
The (Parallel) Approximability of Non-Boolean
Satisfiability Problems and Restricted Integer

Programming

Maria Serna1⋆, Luca Trevisan2 and Fatos Xhafa1⋆

1 Departament de Llenguatges i Sistemes Informàtics
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Módul C6 - Campus Nord, Jordi Girona Salgado, 1-3
08034-Barcelona, Spain

E-mail: {mjserna,fatos}@lsi.upc.es

2 MIT Laboratory for Computer Science
545 Technology Square, Room NE43-371, Cambridge, MA 02139, USA

E-mail: luca@theory.lcs.mit.edu

Abstract. We present parallel approximation algorithms for maximiza-
tion problems expressible by integer linear programs of a restricted syn-
tactic form introduced by Barland et al. [BKT96]. One of our motivations
was to show whether the approximation results in the framework of Bar-
land et al. holds in the parallel setting. Our results are a confirmation of
this, and thus we have a new common framework for both computational
settings. Also, we prove almost tight non-approximability results, thus
solving a main open question of Barland et al.
We obtain the results through the constraint satisfaction problem over
multi-valued domains, for which we show non-approximability results
and develop parallel approximation algorithms.
Our parallel approximation algorithms are based on linear programming
and random rounding; they are better than previously known sequential
algorithms. The non-approximability results are based on new recent
progress in the fields of Probabilistically Checkable Proofs and Multi-
Prover One-Round Proof Systems [Raz95, H̊as97, AS97, RS97].

1 Introduction

Expressing combinatorial optimization problems as integer linear programs (ILP)
has several applications. In particular, several approximation algorithms start
from the linear programming relaxation of the ILP formulation, and then use
randomized rounding [RT87, GW94], primal-dual methods [GW96], or more so-
phisticated methods [LLR95, ENRS95].

An interesting new structural use of Integer Linear Programming has been
taken in a recent paper of Barland, Kolaitis and Thakur [BKT96], where syn-
tactic classes of maximization problems are introduced. A problem belongs to
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one such class if it can be expressed by an ILP with a certain restricted format.
The approximability properties of the problem in a class are then implied by the
approximability of the respective prototypical ILP. The main goal of [BKT96]
was to overcome some limitations of the standard way of defining syntactic
classes, namely the approach of logical definability [PY91, PR93, KT94, KT95].
The latter approach, indeed, fails to explain why problems with similar logical
definability, such as Max k-dimensional Matching and Max Clique have very
different approximability properties. Furthermore, using ILP, classes are defined
in terms of a single parameter that determines the hardness of the problems.
This parameter is either the maximum number of occurrences of any variable or
the maximum size of the domain of the variables. The latter kind of restriction
gives rise to a family of classes that Barland et al. call Max FSBLIP (for Max-
imum Feasible Subsystem of Bounded Layered Integer Program). Letting the
variables to take values in a constant, logarithmic, or polynomial range allowed
them to capture syntactic maximization classes that are constant-approximable,
polylog-approximable and poly-approximable, respectively. An interesting ques-
tion is whether these three classes form a proper hierarchy. Barland et al. did
not completely resolve this point and left improved non-approximability results
as an open question.

In this paper our interest is twofold. In one hand, we use the integer program-
ming as a framework for parallel approximability, aiming to obtain improved
parallel approximation results. It is known that all the problems contained in
logically defined syntactic classes that are constant-factor approximable, are also
constant-factor approximable3 in NC. This feature of logically defined syntactic
classes is desirable for at least two reasons: it reduces the study of sequential
and parallel approximability to the same framework, and is in accordance with
the fact that almost all the constant factor approximation algorithms that are
known also admit a parallel version with a comparable approximation ratio. The
issue of parallel approximability is not raised in the paper of Barland et al. Our
parallel results state that in the new framework of integer programming the se-
quential results holds as well as in the parallel setting thus, again, we have a
common framework for both computational settings. Having this outcome, the
second question that we consider is what are the limits of parallel, as well as
sequential, approximability for these problems. We show that our approximation
factors are nearly the best possible by providing some new non-approximability
results (the non-approximability results will also hold for sequential algorithms.)
In both cases, our main results will be expressed in terms of the multi-valued
constraint satisfaction problem, and then translated, by means of reductions, in
terms of the model of Barland et al.

In the rest of this section, we state our results and we discuss their relation
with previously known ones.

In this paper, a crucial role is played by the constraint satisfaction problem
over multi-valued domains. In an instance of this problem, we are given a set of

3 An NC algorithm is an algorithm that runs in poly-logarithmic time on a parallel
shared-memory machine with a polynomial number of processors. See e.g. [DSST97].



constraints of arity at most k over multi-values variables where a constraint is a
boolean valued function over {0, 1, . . . , d−1}k and is given a positive weight. We
can think of a k-ary domain-d constraint as a set of k-tuples values (i.e. a relation
over {0, 1, . . . , d− 1}k) and say that an assignment satisfies the constraint if the
corresponding values to the variables of the constraint form a k-tuple belonging
to the relation. The goal is to find an assignment to the variables that maximizes
the total weight of satisfied constraints. This problem is a common generalization
of several known and well-studied problems. To begin with, it is a natural gener-
alization of the boolean constraint satisfaction problem Max kCSP, introduced
by Khanna et al. [KMSV94] and then studied in [Cre95, Tre96, KSW97] (in the
boolean case, the domain is {0, 1}, that is, d = 2.) It also generalizes Multi-
Prover One-Round Proof Systems and the Max Capacity Representatives

problem (introduced by Bellare et al. [Bel93] and further considered by Barland
et al.). The version over multi-valued domain has been studied in the restricted
case of binary constraints [LW96] and that of “planar instances” [KM96]. In this
paper we address, for the first time, the approximability of the problem in its
full generality. We present a parallel approximation, based on linear program-
ming and random rounding, that achieves an approximation factor 1/dk−1. The
algorithm can be efficiently parallelized and de-randomized. Our major contri-
bution here is the definition and the analysis of an appropriate random rounding
scheme. The parallelization mimics a similar proof in [Tre96], but is not entirely
straightforward. For the special case of binary constraint (k=2), our approxima-
tion guarantee is twice better than the 1/2d-approximate algorithm of [LW96].

We also prove several non-approximability results under different complexity
assumptions. Such results follow from recent advances in the fields of Prob-
abilistically Checkable Proofs [H̊as97] and of Multi-Prover One-Round Proof
Systems [Raz95, RS97, AS97] and from the fact that multi-valued constraint
satisfaction problems generalize both models. We use reductions from the multi-
valued constraint satisfaction problem to derive negative approximation results
for the rest of the problems of interest. In terms of the class FSBLIP, our re-
sult states that the classes Max FSBLIP(2), Max FSBLIP(log) and Max

FSBLIP(poly) form a proper hierarchy (the separation of the two last classes
derives from a result of Bellare [Bel93] stating that Max Capacity Represen-

tatives which belongs to Max FSBLIP(poly) is not log-approximable; we sepa-
rate the first two classes by proving that Max Capacity Representatives(log)
is not constant-approximable.)

We also consider the class of integer programs Max FMIP (for Maximum
Feasible Majority Integer Program) for which Max Majority SAT is a canoni-
cal problem. [BKT96] showed that this class contains only constant-approximable
problems. For the general Max FMIP problem, we present a slight improvement
and simplification over their approximation result. The latter result does not
depend on the constraint satisfaction problem. We also prove an almost tight
non-approximability result for the problems of this class by reducing from the
boolean constraint satisfaction problem.



2 Preliminaries

For an integer n, we denote by [n] the set {0, . . . , n − 1}. A combinatorial op-
timization problem is characterized by the set of instances, by the finite set of
feasible solutions associated to any instance, and by a measure function that
associates a non-negative cost to any feasible solution of a given instance. We
refer e.g. to [BC93] for the formal definition of NP Optimization problem.

Definition 1 (Max Capacity Representatives-d). For a function d : Z+ →
Z+, Max Capacity Representatives-(d(n)) problem is defined as follows:

Instance: A partition of {1, . . . , n} into sets S1, . . . , Sm, each of cardinality at
most d; and weights wi,j ≥ 0 for any two elements belonging to different sets
of the partition.

Solution: The choice of a representative in any set.
Measure: The sum of the weights wi,j for any i and j that are representatives in

different sets of the partition.

Definition 2 (Constraint). A k-ary, domain-d constraint over x1, . . . , xn is a
pair (f, (i1, . . . , ik)) where f : [d]k → {0, 1} and ij ∈ {1, . . . , n} for j = 1, . . . , k.
A constraint C = (f, (i1, . . . , ik)) is satisfied by an assignment a = a1, . . . , an to

x1, . . . , xn if C(a)
def
= f(ai1 , . . . , aik

) = 1.

We say that a function f : [d]k → {0, 1} is conjunctive if it can be expressed as
a conjunction of equations, i.e. there are values v1, . . . , vk ∈ [d],

f(x1, . . . , xk) = 1 if and only if [x1 = v1] ∧ . . . ∧ [xk = vk] .

When this will not cause confusion, we will sometimes blur the important dif-
ference between a constraint (f, (i1, . . . , ik)) and the function f . For example we
say that a constraint (f, (i1, . . . , ik)) is conjunctive if function f is, and so on.

Definition 3 (Max kCSP-d and Max kConj-d). For any integer k ≥ 1 and
function d = d(n), the Max kCSP-d is defined as follows:

Instance: A set {C1, . . . , Cm} of domain-d constraints of arity at most k over
x1, . . . , xn, and associated non-negative weights w1, . . . , wm.

Solution: An assignment a = (a1, . . . , an) ∈ [d]n to the variables x1, . . . , xn.
Measure: The total weight of satisfied constraints.

Max kConj-d is the restriction of Max kCSP-d to instances where all the
constraints are conjunctive.

Definition 4 (Integer Linear Programming (ILP)). The ILP is as follows:

Instance: A matrix A ∈ Zm×n and two vectors c ∈ Zn and b ∈ Zm.
Solution: A vector x ∈ Zn satisfying Ax ≤ b.
Measure: c · x.



Note that in this formulation, the goal is to maximize the measure c·x. The vari-
ables appearing (with non-zero coefficients) in the objective function are called
objective variables and those appearing only in the linear constraints are program
variables. The width of a constraint is equal to the number of its variables.

Definition 5 (Constraint Dominance). Given a linear constraint of the form
g(1−t)+a·q ≥ b, where t is 0/1 variable, it is said that t dominates the constraint
if (a) for t = 0 the constraint is satisfied whatever is the assignment to the rest of
variables; (b) if an assignment satisfies a · q ≥ b, then the constraint is satisfied
for any value of t.

Definition 6 (Max FSBLIP(d(n)) [BKT96]). For a given function d(n), the
class Max FSBLIP(d(n)) contains all the optimization problems A for which
there are positive integer constants l,m, k (that only depend on A) such that
every instance of A can be expressed as an ILP with the following structure:

• The program variables can take values in {0, 1, . . . d(n) − 1}.
• Each objective variable ti occurs only in constraints of the form (1 − ti) +

qi,1 + · · · + qi,z ≥ 1, where z ∈ N can be polynomial in n, and each qi,j ,
1 ≤ j ≤ z is a 0/1 program variable associated with the objective variable
ti. These constraints are referred to as objective constraints.

• Each variable qi,j appearing in an objective constraint occurs in at most l
other constraints and dominates each of them.

• All constraints that are not objective ones have width m and are dominated
by some qi,j associated with some objective variable ti.

• Each objective variable ti appears in at most k objective constraints.

Definition 7 (Max FMIP [BKT96]). An optimization problem Π belongs to
the class Max Feasible Majority IP (in short, Max FMIP) if there exist
positive constants k, σ and a polynomial p such that for any instance I of Π we
can find a set of linear inequalities over the integers

Ax ≥ b

x ∈ {−k,−k + 1, . . . , k − 1, k}n

where bj ≤ σ, the entries of A are integers of absolute value at most p(n), and
the optimum of I is precisely the maximum number of inequalities that are
simultaneously satisfiable.

3 Reductions Among Problems

Theorem 8. For any constant k and function d(n), Max kConj-d(n) belongs
to Max FSBLIP(d(n)).

Proof. Our formulation is similar to that of Max Capacity Representatives

given in [BKT96, Section 3]. Let {C1, . . . , Cm} be a set of k-ary domain-d con-
junctive constraints over x1, . . . , xn, and w1, . . . , wm be associated non-negative



weights. We use two 0/1 variables tj and fj for any constraint, and we use a
d-valued variable yi for any variable xi. The integer linear program is

max
∑

j wjtj
s.t.

(1 − tj) + fj ≥ 1 ∀j = 1, . . . ,m
d(1 − fj) + yi ≥ v ∀j = 1, . . . ,m, ∀[xi = v] ∈ Cj

d(1 − fj) − yi ≥ −v ∀j = 1, . . . ,m, ∀[xi = v] ∈ Cj

Notice that each objective variable tj appears in a unique objective constraint,
each variable fj in an objective constraints occurs in at most 2k other constraints
dominating each of them, and, finally, any constraints has width 2. ⊓⊔

Theorem9. If Max kConj-d is r-approximable (in NC) and kd = poly(n),
then Max kCSP-d is r-approximable (in NC).

Proof. For any constraint Cj of weight wj , let s be the number of satisfying
assignments to its variables (note that s ≤ kd). Then we can express Cj as the
disjunction of s conjunctive constraints K1

j , . . . ,Ks
j , each one enforcing one of

the satisfying assignments of Cj . Observe that any (global) assignment, satisfies
at most one of the Ki

j constraints and satisfies one if and only if satisfies Cj .

Let us substitute Cj with the K1
j , . . . ,Ks

j constraints, and give weight wj to all
of them. We repeat the same substitution for any constraint. The new instance
is equivalent to the former, in the sense that they share the same set of feasible
solutions, and the cost of each solution is always the same. Observe that the
substitution process can be done also in parallel for all the constraints. ⊓⊔

Theorem10. Max 2Conj-d is r-approximable (in NC) if and only if Max

Capacity Representatives-d is r-approximable (in NC).

Proof. It is easy to see that the two problems are equal. Without loss of generality
we can assume that any set in a Max Capacity Representatives-d instance
has exactly d elements (add dummy elements and give weight zero to the pairs
corresponding to such elements) and that in a Max 2Conj-d instance with n
variables there are all the possible

(

n
2

)

d2 conjunctive constraints (add the missing
constraints with weight zero). Now, the equivalence is immediate: every set Si in
Max Capacity Representatives-d corresponds to a d-valued variable si = a,
a = 0, 1, . . . , d − 1, meaning that the representative of set Si is a; to a pair of
representatives in different sets Si, Sj corresponds a conjunctive constraint si =
a∧sj = b; the weight of a constraint is that of the edge from which it was derived.
Clearly, starting from an instance of Max Capacity Representatives-d we
construct (in NC) an instance of Max 2Conj-d such that its feasible solutions are
also feasible solutions of the same cost for Max Capacity Representatives-d
and vice-versa. The theorem thus readily follows. ⊓⊔

Theorem11. Max kConj-2 can be expressed as a Max FMIP problem with
p(n) = 1, k′ = 2 and σ = k.



Proof. Let ϕ be an instance of Max kConj-2. We have a variable yi ∈ {−1, 0, 1}
for any variable xi of ϕ. For any constraint Cj , let Pj (resp. Nj) be the set of
indices of variables that are assigned to 1 (resp. 0) in Cj . Let kj be the arity of
Cj . Then Cj is expressible as

∧

i∈Pj

[xi = 1] ∧
∧

i∈Nj

[xi = 0] .

We translate Cj into the constraint
∑

i∈Pj
yi +

∑

i∈Nj
−yi ≥ kj . Under the

understanding that {−1, 1} assignments to yi should be mapped to {0, 1} as-
signments for xi (i.e. xi = (1 + yi)/2), the two constraints are equivalent. We
repeat the translation for any constraint, and the theorem thus follows. ⊓⊔

4 Positive Results: Algorithms

We now consider a linear programming relaxation of Max kConj-d. We have a
variable zj for any constraint Cj , with the intended meaning that zj = 1 when
Cj is satisfied and zj = 0 otherwise. We also have a variable ti,v for any variable
xi and any value v ∈ [d], meaning that ti,v = 1 if xi = v and ti,v = 0 otherwise.

max
∑

j wjzj

s.t.
zj ≤ ti,v ∀i, v, [xi = v] ∈ Cj
∑

v∈[d] ti,v = 1

0 ≤ ti,v ≤ 1 ∀i ∈ [n],∀v ∈ [d]

(CONJ)

Lemma12. The linear program (CONJ) is (1 − o(1))-approximable in NC.

Proof. Generalization of a result of [Tre96]. The proof is omitted from this ex-
tended abstract. ⊓⊔

Lemma13 (Random Rounding for Max kCSP-d). Let (z, t) be a feasible
solution for (CONJ). Consider the random assignment obtained by setting, for
any i, v

Pr[xi = v] = (k − 1)/dk + ti,v/k .

Then such an assignment has an average cost at least 1
dk−1

∑

j wjzj. The analysis
only assumes that the distribution is k-wise independent.

Proof. It is sufficient to prove that any constraint Cj is satisfied with probabil-
ity at least 1

dk−1 zj; the lemma will then follow by the linearity of expectation.
Observe that if the atom [xi = v] occurs in Cj then zj ≤ ti,v. Then

Pr[Cj is satisfied] ≥

(

k − 1

dk
+

1

k
zj

)k

≥
1

dk−1
zj . (1)



For the last inequality, we consider the function

f(z) =

(

k−1
dk + 1

kz
)k

z

in the interval 0 ≤ z ≤ 1, compute its first derivative, and show that f has a
minimum in z = 1/d, that is f(z) ≥ f(1/d) = 1/dk−1, ∀z, 0 ≤ z ≤ 1. In the first
inequality of Eq. (1) we have assumed that the random variables induced by the
clause Cj are independent. ⊓⊔

Remark. The above analysis is tight and establishes that the integrality gap
of (CONJ) is dk−1. The bound is achieved e.g. by the instance consisting of
clauses C1, C2, . . . , Cdk that are all possible size k (domain-d) conjunctions of
{x1, . . . , xk}.

Theorem14. For any d = d(n) and k = k(n) such that dk = nO(1), there
is an NC (1/dk−1 − o(1))-approximate algorithm for Max kCSP-d. In par-
ticular, there is a (1/d − o(1))-approximate NC algorithm for Max Capacity

Representatives-d.

4.1 The Max FMIP Problems

A prototypical problem in Max FMIP is Max Majority SAT, which is the
variation of Max SAT where a clause is satisfied if at least half the literals
(rather than at least one) are satisfied. Baralnd et al. [BKT96] showed that
this class contains only constant-approximable problems (using, once more, the
syntactic structure of integer programs) and gave a structural explanation of
this result.

It is easy to find a 2-approximate solution for Max Majority SAT. Any
clause is either satisfied by the assignment xi = 0, ∀i, or by the assignment
xi = 1, ∀i. Thus one of the two assignments satisfies at least half the clauses.4

For the general Max FMIP problem, we present a slight improvement and
simplification over the approximation result of Barland et al. [BKT96].

Theorem15. Given an instance of a Max FMIP problem, the random assign-
ment where each variable is set to −k or to k with probability 1/2 independently
at random satisfies each constraint with probability at least 1/21+⌈σ/k⌉, provided
that the constraint is satisfiable.

Proof. Consider a constraint
∑

i aixi ≥ b. If the constraint is satisfiable, then
∑

i |ai|k ≥ b. Since the ai are integers, there must be a set J of at most ⌈b/k⌉
indices such that

∑

i∈J |ai|k ≥ b. Under the uniform distribution, with proba-

bility at least 1/2|J| ≥ 1/2⌈b/k⌉ we will have
∑

i∈J aixi ≥ b. It is also easy to see
that, by symmetry, with probability at least 1/2 we have

∑

i6∈J aixi ≥ 0.
The theorem thus follows since for the whole set of constraints, bj ≤ σ, ∀j. ⊓⊔

The above theorem can be derandomized in NC through the techniques of
Karger and Kholler [KK94].

4 This nice idea is due to Michel Goemans.



5 Negative Results: Hardness of Approximation

We first define Probabilistically Checkable Proof Systems and Multi-Prover One-
Round Proof Systems. Our notation merges the notations of [BGLR93] and
[BGS96]. For an integer d, we denote by [d]∗ the set of all strings over [d].

Definition 16 (Verifier). A verifier V for a language L is a randomized poly-
nomial time oracle Turing machine. V receives in input a string x and has oracle
access to a string π that is an alleged proof that x ∈ L.

Definition 17 (PCP and MIP). Let c, s, r, q, d : Z+ → Z+ such that 0 ≤
s(n) < c(n) ≤ 1 for any n; we say that a language L belongs to PCPc,s[r, q, d] if
there exists a verifier V such that

1. For any input string x and oracle proof π ∈ [d(n)]∗, V queries at most q(n)
entries of π and uses at most O(r(n)) random bits;

2. For any x ∈ L, there exists a π ∈ [d(n)]∗ such that the probability that V
accepts x with oracle π is at least c(n);

3. For any x 6∈ L, for any π ∈ [d(n)]∗, the probability that V accepts x with
oracle π is at most s(n).

The class MIPc,s[r, q, d] is similar, with the only difference that π is presented
as a sequence of q strings π1, . . . , πq, where πi ∈ [d]∗, and V has the further
restriction that it can read at most one entry of any πi.

From the above definition it follows that MIPc,s[r, q, d] ⊆ PCPc,s[r, q, d] for any
choice of the parameters. The following result is folklore.

Theorem 18. If Max kCSP-(d(n)) is ρ(n)-approximable, then, for any c(n)
and s(n) such that s(n)/c(n) < ρ

(

nO(1)2O(r(n))
)

, it holds

PCPc(n),s(n)[r(n), k(n), d(n)] ⊆ DTIME

(

2O(r(n)+k(n) log d(n))
)

.

Theorem 19. The following statements hold (n is the size of the input):

(1) A constant c > 0 exists such that, for any constant d ≥ 2, it is NP-hard
to approximate Max 2CSP-d within 1/dc. Furthermore, for any ε > 0,

it is infeasible to approximate Max 2CSP-(log n) within 2log1−ε n unless

NP ⊆ DTIME

(

nlogO(1/ε) n
)

.

(2) For any constant d, for any k ≥ 3, for any ε > 0, it is NP-hard to approxi-
mate Max kCSP-d within 1/d⌊k/3⌋ + ε.

(3) Constants k and c exist such that it is NP-hard to approximate Max kCSP-

(log n) within 1/ lognc.
(4) For any k ≥ 5, any ε > 0, it is NP-hard to approximate Max kCSP within

2log1/3−ε n.
(5) For any ε > 0, a constant k = O(1/ε) exists such that it is NP-hard to

approximate Max kCSP within 2log1−ε n.



(6) For any ε > 0, Max FMIP problems are hard to approximate within
1/2⌊σ/3⌋ + ε.

Proof. (Sketch) For (1), Raz [Raz95] has shown that a constant c′ > 0 exists
such that, for any k : Z+ → Z+, NP ⊆ MIP1,2−ck(n) [k(n) log n, 2, 3k(n)]. The
first part of the claim follows by setting k(n) = ⌊log3 d(n)⌋; the second part by

setting k(n) = logO(1/ε)(n). Next, for (2), H̊astad [H̊as97] has shown that for
any ε > 0, for any fixed prime p, NP = PCP1−ε,1/p+ε[log, 3, p]. The claim follows
by choosing p = k/3. Further, (3), (4) and (5) are re-statements of the results of
Raz and Safra [RS97], and Arora and Sudan [AS97] using Theorem 18. Finally,
(6) follows from the hardness of Max kCSP-2 and from Theorem 11. ⊓⊔

Barland et al. asked in [BKT96] whether the problem Max Capacity

Representatives(log n) is constant-approximable. Part (1) of Theorem 19 and
Theorem 10 imply a negative answer to such question. Finally, it is worth to men-
tion the almost tight non-approximability result for the problems of class Max

FMIP.
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