entropy k Output length m Additional randomness Type
[Zuc96b] k = Ω(n) m = Ω(k) O(log n) Extractor
[TS96] any k k poly log n Extractor

[TS96] k = nΩ(1) m = kΩ(1) O(log n log · · · log n) Extractor

[SSZ98] k = nΩ(1) m = kΩ(1) O(log n) Disperser
[TS98] any k m = k − poly log k O(log n) Disperser

This paper k = nΩ(1) m = kΩ(1) O(log n) Extractor

Table 1: A summary of previous results and our result.

and Wigderson is quite complicated) and that has somewhat
better parameters. Our idea is to use a pseudorandom gen-
erator construction due to Nisan and Wigderson [NW94],
that is considerably simpler than the one of Impagliazzo
and Wigderson (indeed the construction of Impagliazzo and
Wigderson contains the one of Nisan and Wigderson as one
of its several components). The Nisan-Wigderson genera-
tor has weaker properties than the Impagliazzo-Wigderson
generator, and our ideas outlined in Section 2 would not
imply that it is an extractor as well. In Section 3 we show
how to use error-correcting codes in order to turn the Nisan-
Wigderson generator into a very good extractor. Section 3
contains a completely self-contained treatment of the con-
struction and the analysis.

1.4 Relevance of Our Results

At the very least, our construction improves upon previ-
ous ones and solves the question of constructing extractors
that use a logarithmic amount of randomness, work for any
min-entropy that is polynomially related to the length of the
input and have an output that is polynomially related to the
amount of entropy. Such a construction has been considered
a relevant open qestion (e.g. in [NTS98, Gol99]), even af-
ter Andreev et al. [ACRT97] showed that one does not need
such extractors in order to develop an optimal simulation of
randomized algorithms via weak random sources. Indeed, it
was not clear whether the kind of approach introduced by
Andreev et al. was necessary in order to have optimal sim-
ulations, or whether a more traditional approach based on
extractors was still possible. Our result clarifies this point.

Perhaps more importantly, our construction is very sim-
ple to describe, analyse and understand, in contrast with
the most recent previous constructions. Hopefully, our tech-
niques offer more room for improvement than previous,
deeply exploited, ones. Raz et al. [RRV99] have already
found improvements to our construction (see below). Tight
results may come from some combination of our ideas and
previous ones.

Our use of results about pseudorandomness in the con-
struction of extractors may come as a surprise: pseudo-
random generation deals with (and takes advantage of)
a computational definition of randomness, while extrac-
tors are combinatorial objects used in a framework where
information-theoretic randomness is being considered. In
the past there have been some instances of results about
computational randomness inspired by (typically trivial)
information-theoretic analogs, e.g. the celebrated Yao’s
XOR Lemma and various kind of “direct product” results
(see e.g. [GNW95]). On the other hand, it seemed “clear”
that one could not go the other way, and have information-
theoretic applications of computational results. This prej-
udice might be one reason why the connection discovered

in this paper has been missed by the several people who
worked on weak random sources and on pseudo-randomness
in the past decade (including those who did foundational
work in both areas). Perhaps other important results might
be proved along similar lines. On the other hand, it might
also be that our results are just an isolated exception to the
“rule” that computational randomness results are not useful
in information theoretic settings. For example, we note that
the pseudorandom generator construction of Blum, Micali
and Yao [BM84, Yao82] does not yield an extractor using
our techniques.

1.5 Later results

Shortly after the development of the results of this pa-
per, Raz, Reingold and Vadhan [RRV99] devised an im-
provement to our construction. In our construction, if
the input has min-entropy k and the output is required
to be of length m, then the additional randomness is
O(m1/ log(k/2m)(log n)2/ log(k/2m)). In [RRV99], the de-
pendency is O((log n)2/ log(k/m)). Raz et al. [RRV99] also
show how to recursively compose their construction with
itself (along the lines of [WZ93]) and they obtain in this
way another construction where k = m and the additional
randomness is O(log3 n). Constructions of extractors with
parameters k = m have applications to the explicit con-
struction of expander graphs [WZ93]. In particular, Raz
et al. [RRV99] present constructions of expander graphs
and of superconcentrators that improve previous ones by
Ta-Shma [TS96]. Raz et al. [RRV99] also improve the de-
pendancy that we have between additional randomness and
error paramter ε.

Organization of the Paper

We present in Section 2 our connection between pseudo-
random generator constructions and extractors. The main
result of Section 2 is that the Impagliazzo-Wigderson gen-
erator [IW97] is a good extractor. In Section 3 we describe
and analyse a simpler construction based on the Nisan-
Wigderson generator [NW94] and on error correcting codes.
Section 3 might be read independently of Section 2.

2 The Connection Between Pseudorandom Generators
and Extractors

We start by defining the notion of computational indistin-
guishibility, and pseudorandom generators, due to Blum,
Goldwasser, Micali and Yao [GM84, BM84, Yao82].

We denote by Un the uniform distribution over {0, 1}n.
We say that two random variables X and Y with the
same range {0, 1}n are (S, ε)-indistinguishable if for every

3

T : {0, 1}n → {0, 1} computable by a circuit of size S it
holds

|Pr[T (X) = 1] − Pr[T (Y) = 1]| ≤ ε

One can see the notion of ε-closeness as the “limit” of
the notion of (S, ε)-indistinguishability for unbounded S.

Informally, a pseudorandom generator is an algorithm
G : {0, 1}t → {0, 1}m where t << m and G(Ut) is
(S, ε)-indistinguishable from Um, with large S and small
ε. In complexity theory, one looks for generators, say,
G : {0, 1}O(log m) → {0, 1}m where G(UO(log m)) is (m2, 1/3)-
indistinguishable from Um. Such generators (if they
were uniformly computable in time poly(m)) would im-
ply deterministic polynomial-time simulations of random-
ized polynomial-time algorithms.

Given current techniques, all interesting constructions
of pseudorandom generators have to rely on complexity-
theoretic conjectures. For example the Blum-Micali-
Yao [BM84, Yao82] construction (that has different parame-
ters from the ones exemplified above) requires the existence
of strong one-way permutations. In a line of work initiated
by Nisan and Wigderson [NW94], there have been results
showing that the existence of hard-on-average decision prob-
lems is sufficient to construct pseudorandom generators. Im-
pagliazzo and Wigderson [IW97] present a construction that
only requires the existence of decision problems having high
worst-case complexity.2

Definition 2 Let Gen : {0, 1}t → {0, 1}m be a generator
having access to a predicate P : {0, 1}l → {0, 1}. On input

a seed s ∈ {0, 1}t and oracle access to P : {0, 1}l → {0, 1}
we denote by GenP (s) the output of the generator.

Suppose that whenever, for a certain P : {0, 1}l → {0, 1}
and T : {0, 1}m → {0, 1}, we have that

|Pr[GenP (Ut) = 1] −Pr[T (Um) = 1]| > ε

then there exists a circuit of size S with T -gates that com-
putes P .

Then we say that Gen is a (l, t, m,S, ε)-good pseudoran-
dom generator construction.

By a “circuit with T -gates” we mean a circuit that can
use ordinary fan-in-2 AND and OR gates and fan-in-1 NOT
gates, as well as a special gate (of fan-in m) that computes
T with unit cost. This is the non-uniform analog of a com-
putation that makes oracle access to T .

Fact 3 If Gen is a (l, t, m, S, ε)-good pseudorandom gener-
ator construction, and P : {0, 1}l → {0, 1} has circuit com-
plexity ≥ S′, then GenP (Ut) is (ε, S/S′)-indistinguishable
from Um.

The result of Impagliazzo and Wigderson can be restated
as follows.

Theorem 4 ([IW97]) For every δ > 0 there exists a δ′ > 0
such that for every l there is a poly(m)-time computable

(l, t, m, S, 1/3)-good generator where t = O(l), m = 2δ′l and
S = 2δl.

2This is an oversimplified account. Both [NW94] and [IW97] re-
quire a non-uniform kind of hardness, and recent work has con-
centrated on uniform conditions [IW98]. A construction that only
needed worst-case non-uniform assumptions was given by Babai et
al. [BFNW93], but the parameters were worse than in the later con-
struction of Impagliazzo and Wigderson [IW97].

The following theorem formalizes our connection be-
tween pseudorandom generators and extractors. For a string

x ∈ {0, 1}2l

we denote by < x >: {0, 1}l → {0, 1} the predi-
cate whose truth-table is x.

Theorem 5 Let Gen be (l, t,m, S, ε)-good.

Then Ext : {0, 1}2l × {0, 1}t → {0, 1}m defined as
Ext(x, s) = Gen<x>(s) is a (k, 2ε)-extractor with k =
mS log S + log(1/ε).

Proof: Let X be a random variable with range {0, 1}2l

and min-entropy mS log S +log 1/ε. We want to prove that
for every T : {0, 1}m → {0, 1} we have Pr[T (Ext(X,Ut) =

1)] − Pr[T (Um) = 1]| ≤ 2ε. Let B ⊆ {0, 1}2l

be the set of
values v for which

Pr[T (Ext(v,Ut) = 1)] − Pr[T (Um) = 1]| > ε .

Given T , for each v in B the predicate < v > is computed
by a circuit of size S, and two different circuits correspond
to two different predicates, so the number of elements of B
is upper bounded by the number of circuits with T -gates
of size S, which in turn is at most 2mS log S. This means
that the probability that X ∈ B is at most |B|2−k = ε. An
averaging argument shows that

Pr[T (Ext(X,Ut) = 1)] −Pr[T (Um) = 1]| ≤ 2ε

2

Then, the Impagliazzo-Wigderson generator gives, for
every δ a (nδ, 1/3) extractor Ext : {0, 1}n × {0, 1}t →
{0, 1}m with m = nδ′ and t = O(log n), where δ′ depends
only on δ. This is good enough to give optimal simulations
of randomized algorithms using weak random sources, and
is an improvement over previous results. Indeed, one can get
better bounds on δ and δ′, and a generalization to every ε by
exploiting details of the Impagliazzo-Wigderson generator.

In the next section we will get even better parameters
by using a construction of pseudorandom generator due to
Nisan and Wigderson [NW94]. Their construction does not
satisfy Definition 2. In particular, if a test T exists for which
the distinction probability is more than ε, then there exists
a circuit of size m2 with oracle T such that the circuit com-
putes P on at least a fraction 1/2 + ε/m of the inputs (but
not necessarily all the inputs). The proof of Theorem 5
above does not apply to this kind of generator, since the
counting argument breaks down. Specifically, one can say
that every element of B is “approximately” computed by
one circuit of size S and that there are at most 2mS log S cir-
cuits of size S, however the same circuit may approximate
a huge number of elements of B, and so we cannot derive
a good upper bound on the size of B from an upper bound
on the number of circuits of size S. The argument works
again if one encodes X with a proper error-correcting code.
We prefer not to describe this part of the argument in full
generality here, but rather give it in the next section for the
special case of the Nisan-Wigderson generator.

3 Main Result

3.1 Preliminaries

In this section we state some known technical results that
will be used in the analysis of our extractor. For an integer
n we denote by [n] the set {1, . . . , n}. We denote by u1 · u2

the string obtaining by concatenating the strings u1 and u2.

4

Lemma 6 (Error Correcting Codes) For every n and δ
there is an efficient encoding EC : {0, 1}n → {0, 1}n̄ where
n̄ = poly(n, 1/δ) such that every ball of Hamming radius
(1/2− δ)n̄ in {0, 1}n̄ contains at most 1/δ2 codewords. Fur-
thermore n̄ can be assumed to be a power of 2.

Stronger parameters are achievable. In particular the length
of the encoding can be n̄ = npoly(1/δ). However, the
stronger bounds would not improve our constructions. Stan-
dard codes are good enough to prove Lemma 6. We sketch
a proof of the lemma in the Appendix.

Lemma 7 (Design [NW94]) For every m, a and l there
exists an efficiently constructible family of sets S =
S1, . . . , Sm such that

• Si ⊆ [t], where t = O(e(log m)/al2/a)

• |Si| = l

• |Si ∩ Sj| ≤ a.

The family S will be called an (m, l, a)-design.

Lemma 7 was proved in [NW94] for the special case of a =
log m. The general case follows using the same proof, but
a little care is required while doing a certain probabilistic
argument (one has to choose the right Chernoff bound).

The following notation will be useful in the next defini-
tion: if S ⊆ [t], with S = {s1, . . . , sl} (where s1 < s2 <

· · · < sl) and y ∈ {0, 1}t, then we denote by y|S ∈ {0, 1}l

the string ys1
· ys2

· · · ysl
.

Definition 8 (NW Generator [NW94]) For a function
f : {0, 1}l → {0, 1} and an (m, l, a)-design S =
(S1, . . . , Sm), the Nisan-Wigderson generator NWf,S :
{0, 1}t → {0, 1}m is defined as

NWf,S(y) = f(y|S1
) · · · f(y|Sm

)

For two functions f, g : {0, 1}l → {0, 1} and a number 0 ≤
ρ ≤ 1 we say that g approximates f within a factor ρ if f
and g agree on at least a fraction ρ of their domain, i.e.
Pr
x

[f(x) = g(x)] ≥ ρ.

The following result is similar to Lemma 2.4 in [NW94].

Lemma 9 (Analysis of the NW Generator) Let S be
an (m, l, a)-design, and T : {0, 1}m → B. Then there

exists a family GT of at most 2m2a

functions such that if
f : {0, 1}l → {0, 1} is a Boolean function for which

| Pr
y∈{0,1}d

[T (NWf,S(y)) = 1] − Pr
r∈{0,1}m

[T (r) = 1]| ≥ ε .

then there exists a function g : {0, 1}l → {0, 1}m g ∈ GT

such that either T (g(·)) or its complement approximates f(·)
within 1/2 − ε/m.

The following result will be used in the proof of Lemma
9. It is typically attributed to Yao [Yao82].

Lemma 10 Let T : {0, 1}m → {0, 1}, g : {0, 1}m−1 →
{0, 1}, f : {0, 1}l → {0, 1} and ε > 0; if

∣

∣

∣

∣

Pr
x∈{0,1}l

[T (g(x), f(x)) = 1] −

Pr
x∈{0,1}l,r∈{0,1}

[T (g(x), r) = 1]

∣

∣

∣

∣

≥ ε

then there exist two bits b0, b1 ∈ {0, 1} such that the function
b0⊕T (g(x), b1) agrees with f(x) on at least a fraction 1/2+ε
of the inputs.

We now prove Lemma 9.

Proof: [Of Lemma 9] We follow the proof of Lemma
2.4 in [NW94]. The main idea is that if T distinguishes
NWf,S(·) from the uniform distribution, then we can find
a bit of the output where this distinction is noticeable, and
then we will apply Lemma 10. In order to find the “right
bit”, we will use the so-called hybrid argument. We define
m + 1 distributions D0, . . . , Dm; Di is defined as follows:
sample a string v = NWf.S(y) for a random y, and then
sample a string r ∈ {0, 1}m according to the uniform distri-
bution, then concatenate the first i bits of v with the last
m− i bits of r. By definition, D0 is distributed as NWf.S(y)
and Dm is the uniform distribution over {0, 1}m. Using the
hypothesis of the Lemma and the triangle inequality we have

ε ≤ |Pr
y

[T (NWf.S(y)) = 1] − Pr
r

[T (r)]|

= |Pr[T (D0) = 1] − Pr[T (Dm) = 1]|

= |
m−1
∑

i=0

(Pr[T (Di) = 1] − Pr[T (Di+1) = 1])|

≤
m−1
∑

i=0

|Pr[T (Di) = 1] − Pr[T (Di+1) = 1]|

In particular, there exists an index i such that

|Pr[T (Di) = 1] − Pr[T (Di+1) = 1]| ≥ ε/m (1)

and there exists a bit b ∈ {0, 1} such that

Pr[b ⊕ T (Di) = 1] − Pr[b ⊕ T (Di+1) = 1] ≥ ε/m (2)

Now, recall that

Di = f(y|S1
) · · · f(y|Si−1

)riri+1 · rm

and

Di+1 = f(y|S1
) · · · f(y|Si−1

)f(y|Si
)ri+1 · rm .

We can use an averaging argument to claim that we can fix
ri+1, . . . , rm to some values ci+1 · · · cm, as well as all the all
the bits of y except those in Si, and still have an expression
like (2). So, we have the relation

Pr[b ⊕ T (g1(x) · · · gi−1(x)rici+1 · · · cm) = 1] −

Pr[b ⊕ T (g1(x) · · · gi−1(x)f(x)ci+1 · · · cm) = 1] ≥ ε/m

where gj(x) is f(y|Sj
) and y is the string whose bits in

Si are fixed according to x, and whose other bits had
been set non-uniformly. Since, by the property of the
sets S1, . . . , Sm, every set Sj contains at most a elements
of Si, it follows that gj(x) depends on at most a bits of
its input and therefore it is totally specified by at most
2a bits. We can now apply Lemma 10 and we have
that b0 ⊕ b ⊕ T (g1(x) · · · gi−1(x)b1ci+1 · · · cm) agrees with
f on a fraction 1/2 + ε/m of the inputs. The m-tuple
(g1(x) · · · gi−1(x)b1ci+1 · · · cm) defines a function g that sat-
isfies the statement of the lemma, and that is entirely spec-
ified given at most m2a bits of information. This is why
GT , that is the set of all such functions over all possible f ,
contains at most 2m2a

functions. 2

5

3.2 Construction

The construction has parameters n, k ≤ n, m ≤ k/2 and
ε > 0. We assume that 1 + 3 log(1/ε) + 2 log m ≤ m, which

is true if m ≥ 16 and ε ≥ 2−m/6. This simplifies the expres-
sions below, but is not really necessary for the sake of the
construction.

Let EC : {0, 1}n → {0, 1}n̄ be as in Lemma 6, with

• δ = ε/m,

so that

• n̄ = poly(n, 1/ε),

and define

• l = log n̄ = O(log n/ε).

For an element u ∈ {0, 1}n, define

• ū =< EC(u) >: {0, 1}l → {0, 1}.
Let S = S1, . . . , Sm be as in Lemma 7, such that

• Si ⊆ [t],

• |Si| = l,

• |Si ∩ Sj| ≤ a = log(k/2m), and

• t = O
(

l2e(log m)/ log k/2m 1
log(k/2m)

)

.

Then we define Ext : {0, 1}n × {0, 1}d → {0, 1}m as

Ext(u, y) = NWū,S(y) = ū(y|S1
) · · · ū(y|Sm

) .

3.3 Analysis

Lemma 11 For every fixed predicate T : {0, 1}m → {0, 1},
there are at most 21+m2a · (m/ε)2 strings u ∈ {0, 1}n such
that

∣

∣

∣

∣

Pr
y∈{0,1}d

[T (Ext(u,y)) = 1] − Pr
r∈{0,1}m

[T (r) = 1]

∣

∣

∣

∣

≥ ε (3)

Proof: It follows from the definition of Ext and from
Lemma 9 that if u is such that (3) holds, then there exists

a function g : {0, 1}l → {0, 1}m in GT and a bit b ∈ {0, 1}
such that the function b⊕ T (g(·)) approximates ū(·) within
1/2 − ε/m = 1/2 − δ.

There are at most 2m2a

functions g ∈ GT , furthermore,
each such function can be within relative distance 1/2−ε/m
from at most (m/ε)2 functions ū(·) coming from the error
correcting code of Lemma 6.

We conclude that 2(m/ε)22m2a

is an upper bound on the
number of strings u for which Expression (3) can occur. 2

Theorem 12 Ext as described above is a (k, 2ε)-extractor.

Proof: Fix a predicate T : {0, 1}m → {0, 1}. From
Lemma 11 we have that the probability that sampling a
u from a source of min-entropy k we can have

|Pr
y

[T (Ext(u, y)) = 1] − Pr
r

[T (r) = 1]| ≥ ε

is at most 21+m2a · m2

ε2 ·2−k which is at most ε by our choice
of parameters. A Markov argument shows that

|Pr
u,y

[T (Ext(u,y)) = 1] − Pr
r

[T (r) = 1]| ≤ 2ε

2

4 Final Remarks

The idea of applying results on pseudorandomness to the
context of information-theoretic randomness was inspired
by previous work of Andreev et al. [ACRT97]. The use of
error-correcting codes was inspired by an alternative proof
of the results of [IW97] due to Sudan et al. [STV99].

Both the error correcting codes of Lemma 6 and the de-
sign of Lemma 7 can be constructed in logarithmic space.
The construction of designs in logarithmic space requires a
logarithmic amount of randomness, and only succeeds with
high probability (see [IW97] and also [AR98, Section 5] for
details), but both these limitations are not a problem in
our construction, since the randomness can be taken from
the seed, and a small error probability only contributes
to a slight increase of the final statistical difference from
the uniform distribution. Therefore, our extractors can
be constructed in logarithmic space, unlike the dispersers
of [SSZ98, TS98] and the extractors of [TS96].

Acknowledgments

Oded Goldreich contributed an important idea in a criti-
cal phase of this research; he also contributed very valuable
suggestions3 on how to present the results of this paper. I
thank Oded Goldreich, Madhu Sudan, Salil Vadhan, Amnon
Ta-Shma, and Avi Wigderson for several helpful conversa-
tions. This paper would have not been possible without the
help of Adam Klivans, Danny Lewin, Salil Vadhan, Yevgeny
Dodis, Venkatesan Guruswami, and Amit Sahai in assimi-
lating the ideas of [NW94, BFNW93, Imp95, IW97]. Thanks
also to Madhu Sudan for hosting our reading group in the
Spring’98 Complexity Seminars at MIT.

This work was mostly done while the author was at MIT,
partially supported by a grant of the Italian CNR. Part of
this work was also done while the author was at DIMACS,
supported by a DIMACS post-doctoral fellowship.

References

[ACRT97] A.E. Andreev, A.E.F. Clementi, J.D.P. Rolim,
and L. Trevisan. Weak random sources, hitting
sets, and BPP simulations. In Proceedings of the
38th IEEE Symposium on Foundations of Com-
puter Science, pages 264–272, 1997.

[AR98] E. Allender and K. Reinhardt. Isolation, match-
ing, and counting. Technical Report TR98-019,
Electronic Colloquium on Computational Com-
plexity, 1998.

[BFNW93] L. Babai, L. Fortnow, N. Nisan, and A. Wigder-
son. BPP has subexponential time simulations
unless EXPTIME has publishable proofs. Com-
putational Complexity, 3(4):307–318, 1993.

[BGS98] M. Bellare, O. Goldreich, and M. Sudan. Free
bits, PCP’s and non-approximability – towards
tight results. SIAM Journal on Computing,
27(3):804–915, 1998. Preliminary version in
Proc. of FOCS’95.

[BM84] M. Blum and S. Micali. How to generate cryp-
tographically strong sequences of pseudorandom

3Indeed, I did not follow all of them, and this is why the current
presentation is not so good.

6

bits. SIAM Journal on Computing, 13(4):850–
864, 1984. Preliminary version in Proc. of
FOCS’82.

[BR94] M. Bellare and J. Rompel. Randomness-efficient
oblivious sampling. In Proceedings of the 35th
IEEE Symposium on Foundations of Computer
Science, pages 276–287, 1994.

[CG88] B. Chor and O. Goldreich. Unbiased bits from
sources of weak randomness and probabilistic
communication complexity. SIAM Journal on
Computing, 17(2):230–261, April 1988.

[CW89] A. Cohen and A. Wigderson. Dispersers, de-
terministic amplification, and weak random
sources. In Proceedings of the 30th IEEE Sym-
posium on Foundations of Computer Science,
pages 14–19, 1989.

[GM84] S. Goldwasser and S. Micali. Probabilistic en-
cryption. Journal of Computer and System Sci-
ences, 28(2):270–299, 1984. Preliminary Version
in Proc. of STOC’82.

[GNW95] O. Goldreich, N. Nisan, and A. Wigderson. On
Yao’s XOR lemma. Technical Report TR95-50,
Electronic Colloquium on Computational Com-
plexity, 1995.

[Gol99] O. Goldreich. Modern Cryptography, Probabilis-
tic Proofs and Pseudorandomness. Springer-
Verlag, 1999.

[GZ97] O. Goldreich and D. Zuckerman. Another proof
that BPP ⊆ PH (and more). Technical Report
TR97-045, Electronic Colloquium on Computa-
tional Complexity, 1997.

[Imp95] R. Impagliazzo. Hard-core distributions for
somewhat hard problems. In Proceedings of the
36th IEEE Symposium on Foundations of Com-
puter Science, pages 538–545, 1995.

[IW97] R. Impagliazzo and A. Wigderson. P = BPP
unless E has sub-exponential circuits. In Pro-
ceedings of the 29th ACM Symposium on Theory
of Computing, pages 220–229, 1997.

[IW98] R. Impagliazzo and A. Wigderson. Randomness
versus time: De-randomization under a uniform
assumption. In Proceedings of the 39th IEEE
Symposium on Foundations of Computer Sci-
ence, pages 734–743, 1998.

[MS77] F.J. MacWilliams and N.J.A. Sloane. The The-
ory of Error-Correcting Codes. North-Holland,
1977.

[Nis96] N. Nisan. Extracting randomness: How and
why. In Proceedings of the 11th IEEE Confer-
ence on Computational Complexity, pages 44–
58, 1996.

[NTS98] N. Nisan and A. Ta-Shma. Extrating random-
ness : A survey and new constructions. Journal
of Computer and System Sciences, 1998. To ap-
pear. Preliminary versions in [Nis96, TS96].

[NW94] N. Nisan and A. Wigderson. Hardness vs ran-
domness. Journal of Computer and System Sci-
ences, 49:149–167, 1994. Preliminary version in
Proc. of FOCS’88.

[NZ93] N. Nisan and D. Zuckerman. More deterministic
simulation in Logspace. In Proceedings of the
25th ACM Symposium on Theory of Computing,
pages 235–244, 1993.

[RRV99] R. Raz, O. Reingold, and S. Vadhan. Extract-
ing all the randomness and reducing the error
in Trevisan’s extractors. In Proceedings of the
31st ACM Symposium on Theory of Computing,
1999.

[RTS97] J. Radhakrishnan and Amnon Ta-Shma. Tight
bounds for depth-two superconcentrators. In
Proceedings of the 38th IEEE Symposium on
Foundations of Computer Science, pages 585–
594, 1997.

[SSZ98] M. Saks, A. Srinivasan, and S. Zhou. Ex-
plicit OR-dispersers with polylogarithmic de-
gree. Journal of the ACM, 45(1):123–154, 1998.
Preliminary version in Proc. of STOC’95.

[STV99] M. Sudan, L. Trevisan, and S. Vadhan. Pseu-
dorandom generators without the XOR lemma.
In Proceedings of the 31st ACM Symposium on
Theory of Computing, 1999.

[SV86] M. Santha and U. Vazirani. Generating quasi-
random sequences from slightly random sources.
Journal of Computer and System Sciences,
33:75–87, 1986.

[SZ94] A. Srinivasan and D. Zuckerman. Computing
with very weak random sources. In Proceedings
of the 35th IEEE Symposium on Foundations of
Computer Science, pages 264–275, 1994.

[TS96] A. Ta-Shma. On extracting randomness from
weak random sources. In Proceedings of the
28th ACM Symposium on Theory of Computing,
pages 276–285, 1996.

[TS98] A. Ta-Shma. Almost optimal dispersers. In Pro-
ceedings of the 30th ACM Symposium on Theory
of Computing, 1998.

[VV85] U. Vazirani and V. Vazirani. Random polyno-
mial time is equal to slightly random polynomial
time. In Proceedings of the 26th IEEE Sym-
posium on Foundations of Computer Science,
pages 417–428, 1985.

[WZ93] A. Wigderson and D. Zuckerman. Expanders
that beat the eigenvalue bound: Explicit con-
struction and applications. In Proceedings of the
25th ACM Symposium on Theory of Computing,
pages 245–251, 1993.

[Yao82] A.C. Yao. Theory and applications of trapdoor
functions. In Proceedings of the 23th IEEE Sym-
posium on Foundations of Computer Science,
pages 80–91, 1982.

7

[Zuc90] D. Zuckerman. General weak random sources.
In Proceedings of the 31st IEEE Symposium on
Foundations of Computer Science, pages 534–
543, 1990.

[Zuc96a] D. Zuckerman. On unapproximable versions of
NP -complete problems. SIAM Journal on Com-
puting, 25(6):1293–1304, 1996. Preliminary Ver-
sion in Proc. of Structures’93.

[Zuc96b] D. Zuckerman. Randomness-optimal sampling,
extractors and constructive leader election. In
Proceedings of the 28th ACM Symposium on
Theory of Computing, pages 286–295, 1996.

A Appendix

A.1 A Discussion on Lemma 6

It is a standard result that if an error-correcting code has
large minimum distance then there can be few codewords in
every large ball. In particular, the following bound holds.

Lemma 13 Suppose C is an error-correcting code with (rel-
ative) minimum distance ≥ 1/2−β/2. Then every Hamming
ball of (relative) radius 1/2−

√
β contains at most 1/3β code-

words.

A proof can be found e.g. in [BGS98, Lemma A.1]. The
following result is well known, even if we do not know of a
source where it is clearly stated in this way.

Lemma 14 For every δ and n there exists an error-
correcting code with 2n codewords of length n̄ = poly(n, 1/δ)
and with minimum distance (1/2 − δ)n̄. The code admits a
polynomial-time encoding algorithm.

Several constructions meet this requirement. In particu-
lar one can use a Reed-Solomon code concatenated with a
Hadamard code. See e.g. [MS77] for a treatment of error
correcting codes. Lemma 6 follows from Lemmas 13 and 14.

A.2 A Sketch of the Proof of Lemma 7

The following version of the Chernoff bound will be used.

Lemma 15 Let X1, . . . , Xn be 0/1 mutually independent

random variables such that E
[
∑

i
Xi

]

= µ. Then, for every
α > 1 it holds

Pr

[

∑

i

Xi ≥ αµ

]

≤ e−((ln α)+ 1

α
−1)αµ

This bound is proved in the usual way, but we have not find
a standard reference for this particular statement, so we
present below a proof (taken from lecture notes by Leighton
and Vempala).
Proof: Let p = Pr[Xi = 1] = E[Xi] = µ/n. Then

Pr

[

∑

i

Xi ≥ αµ

]

= Pr
[

α

∑

i
Xi ≥ ααµ

]

≤
E

[

α

∑

i
Xi

]

ααµ

=

∏

i E
[

αXi
]

ααµ

=
(1 − p + pα)n

ααµ

≤ e(−p+pα)n

ααµ

= e−µ+αµ−αµ ln α

The second step uses Markov, the third uses independence,
and the fifth uses the inequality (1 − x) ≤ e−x. 2

We can now sketch the proof of Lemma 7 as it was carried
on in [NW94].

Proof:[Of Lemma 7] Sequentially choose m subsets of [t]
such that any of the chosen subsets intersects the previously
chosen ones in less than a points. A probabilistic argument
using the above Chernoff bound shows that the algorithm
is always able to choose a new subset as long as the total
number of sets in no more than m (in the probabilistic ar-
gument we will choose a multi-set of elements, so as to be
able to use the Chernoff bound, and then we will discard
duplicates.) 2

8

