
Structure in Approximation Classes

(Extended abstract)

P. Crescenzi

1

, V. Kann

2

, R. Silvestri

1

, and L. Trevisan

1

1

Dipartimento di Scienze dell'Informazione

Universit�a degli Studi di Roma \La Sapienza"

Via Salaria 113, 00198 Rome, Italy

E-mail: fpiluc,silver,trevisang@dsi.uniroma1.it

2

Department of Numerical Analysis and Computing Science

Royal Institute of Technology

S-100 44 Stockholm, Sweden

E-mail: viggo@nada.kth.se

Summary. The study of the approximability properties of NP-hard optimization problems has

recently made great advances mainly due to the results obtained in the �eld of proof checking.

The last important breakthrough has been obtained in [19] where the APX-completeness of

several important optimization problems is proved thus reconciling `two distinct views of ap-

proximation classes: syntactic and computational'. In this paper we obtain new results on the

structure of two important computationally-de�ned classes: the class NPO (that is, the class of

optimization problems whose underlying decision problem is in NP), and the class APX (that

is, the class of constant-factor approximable NPO problems). In particular, we give the �rst ex-

amples of natural APX-intermediate problems and the �rst examples of natural NPO-complete

problems. Moreover, we state new connections between the approximability properties and the

query complexity of NPO problems.

1

1. Introduction

In his pioneering paper on the approximation of combinatorial optimization problems [15],

David Johnson formally introduced the notion of approximable problem, proposed approxi-

mation algorithms for several problems, and suggested a possible classi�cation of optimization

problems on grounds of their approximability properties. Since then it was clear that, even

though all NP-hard optimization problems are many-one polynomial-time reducible to each

other, they do not share the same approximability properties. The main reason of this fact is

that many-one reductions not always preserve the objective function and, even if this happens,

they rarely preserve the quality of the solutions. It is then clear that a stronger kind of re-

ducibility has to be used. Indeed, an approximation preserving reduction not only has to map

instances of a problem A to instances of a problem B, but it also has to be able to come back

from \good" solutions in B to \good" solutions in A. Surprisingly, the �rst de�nition of this

kind of reducibility was given as long as 13 years after Johnson's paper [26] and, after that, at

least seven di�erent de�nitions of approximation preserving reducibility appeared in the liter-

ature (see Fig. 1). These de�nitions are identical with respect to the overall scheme but di�er

essentially in the way they preserve approximability: they range from the Strict reducibility

in which the error cannot increase to the PTAS-reducibility in which there are basically no

restrictions (see also Chapter 3 of [16]).

PTAS-reducibility [10]

P-reducibility [26]

6

L-reducibility [29] E-reducibility [19]

Strict reducibility [26]

�

�

�

�*

�

�

�

�*

H

H

H

HY

6

H

H

H

HY

Continuous reducibility [31]

A-reducibility [26]

Figure 1. The taxonomy of approximation preserving reducibilities

By means of these reducibilities, several notions of completeness in approximation classes

have been introduced and, basically, two di�erent approaches were followed. On the one hand,

the attention was focused on computationally de�ned classes of problems whose approxima-

bility properties were well understood, such as NPO and APX: along this line of research,

however, almost all completeness results dealt either with arti�cial optimization problems or

with problems for which lower bounds on the quality of the approximation were easily obtain-

able [26, 9]. On the other hand, researchers focused on the logical de�nability of optimization

problems and introduced several syntactically de�ned classes for which natural completeness

results were obtained [29, 27, 20]: unfortunately, the approximability properties of the prob-

lems in these latter classes were not related to standard complexity-theoretic conjectures. A

�rst step towards the reconciling of these two approaches consisted of proving lower bounds on

the approximability of complete problems for syntactically de�ned classes, unless P = NP (or

some other unlikely condition) [3, 23]. More recently, another step has been performed since the

closure of syntactically de�ned classes with respect to approximation preserving reducibility

has been proved to be equal to the more familiar computationally de�ned classes [19].

2

In spite of this important achievement, beyond APX we are still forced to distinguish be-

tween maximization and minimization problems as long as we are interested in completeness

proofs. Indeed, a result of [20] states that it is not possible to rewrite every NP maximization

problem as an NP minimization problem unless NP=co-NP. A natural question is thus whether

this duality extends to approximation preserving reductions.

Finally, even though the existence of \intermediate" arti�cial problems, that is, problems

for which lower bounds on their approximation are not obtainable by completeness results

was proved in [9], a natural question arises: do natural intermediate problems exist? Observe

that this question is also open in the �eld of decision problems even though the existence of

arti�cial NP-intermediate problems has been already proved [22]. For example, it is known that

the graph isomorphism problem cannot be NP-complete unless the polynomial-time hierarchy

collapses [30], but no similar result has ever been obtained showing that the problem does not

belong to P.

1.1. Summary of the Results

The �rst goal of this paper is to de�ne an approximation preserving reducibility such that

all reductions that have appeared in the literature still hold and such that it can be used

for as many approximation classes as possible. In spite of the fact that the L-reducibility

has been the most widely used so far, we will give strong evidence that it cannot be used

to obtain completeness results in \computationally de�ned" classes such as APX, log-APX

(that is, the class of problems approximable within a logarithmic factor), and poly-APX (that

is, the class of problems approximable within a polynomial factor). Indeed, on the one hand

the L-reducibility is too weak and is not approximation preserving (unless P = NP \ co-NP),

on the other it is too strict and does not allow to reduce problems which are known to be

easy to approximate to problems which are known to be hard to approximate (unless P

NP

�

P

NP[O(logn)]

). The weakness of the L-reducibility is, essentially, shared by all reducibilities of

Fig. 1 but the Strict reducibility and the E-reducibility, while the strictness of the L-reducibility

is shared by all of them but the PTAS-reducibility. The reducibility we propose is a combination

of the E-reducibility and of the PTAS-reducibility and, as far as we know, it is the strictest

reducibility that allows to obtain all approximation completeness results that have appeared

in the literature, such as, for example, the APX-completeness of the maximum satis�ability

problem [10, 19] and the poly-APX-completeness of the maximum clique problem [19].

The second group of results refers to the existence of natural complete problems in NPO. In-

deed, both [26] and [9] provide examples of natural complete problems for the class of minimiza-

tion and maximization NP problems, respectively. In Sect. 3 we will show the existence of both

maximization and minimization NPO-complete natural problems. In particular, we prove that

Maximum 0� 1 Programming, Minimum 0� 1 Programming, and Minimum Weighted

Independent Dominating Set are NPO-complete. This result shows how making use of a

natural approximation preserving reducibility is enough powerful to encompass the `duality'

problem raised in [20]. Moreover, the same result can also be obtained when restricting our-

selves to the class NPO PB (that is, the class of polynomially bounded NPO problems). In

particular, we prove that Maximum PB 0 � 1 Programming, Minimum PB 0 � 1 Pro-

gramming and Minimum Independent Dominating Set, are NPO PB-complete. Indeed,

this result can also be obtained as a consequence of Theorem 6(a) of [19]. However, our proof

does not make use of the PCP model.

3

The third group of results refers to the existence of natural APX-intermediate problems.

In particular, in Sect. 4, we will prove that Minimum Bin Packing (and other natural NPO

problems) cannot be APX-complete unless the polynomial-time hierarchy collapses. Since it is

well-known [25] that this problem belongs to APX and that it does not belong to PTAS (that

is, the class of NPO problems with polynomial-time approximation schemes) unless P=NP, our

result thus yields the �rst example of a natural APX-intermediate problem (under a natural

complexity-theoretic conjecture). Roughly speaking, the proof of our result is structured into

two main steps. In the �rst step, we show that ifMinimum Bin Packing is APX-complete then

the problem of answering any set of k non-adaptive queries to an NP-complete problem can be

reduced to the problem of approximating an instance ofMinimum Bin Packing within a ratio

depending on k. In the second step, we show that the problem of approximating an instance

ofMinimum Bin Packing within a given performance ratio can be solved in polynomial-time

by means of a constant number of non-adaptive queries to an NP-complete problem. These

two steps will imply the collapse of the query hierarchy which in turn implies the collapse of

the polynomial-time hierarchy. As a side e�ect of our proof, we will show that if a problem is

APX-complete, then it does not admit an asymptotic approximation scheme: as far as we know,

no general technique to obtain this kind of results was previously known.

In the last group of results, we state new connections between the approximability proper-

ties and the query complexity of NP-hard optimization problems. In several recent papers the

notion of query complexity (that is, the number of queries to an NP oracle needed to solve a

given problem) has been shown to be a very useful tool for understanding the complexity of

approximation problems. In [8, 6] upper and lower bounds have been proved on the number of

queries needed to approximate certain optimization problems (such as the maximum satis�a-

bility problem and the maximum clique problem): these results dealt with the complexity of

approximating the value of the optimum solution and not with the complexity of computing

approximate solutions. In this paper, instead, the complexity of \constructive" approximation

will be addressed by considering the languages that can be recognized by polynomial-time ma-

chines which have a function oracle that solves the approximation problem. In particular, in

Sect. 4.1 we will be able to solve an open question of [6] proving that �nding the vertices of the

largest clique is more di�cult than merely �nding the vertices of a 2-approximate clique (that

is, a clique with at least half the size of the largest clique) unless the polynomial-time hierarchy

collapses. On the one hand, the results of [8, 6] show that the query complexity is a good

measure of complexity to study approximability properties of optimization problems. On the

other, our results show that completeness in approximation classes implies lower bounds on the

query complexity. In Sect. 5 we �nally show that the two approaches are basically equivalent by

giving su�cient and necessary conditions for approximation completeness in terms of query-

complexity hardness and combinatorial properties. The importance of these results is twofold:

they give new insights into the structure of complete problems in approximation classes and

they reconcile the approach based on standard computation models with the approach based on

the computation model for approximation proposed by [7]. As a �nal observation, our results

can be seen as an extension of some results of [19] in which general su�cient conditions for

APX-completeness are proved.

Due to the lack of space, the proofs of our results are all contained in the appendix where

the problems mentioned in the text are also de�ned.

4

1.2. Preliminaries

Since several introductory books on computational complexity theory [5, 12, 28] make some

mention of approximation classes, we will start the following preliminaries on approximation

classes with some mention of computational complexity theory.

De�nition 1. A language L belongs to the class P

NP[f(n)]

if it is decidable by a polynomial-

time oracle Turing machine which asks at most f(n) queries to an NP-complete oracle, where

n is the input size.

The class QH is equal to the union

S

k>1

P

NP[k]

. Similarly, we can de�ne the function classes

FP

NP[f(n)]

.

Theorem 1 ([33]). For any function f(n) 2 O(logn), if P

NP[f(n)+1]

� P

NP[f(n)]

then the

polynomial-time hierarchy collapses.

We now give some standard de�nitions in the �eld of optimization and approximation theory.

De�nition 2. An NP optimization problem A is a fourtuple (I; sol;m; goal) such that

1. I is the set of the instances of A and it is recognizable in polynomial time.

2. Given an instance x of I, sol(x) denotes the set of feasible solutions of x. These solutions

are short, that is, a polynomial p exists such that, for any y 2 sol(x), jyj � p(jxj). Moreover,

it is decidable in polynomial time whether, for any x and for any y such that jyj � p(jxj),

y 2 sol(x).

3. Given an instance x and a feasible solution y of x, m(x; y) denotes the positive integer

measure of y (often also called the value of y). The function m is computable in polynomial

time and is also called the objective function.

4. goal 2 fmax;ming.

The class NPO is the set of all NP optimization problems.

The goal of an NPO problem with respect to an instance x is to �nd an optimum solution,

that is, a feasible solution y such that m(x; y) = goalfm(x; y

0

) : y

0

2 sol(x)g.

In the following opt will denote the function mapping an instance x to the measure of an

optimum solution. Max NPO is the set of maximization NPO problems and Min NPO is the

set of minimization NPO problems.

An NPO problem is said to be polynomially bounded if a polynomial q exists such that, for

any instance x and for any solution y of x, m(x; y) � q(jxj). The class NPO PB is the set of

all polynomially bounded NPO problems. NPO PB = Max PB [Min PB where Max PB is

the set of all maximization problems in NPO PB and Min PB is the set of all minimization

problems in NPO PB.

De�nition 3. Let A be an NPO problem. Given an instance x and a feasible solution y of x,

we de�ne the performance ratio of y with respect to x as

R(x; y) = max

�

m(x; y)

opt(x)

;

opt(x)

m(x; y)

�

:

The performance ratio is always a number greater than 1 and is as close to 1 as the feasible

solution is close to the optimum one.

5

De�nition 4. Let A be an NPO problem and let T be an algorithm that, for any instance x

of A, returns a feasible solution T (x). Given an arbitrary function r : N ! (1;1), we say that

T is an r(n)-approximate algorithm for A if, for any instance x, the performance ratio of the

feasible solution T (x) with respect to x veri�es the following inequality:

R(x; T (x))� r(jxj):

De�nition 5. Given a class of functions F , an NPO problem A belongs to the class F -APX

if an r(n)-approximate polynomial-time algorithm T for A exists, for some function r 2 F .

In particular, APX, log-APX, and poly-APX will denote the classes F -APX with F equal to

the set of constant functions, to the set O(logn), and to the set of polynomials, respectively.

De�nition 6. An NPO problem A belongs to the class PTAS if an algorithm T exists such

that, for any �xed rational r > 1, T (�; r) is a polynomial-time r-approximate algorithm for A.

Clearly, the following inclusions hold:

PTAS � APX � log-APX � poly-APX � NPO:

It is also easy to see that these inclusions are strict if and only if P 6= NP.

2. A new approximation preserving reducibility

We will justify our de�nition by emphasizing the disadvantages of previously known reducibil-

ities.

2.1. The L-reducibility

The �rst reducibility we shall consider is the L-reducibility (for linear reducibility) which is

often most practical to use in order to show that a problem is at least as hard to approximate

as another.

De�nition 7. Let A and B be two NPO problems. A is said to be L-reducible to B, in symbols

A �

L

B, if two functions f and g and two positive constants � and � exist such that:

1. For any x 2 I

A

, f(x) 2 I

B

is computable in polynomial time.

2. For any x 2 I

A

and for any y 2 sol

B

(f(x)), g(x; y) 2 sol

A

(x) is computable in polynomial

time.

3. For any x 2 I

A

, opt

B

(f(x)) � �opt

A

(x).

4. For any x 2 I

A

and for any y 2 sol

B

(f(x)),

jopt

A

(x)�m

A

(x; g(x; y))j � �jopt

B

(f(x))�m

B

(f(x); y)j

Clearly the L-reducibility preserves membership in PTAS. However, the next result gives a

strong evidence that, in general, this reducibility is not approximation preserving. It also shows

that the behavior of L-reductions depends on the type (that is, maximization or minimization)

of the problems involved.

Theorem 2. The following hold:

6

1. L-reductions from minimization problems to optimization problems are approximation pre-

serving.

2. L-reductions from maximization problems to optimization problems are not approximation

preserving if and only if the -reducibility is di�erent from the many-one reducibility.

Observe that in [14] it is shown that the hypothesis of the point (2) above is somewhat inter-

mediate between P 6= NP \ co-NP and P 6= NP. In other words, there is strong evidence that,

even though the L-reducibility is suitable to prove APX-completeness results, this reducibility

cannot be used to de�ne the notion of completeness within classes beyond APX. Moreover, it

cannot be used to obtain positive results, that is, the existence of approximation algorithms

via reductions.

2.2. The E-reducibility

The drawbacks of the L-reducibility are mainly due to the fact the relation between the per-

formance ratios (not necessarily linear) is obtained by putting separate linear constraints on

the relations between both the optimum values and the absolute errors. The E-reducibility (for

error reducibility), instead, imposes a linear relation directly between the performance ratios.

De�nition 8. Let A and B be two NPO problems. A is said to be E-reducible to B, in symbols

A �

E

B, if two functions f and g and a positive constant � exist such that:

1. For any x 2 I

A

, f(x) 2 I

B

is computable in polynomial time.

2. For any x 2 I

A

and for any y 2 sol

B

(f(x)), g(x; y) 2 sol

A

(x) is computable in polynomial

time.

3. For any x 2 I

A

and for any y 2 sol

B

(f(x)),

R

A

(x; g(x; y))� 1 + �(R

B

(f(x); y)� 1):

Observe that, for any function r, an E-reduction maps r(n)-approximate solutions into (1 +

�(r(n)� 1))-approximate solutions so that it not only preserves membership in PTAS but also

membership in any F -APX class where F is closed with respect to linear applications, such

as poly-APX, log-APX, and APX. As a consequence of this observation and of the results of

the previous section, we have that NPO problems should exist which are L-reducible to each

other but not E-reducible. However, the following result shows that within the class APX the

E-reducibility is just a generalization of the L-reducibility.

Proposition 1. For any two NPO problems A and B, if A �

L

B and A 2 APX, then A �

E

B.

Clearly, the converse of the above result does not hold since no problem in NPO�NPO PB

can be L-reduced to a problem in NPO PB while any problem in PO can be E-reduced to any

NPO problem.

The E-reduction is still somewhat too strict. Indeed, the next result shows that, unless

P

NP

� P

NP[O(logn)]

, PTAS problems exist which are not reducible to APX problems (observe

that from the above proposition this fact holds for the L-reducibility as well). Intuitively, this

unnatural behavior is due to the fact that an E-reduction preserves optimum values.

Proposition 2. Maximum Knapsack is not E-reducible to any NPO PB problem unless

P

NP

� P

NP[O(logn)]

.

7

2.3. The AP-reducibility

We have just observed that a drawback of the E-reducibility consists of preserving optimum

solutions. This is due to the fact that the linear relation between the performance ratios is

too restrictive. According to the de�nition of approximation preserving reducibilities given in

[9], we could overcome this problem by expressing this relation by means of an implication.

However, this solution is not su�cient: intuitively, since the function g does not know which

approximation is required, it must still map optimum solutions into optimum solutions. The

�nal step thus consists in letting the function g depend on the performance ratio. Indeed, in

the following de�nition (which is a restriction of the PTAS-reducibility introduced in [10]), we

also let the function f depend on this ratio because this feature will turn out to be useful in

order to prove interesting characterizations of complete problems in approximation classes.

De�nition 9. Let A and B be two NPO problems. A is said to be AP-reducible to B, in

symbols A �

AP

B, if two functions f and g and a positive constant � exist such that:

1. For any x 2 I

A

and for any r > 1, f(x; r) 2 I

B

.

2. For any x 2 I

A

, for any r > 1, and for any y 2 sol

B

(f(x; r)), g(x; y; r) 2 sol

A

(x).

3. f and g are computable by two algorithms T

f

and T

g

, respectively, whose running time is

polynomial for any �xed r.

4. For any x 2 I

A

, for any r > 1, and for any y 2 sol

B

(f(x; r)),

R

B

(f(x; r); y)� r implies R

A

(x; g(x; y; r))� 1 + �(r � 1):

Observe that, clearly, the AP-reducibility is a generalization of the E-reducibility. Moreover,

it is easy to see that Proposition 2 does not hold for the AP-reducibility: indeed, any PTAS

problem is AP-reducible to any NPO problem. As far as we know, this reducibility is the

strictest one appearing in the literature that allows to obtain natural APX-completeness results

(for instance, the APX-completeness of Maximum Satisfiability [10, 19]).

3. NPO-complete problems

We will in this section prove that there are natural problems that are complete for the classes

NPO and NPO PB. Previously, completeness results have been obtained just for Max NPO,

Min NPO, Max PB, and Min PB [9, 26, 4, 17]. One example of such a result is the following

theorem.

Theorem 3 ([26, 9]). MinimumWeighted Satisfiability isMin NPO-complete andMax-

imum Weighted Satisfiability is Max NPO-complete, even if only a subset fv

1

; : : : ; v

s

g of

the variables has nonzero weight and w(v

i

) = 2

s�i

for i 2 [1::s].

We will construct AP-reductions from maximization problems to minimization problems

and vice versa. Using these reductions we will show that a problem that is Max NPO-complete

or Min NPO-complete in fact is complete for the whole of NPO, and that a problem that is

Max PB-complete or Min PB-complete is complete for the whole of NPO PB.

Theorem 4. MinimumWeighted Satisfiability andMaximumWeighted Satisfiabil-

ityare NPO-complete.

8

Corollary 1. Any Min NPO-complete problem is NPO-complete and any Max NPO-complete

problem is NPO-complete. The problems Minimum 0� 1 Programming, Traveling Sales-

person Problem, and Minimum Weighted Independent Dominating Set are NPO-

complete.

We can also show that there are natural complete problems for the class of polynomially

bounded NPO problems.

Theorem 5. Maximum PB 0� 1 Programming and Minimum PB 0� 1 Programming

are NPO PB-complete.

Corollary 2. Any Min PB-complete problem is NPO PB-complete and any Max PB-complete

problem is NPO PB-complete.

By using the construction of the proof of Theorem 5 together with the result that Longest

Induced Path is not approximable within jV j

1�"

for any " > 0 unless P = NP [24], one can

show the following new hardness results for some NPO PB-complete problems.

Theorem 6. The following problems are not approximable within n

1�"

for any " > 0 unless

P = NP: Maximum Number of Satisfiable Formulas [27] (n is the number of equations),

Maximum Distinguished Ones [27] (n is the number of distinguished variables), Maximum

PB 0� 1 Programming (n is the number of inequalities).

The following problems are not approximable within n

1=2�"

for any " > 0 unless P = NP:

Maximum PB 0�1 Programming (n is the number of variables), Maximum Constrained

Binary Satisfiable Linear Subsystem [1] (n is the number of variables).

The following problems are not approximable within n

1=3�"

for any " > 0 unless P = NP:Max-

imum Ones [27] (n is the number of variables), Maximum Irrelevant Binary Variables

in Linear System [2] (n is the number of variables).

4. Query complexity and APX-intermediate problems

De�nition 10. Let A be an NPO problem and r be a function, then A

r(n)

is the following

multi-valued partial function: given an instance x of A, A

r(n)

(x) is the set of feasible solutions

y of x such that R(x; y) � r(jxj).

De�nition 11. Given an NPO problem A and a rational r � 1, a language L belongs to P

A

r

if two polynomial-time computable functions f and g exist such that, for any x, f(x) is an

instance of A, and, for any y 2 A

r

(f(x)), g(x; y) = 1 if and only if x 2 L.

The class AQH(A) is equal to the union

S

r>1

P

A

r

. Using techniques similar to those of [6, 8],

we can prove the following result.

Proposition 3. For any problem A in APX, AQH(A) � QH.

Recall that an NPO problem admits an asymptotic polynomial-time approximation scheme

if an algorithm T exists such that, for any x and for any r > 1, R(x; T (x; r)) � r + k=opt(x)

with k constant and the time complexity of T (x; r) is polynomial with respect to jxj. The

class of problems that admit an asymptotic polynomial-time approximation scheme is usually

denoted as PTAS

1

. The following result shows that, for this class, the previous fact can be

strengthened.

Proposition 4. Let A 2 PTAS

1

. Then, a constant h exists such that AQH(A) � P

NP[h]

.

9

The following fact, instead, states that any language L in the query hierarchy can be decided

using just one query to A

"

where A is APX-complete and " depends on the level of the query

hierarchy L belongs to.

Proposition 5. For any APX-complete problem A, QH � AQH(A).

By combining Propositions 5 and 3, we thus have the following result that characterizes the

approximation query hierarchy of the hardest problems in APX.

Theorem 7. For any APX-complete problem A, AQH(A) = QH.

Finally, as a consequence of this theorem, of Proposition 4, of Theorem 1, and of the results

of [13, 18, 11] we have the following result.

Corollary 3. If the polynomial-time hierarchy does not collapse, then Minimum Degree

Spanning Tree, Minimum Bin Packing, and Minimum Edge Coloring are APX-

intermediate.

4.1. A remark on Maximum Clique

The following two propositions are the analogous of Propositions 3 within NPO.

Proposition 6. For any NPO problem A and for any r > 1, P

A

r

� P

NP[O(logn)]

.

Proposition 7. For any NPO PB problem A and for any r > 1, P

A

r

� P

NP[log logn+O(1)]

.

From Proposition 7, from the fact that P

NP[logn]

is contained in P

MC

1

where MC stands

for Maximum Clique [21], and from Theorem 1, it thus follows the next result that solves an

open question posed in [6]. Informally, this result states that it is not possible to reduce the

problem of �nding a maximum clique to the problem of �nding a 2-approximate clique (unless

the polynomial-time hierarchy collapses).

Theorem 8. If P

MC

1

� P

MC

2

then the polynomial-time hierarchy collapses, where MC stands

for Maximum Clique.

5. Query complexity and completeness in approximation classes

In this �nal section, we shall give a full characterization of problems complete for poly-APX

and for APX, respectively, in terms of query complexity.

De�nition 12. NPF

NP[q(n)]

is the class of partial multi-valued functions computable by non-

deterministic polynomial-time Turing machines which ask at most q(n) queries to an NP oracle

in the entire computation tree.

1

De�nition 13. Let F and G be two partial multi-valued functions. We say that F many-one

reduces to G (in symbols, F�

mv

G) if two polynomial-time algorithms t

1

and t

2

exist such

that, for any x in the domain of F , t

1

(x) is in the domain of G and, for any y 2 G(t

1

(x)),

t

2

(x; y) 2 F (x).

1

We say that a multi-valued partial function F is computable by a nondeterministic Turing machine N if,

for any x in the domain of F , an halting computation path of N(x) exists and any halting computation path of

N(x) outputs a value of F (x).

10

We shall say that a function F is hard for NPF

NP[q(n)]

if, for any G 2 NPF

NP[q(n)]

, G�

mv

F .

The following de�nition is a constructive version of the de�nition of self-improvability given

in [27].

De�nition 14. A problem A is self-improvable if two algorithms t

1

and t

2

exist such that, for

any instance x of A and for any two rational r

1

; r

2

> 1, x

0

= t

1

(x; r

1

; r

2

) is an instance of A

and, for any y

0

2 A

r

2

(x

0

), y = t

2

(x; y

0

; r

1

; r

2

) 2 A

r

1

(x). Moreover, for any �xed r

1

and r

2

, the

running time of t

1

and t

2

is polynomial.

From [27] it follows that the equivalence with respect to the AP-reducibility preserves the

self-improvability property. We are now ready to state the main result of this section.

Theorem 9. A poly-APX problem A is poly-APX-complete if and only if it is self-improvable

and A

r

0

is NPF

NP[log logn+O(1)]

-hard for some r

0

> 1.

The above theorem cannot be proved without the dependency of both f and g on r in the

de�nition of AP-reducibility. Indeed, it is possible to prove that if only g has this property

then, unless the polynomial-time hierarchy collapses, a self-improvable problem A exists such

that A

2

is NPF

NP[log logn+O(1)]

-hard and A is not poly-APX-complete.

In order to characterize APX-complete problems, we have to de�ne the following combina-

torial property.

De�nition 15. An NPO problem A is linearly additive if a constant � and two algorithms t

1

and t

2

exist such that, for any rational " > 0 and for any sequence x

1

; : : : ; x

k

of instances of A,

x

0

= t

1

(x

1

; : : : ; x

k

; ") is an instance of A and, for any y

0

2 A

1+"�=k

(x

0

), t

2

(x

1

; : : : ; x

k

; y

0

; ") =

y

1

; : : : ; y

k

where each y

i

is a (1+ ")-approximate solution of x

i

. Moreover, the running time of

t

1

and t

2

is polynomial for every �xed " > 0.

Theorem 10. An APX problem A is APX-complete if and only if it is linearly additive and

a constant r

0

exists such that A

r

0

is NPF

NP[1]

-hard.

Note that linear additivity plays for APX problem more or less the same role of self-

improvability in poly-APX. These two properties are, in a certain sense, one the opposite of the

other: while the query complexity of APX-complete problems depends on the performance ratio

and does not depend on the size of the instance, the query complexity of poly-APX-complete

problems depends on the size of the instance and does not depend on the performance ratio.

Indeed, it is possible to prove that no APX-complete problem can be self-improvable (un-

less P= NP) and that no poly-APX-complete problem can be linearly additive (unless the

polynomial-time hierarchy collapses).

It is also possible to establish query complexity results for log-APX-complete problem. In

particular, even though we have not been able to establish a full characterization of log-APX-

complete problems, we can prove the following result.

Theorem 11. No log-APX-complete problem can be self-improvable unless the polynomial

time-hierarchy collapses.

It is then an interesting open question to �nd a characterizing combinatorial property of log-

APX-complete problems. Moreover, as a consequence of the above theorem and of the results

of [19], we conjecture that the minimum set cover problem is not self-improvable.

11

References

1. Amaldi, E., and Kann, V. (1993), \The complexity and approximability of �nding maximumfeasible

subsystems of linear relations", Technical Report ORWP-11-93, Department of Mathematics, Swiss

Federal Institute of Technology, Lausanne. Theoretical Comput. Sci., to appear.

2. Amaldi, E., and Kann, V. (1994), \On the approximability of removing the smallest number of

relations from linear systems to achieve feasibility", Technical Report ORWP-6-94, Department of

Mathematics, Swiss Federal Institute of Technology, Lausanne.

3. Arora, S., Lund, C., Motwani, R., Sudan, M., and Szegedy, M. (1992), \Proof veri�cation and

hardness of approximation problems", Proc. of 33rd Ann. IEEE Symp. on Foundations of Comput.

Sci., IEEE Computer Society, 14{23.

4. Berman, P., and Schnitger, G. (1992), \On the complexity of approximating the independent set

problem", Inform. and Comput. 96, 77{94.

5. Bovet, D.P., and Crescenzi, P. (1993), Introduction to the theory of complexity. Prentice Hall.

6. Chang, R. (1994), \On the query complexity of clique size and maximum satis�ability", Proc. 9th

Ann. Structure in Complexity Theory Conf., IEEE Computer Society, 31{42.

7. Chang, R. (1994), \A machine model for NP-approximation problems and the revenge of the

Boolean hierarchy", EATCS Bulletin 54, 166{182.

8. Chang, R., Gasarch, W.I., and Lund, C. (1994), \On bounded queries and approximation", Tech-

nical Report TR CS-94-05, Department of Computer Science, University of Maryland Baltimore

County.

9. Crescenzi, P., and Panconesi, A. (1991), \Completeness in approximation classes", Inform. and

Comput. 93, 241{262.

10. Crescenzi, P., and Trevisan, L. (1994), \On approximation scheme preserving reducibility and its

applications", Proc. 14th FSTTCS, Lecture Notes in Comput. Sci. 880, Springer-Verlag, 330{341.

11. F�urer, M., and Raghavachari, B. (1992), \Approximating the minimum degree spanning tree to

within one from the optimal degree", Proc. Third Ann. ACM-SIAM Symp. on Discrete Algorithms,

ACM-SIAM, 317{324.

12. Garey, M.R., and Johnson, D.S. (1979) Computers and intractability: a guide to the theory of

NP-completeness. Freeman, 1979.

13. Holyer, I. (1981), \The NP-completeness of edge-coloring", SIAM J. Computing 10, 718{720.

14. Impagliazzo, R., and Naor, M. (1988), \Decision trees and downward closures", Proc. 3rd Structure

in Complexity Theory Conference, IEEE Computer Society, 29{38.

15. Johnson, D.S. (1974), \Approximation algorithms for combinatorial problems", J. Comput. System

Sci. 9, 256{278.

16. Kann, V. (1992), On the approximability of NP-complete optimization problems, PhD thesis, De-

partment of Numerical Analysis and Computing Science, Royal Institute of Technology, Stockholm.

17. Kann, V. (1994), \Polynomially bounded minimization problems that are hard to approximate",

Nordic J. Computing 1, 317{331.

18. Karmarkar, N., and Karp, R.M. (1982), \An e�cient approximation scheme for the one-dimensional

bin packing problem", Proc. of 23rd Ann. IEEE Symp. on Foundations of Comput. Sci., IEEE

Computer Society, 312{320.

19. Khanna, S., Motwani, R., Sudan, M., and Vazirani, U. (1994), \On syntactic versus computational

views of approximability", Proc. of 35th Ann. IEEE Symp. on Foundations of Comput. Sci., IEEE

Computer Society, 819{830.

12

20. Kolaitis, P. G., and Thakur, M. N. (1991), \Approximation properties of NP minimization classes",

Proc. Sixth Ann. Structure in Complexity Theory Conf., IEEE Computer Society, 353{366.

21. Krentel, M.W. (1988), \The complexity of optimization problems", J. Comput. System Sci. 36,

490{509.

22. Ladner, R.E. (1975), \On the structure of polynomial-time reducibility", J. ACM 22, 155{171.

23. Lund, C., and Yannakakis, M. (1994), \On the hardness of approximatingminimization problems",

J. ACM 41, 960{981.

24. Lund, C., and Yannakakis, M. (1993), \The approximation of maximum subgraph problems",

Proc. of 20th International Colloquium on Automata, Languages and Programming, Lecture Notes

in Comput. Sci. 700, Springer-Verlag, 40{51.

25. Motwani, R. (1992), \Lecture notes on approximation algorithms", Technical Report STAN-CS-

92-1435, Department of Computer Science, Stanford University, 1992.

26. Orponen, P., and Mannila, H. (1987), \On approximation preserving reductions: Complete problems

and robust measures", Technical Report C-1987-28, Department of Computer Science, University

of Helsinki.

27. Panconesi, A., and Ranjan, D. (1993), \Quanti�ers and approximation", Theoretical Computer

Science 107, 145{163.

28. Papadimitriou, C.H. (1993), Computational complexity. Addison-Wesley.

29. Papadimitriou, C. H., and Yannakakis, M. (1991), \Optimization, approximation, and complexity

classes", J. Comput. System Sci. 43, 425{440.

30. Sch�oning, U. (1986), \Graph isomorphism is in the low hierarchy", Proc. 4th Ann. Symp. on

Theoretical Aspects of Comput. Sci., Lecture Notes in Comput. Sci. 247, Springer-Verlag, 114{124.

31. Simon, H.U. (1989), \Continuous reductions among combinatorial optimization problems", Acta

Informatica 26, 771{785.

32. Valiant, L. (1976), \Relative complexity of checking and evaluating", Information Processing

Letters 5, 20{23.

33. Wagner, K. (1988), \Bounded query computations", Proc. 3rd Ann. Structure in Complexity

Theory Conf., IEEE Computer Society, 260{277.

13

Appendix

We will now give the proofs of the results presented in the paper, the de�nitions of the

problems and some additional references.

A. Proof of the results of Section 2

Proof of Theorem 2. (1) follows from the fact, noted in [29], that if a minimization problem

A L-reduces to an optimization problem B and there is a polynomial-time r-approximation

algorithm for B, then there is a polynomial-time (1 + ��(r � 1))-approximation algorithm for

A.

In order to prove (2), �rst recall that in [36] it has been shown that the -reducibility

is di�erent from the many-one reducibility if and only if a polynomial-time recognizable set

of satis�able Boolean formulas exists for which no polynomial-time algorithm can compute

a satisfying assignment for each of them. Assume now that there exists a polynomial-time

recognizable set S of satis�able Boolean formulas for which no polynomial-time algorithm

can compute a satisfying assignment for each of them. Consider the following maximization

problems A = (I

A

; sol

A

; m

A

) and B = (I

B

; sol

B

; m

B

) where

1. I

A

= S, sol

A

(x) = fyjy is a truth assignment for xg, and

2.

m

A

(x; y) =

(

jxj if y is a satisfying assignment for x,

1 otherwise

and

1. I

B

= S, sol

B

(x) = fyjy is a truth assignment for xg, and

2.

m

B

(x; y) =

(

2jxj if y is a satisfying assignment for x,

jxj otherwise.

Clearly, problem B is in APX, while if A were in APX then there were a polynomial-time

algorithm that computes a satisfying assignment for each formula in S, contradicting the as-

sumption. Moreover, it is easy to see that A is L-reducible to B.

Conversely, assume that for any polynomial-time recognizable set of satis�able Boolean

formulas there is a polynomial-time algorithm computing a satisfying assignment for each

formula in the set.

Suppose that a maximization problem A is L-reducible to a maximization problem B via

functions f and g and that B is r-approximable (r > 1). Let x be an instance of A and let y

be a solution of f(x) such that opt

B

(f(x))=m

B

(f(x); y) � r. For the sake of convenience, set

opt

A

= opt

A

(x), m

A

= m

A

(x; g(x; y)), opt

B

= opt

B

(f(x)), and m

B

= m

B

(f(x); y). We show

that m = maxfm

A

; m

B

=�g is such that m � opt

A

and opt

A

=m � 1 + ��(r � 1), that is, m is

a non-constructive approximation of opt

A

. Let =

�r

1+��(r�1)

. There are two cases.

1. opt

B

� opt

A

. By the de�nition of the L-reducibility, opt

A

� m

A

� �(opt

B

� m

B

). Since

opt

B

� opt

A

and opt

B

=m

B

� r, it holds that

opt

A

�m

A

opt

A

� �

opt

B

�m

B

opt

B

� �(1�1=r). Hence,

opt

A

=m � opt

A

=m

A

� 1 + ��(r � 1).

14

2. opt

B

> opt

A

. It holds that

opt

A

m

�

opt

A

m

B

=�

<

�(opt

B

=)

m

B

(since opt

A

< opt

B

=)

�

�(opt

B

=)

(opt

B

=r)

(since m

B

� opt

B

=r)

=

�r

= 1 + ��(r � 1):

Now, it is not hard to see that a satis�able Boolean formula � can be constructed, in polynomial

time in the length of x, so that any satisfying assignment for � encodes a solution of x whose

measure is at least m. By assumption it is possible to compute in polynomial time a satisfying

assignment for � and thus an approximate solution for x.

Finally, if B is a minimization problem, we �rst L-reduce B to a maximization problem C

in APX [19] and then apply the above argument. ut

Proof of Proposition 1. Let T be an r-approximation algorithm for A with r constant and

let (f

L

; g

L

; �

L

; �

L

) be an L-reduction from A to B. Then, for any x 2 I

A

and for any y 2

sol

B

(f

L

(x)), E

A

(x; g

L

(x; y))� �

L

�

L

E

B

(f

L

(x); y) where

E(w; z) =

jopt(w)�m(w; z)j

opt(w)

denotes the relative error of the feasible solution z with respect to the instance w. If A is a

minimization problem then, for any x 2 I

A

and for any y 2 sol

B

(f

L

(x)),

R

A

(x; g

L

(x; y)) = 1 +E

A

(x; g

L

(x; y)) � 1 + �

L

�

L

E

B

(f

L

(x); y)� 1 + �

L

�

L

(R

B

(f

L

(x); y)� 1):

Otherwise we distinguish the following two cases.

1. E

B

(f

L

(x); y) �

1

2�

L

�

L

: in this case we have that

R

A

(x; g

L

(x; y))� 1 =

E

A

(x; g

L

(x; y))

1�E

A

(x; g

L

(x; y))

�

�

L

�

L

E

B

(f

L

(x); y)

1� �

L

�

L

E

B

(f

L

(x); y)

� 2�

L

�

L

(R

B

(f

L

(x); y)� 1):

2. E

B

(f

L

(x); y) >

1

2�

L

�

L

: in this case we have that R

B

(f

L

(x); y)� 1 �

1

2�

L

�

L

so that

R

A

(x; T (x))� 1 � r � 1 � 2�

L

�

L

(r � 1)(R

B

(f

L

(x); y)� 1):

We can thus de�ne the E-reduction (f

E

; g

E

; �

E

) as follows:

1. For any x 2 I

A

, f

E

(x) = f

L

(x).

15

2. For any x 2 I

A

and for any y 2 sol

B

(f

E

(x)),

g

E

(x; y) =

(

g

L

(x; y) if m

B

(f

E

(x); y) � m

B

(f

E

(x); T (x)),

T (x) otherwise.

3. �

E

= maxf2�

L

�

L

; 2�

L

�

L

(r� 1)g.

From the above discussion it follows that this reduction is indeed an E-reduction. ut

Proof of Proposition 2. From the results of [21] it follows that P

NP

� P

MK

1

, where MK stands

for Maximum Knapsack. If Maximum Knapsack is E-reducible to an NPO PB problem

A, then P

MK

1

� P

A

1

. It is easy to see that P

A

1

� P

NP[O(logn)]

which, in turn, implies that

P

NP

� P

NP[O(logn)]

. ut

B. Proof of the results of Section 3

Proof of Theorem 4. In order to establish the NPO-completeness of Minimum Weighted

Satisfiability we just have to show that there is an AP-reduction from a Max NPO-complete

problem toMinimum Weighted Satisfiability. As the Max NPO-complete problem we will

use the restricted version of Maximum Weighted Satisfiability from Theorem 3.

Let x be an instance of Maximum Weighted Satisfiability, i.e. a formula � over vari-

ables v

1

; : : : ; v

s

with weights w(v

i

) = 2

s�i

and some variables with weight zero. We will �rst

give a simple reduction that preserves the approximability within the factor 2, and then adjust

it to obtain an AP-reduction.

Let f(x) be the formula � ^ �

1

^ � � � ^ �

s

where �

i

= (z

i

� v

1

^ � � � ^ v

i�1

^ v

i

), where

z

1

; : : : ; z

s

are new variables with weights w(z

i

) = 2

i

for i 2 [1::s] and where all other variables

(even the v-variables) have zero weight. If y is a satisfying assignment of f(x), let g(x; y) be the

restriction of the assignment to the variables that occur in �. This assignment clearly satis�es

�.

Note that exactly one of the z-variables is true in any satisfying assignment of f(x). If all

z-variables were false, then all v-variables would be false and the value of the objective function

of x would be zero, which is not allowed.

m(f(x); y) = 2

i

, z

i

= 1

, v

1

= v

2

= � � � = v

i�1

= 0; v

i

= 1

, 2

s�i

� m(x; g(x; y))< 2 � 2

s�i

,

2

s

m(f(x); y)

� m(x; g(x; y))< 2

2

s

m(f(x); y)

This is in particular true for the optimum solution. Thus the performance ratio forMaximum

Weighted Satisfiability is

R(x; g(x; y)) =

opt(x)

m(x; g(x; y))

<

2

2

s

opt(f(x))

2

s

m(f(x); y)

= 2

m(f(x); y)

opt(f(x))

= 2R(f(x); y);

16

which means that the reduction preserves the approximability within 2.

Let us now extend the construction in order to obtain R(x; g(x; y))� (1 + 2

�k

)R(f

k

(x); y)

for every nonnegative integer k. The reduction described above corresponds to k = 0.

We use 2

k

� s new variables named z

i;b

1

;:::;b

k

, where i 2 [1::s] and b

j

2 f0; 1g for j 2 [1::k].

Let f

k

(x) = � ^

V

�

i;b

1

;:::;b

k

, where

�

i;b

1

;:::;b

k

= (z

i;b

1

;:::;b

k

� v

1

^ � � � ^ v

i�1

^ v

i

^ (v

i+1

= b

1

) ^ � � � ^ (v

i+k

= b

k

)) :

De�ne g(x; y) as above. Finally, de�ne

w(z

i;b

1

;:::;b

k

) =

&

K � 2

s

w(v

i

) +

P

k

j=1

b

j

w(v

i+j

)

'

=

&

K � 2

i

1 +

P

k

j=1

b

j

2

�j

'

:

By choosing K large enough (about 2

s

) we can disregard the e�ect of the ceiling operation in

the following computations.

As in the previous reduction exactly one of the z-variables is true in any satisfying assign-

ment of f

k

(x). If, in a solution y of f

k

(x), z

i;b

1

;:::;b

k

= 1, then we have m(f

k

(x); y) = w(z

i;b

1

;:::;b

k

)

and we know that

m(x; g(x; y))� w(v

i

) +

k

X

j=1

b

j

w(v

i+j

) = 2

s�i

(1 +

k

X

j=1

b

j

2

�j

)

and that

m(x; g(x; y))� w(v

i

) +

k

X

j=1

b

j

w(v

i+j

) +

s

X

j=k+i+1

w(v

j

) < 2

s�i

(1 +

k

X

j=1

b

j

2

�j

)(1 + 2

�k

):

Thus we get

K � 2

s

m(f

k

(x); y)

� m(x; g(x; y))<

K � 2

s

m(f

k

(x); y)

(1 + 2

�k

):

and therefore R(x; g(x; y)) < (1 + 2

�k

)R(f

k

(x); y). Given any r > 1, if we choose k such that

2

�k

� (r � 1)=r, e.g. k = dlog r � log(r � 1)e, then R(f

k

(x); y) � r implies R(x; g(x; y)) <

(1 + 2

�k

)R(f

k

(x); y) � r+ r2

�k

� r+ r� 1 = 1+ 2(r� 1). This is obviously an AP-reduction

with � = 2.

A very similar proof can be used to show that Maximum Weighted Satisfiability is

NPO-complete. ut

Proof of Corollary 1. Theorem 4 says that Minimum Weighted Satisfiability is NPO-

complete. Per de�nitionMinimumWeighted Satisfiability can be reduced to any Min NPO-

complete problem. Hence any Min NPO-complete problem is also complete for NPO. In the

same way, since Maximum Weighted Satisfiability is NPO-complete and can be reduced

to any Max NPO-complete problem, any Max NPO-complete problem is NPO-complete.

Min NPO-completeness forMinimum 0�1 Programming and Traveling Salesperson

Problem was shown in [26], and therefore they are NPO-complete. ForMinimum Weighted

Independent Dominating Set we need a PTAS-reduction fromMinimum Weighted Sat-

isfiability.

Given an instance of Minimum Weighted Satisfiability, we �rst write the formula in

conjunctive normal form. For every variable v

i

we construct two nodes a

i

and a

i

with weights

17

w(a

i

) = w(a

i

) = w(v

i

). For every clause c

j

we construct a node b

j

with enormous weight. We

choose a weight larger that the sum of the weights of all variables, namely

P

s

i=1

w(v

i

) + 1.

We add edges between a

i

and a

i

for each i. For each i and j we also add edges as follows. If

the variable v

i

is used positively in clause c

j

we add an edge between the corresponding nodes

a

i

and b

j

. If the variable v

i

is used negatively in clause c

j

we add an edge between a

i

and b

j

.

One solution to the independent dominating set problem is fa

1

; : : : ; a

s

g, and this solution

has smaller objective value than any solution that contains a b-node. It is easy to see that in

any solution at most one of a

i

and a

i

for any i is included, that the corresponding assignment

(v

i

= 1 if and only if a

i

is included) satis�es the CNF formula, and that the objective values

of both solutions are the same. The reduction is PTAS-preserving. ut

Proof of Theorem 5.Maximum PB 0�1 Programming is known to be Max PB-complete [4]

and Minimum PB 0� 1 Programming is known to be Min PB-complete [17]. Thus we just

have to show that there are AP-reductions from a Min PB-complete problem toMaximum PB

0�1 Programming and from a Max PB-complete problem toMinimum PB 0�1 Program-

ming. As the Min PB-complete problem we will use Minimum Independent Dominating

Set and as the Max PB-complete problem we will use Longest Induced Path.

Both reductions follow the same idea. The objective function, i.e. the number of nodes in the

solution (in the independent dominating set and in the induced path, respectively), is encoded

by introducing an order of the nodes in the solution. The order is encoded by a squared number

of 0� 1 variables in the programming problem, see Fig. 2. A solution of size 1 shall correspond

to the 0 � 1 programming objective value n, and a solution of size p shall correspond to an

objective value of

j

n

p

k

.

-

6

i

j

0 0 1 0 0 0

0 0 0 0 1 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

6

?

size of

solution

solution: � � � � � �

6

?

one 1 in each row

6

?

only zeros in upper part

Figure 2. The idea of the reduction from Minimum Independent Dominating Set/Longest In-

duced Path to Maximum/Minimum PB 0� 1 Programming. The variable x

j

i

= 1 if and only if v

i

is the jth node in the solution. There is at most one 1 in each column and in each row.

The reduction from Minimum Independent Dominating Set to Maximum PB 0 �

1 Programming is constructed as follows. Given an instance of Minimum Independent

Dominating Set, i.e. a graph with nodes V = fv

1

; : : : ; v

m

g and edges E, construct m

2

variables x

j

i

, 1 � i; j � m and the following inequalities:

8i 2 [1::m]

m

P

j=1

x

j

i

� 1 (at most one 1 in each column) (1)

8j 2 [1::m]

m

P

i=1

x

j

i

� 1 (at most one 1 in each row) (2)

8j 2 [1::m� 1]

m

P

i=1

x

j

i

�

m

P

i=1

x

j+1

i

� 0 (only zeros in upper part) (3)

18

8(v

i

; v

j

) 2 E

m

P

k=1

x

k

i

+

m

P

k=1

x

k

j

� 1 (independence) (4)

8i 2 [1::m]

m

P

k=1

x

k

i

+

P

j:(v

i

;v

j

)2E

k2[1::m]

x

k

j

� 1 (domination) (5)

The objective function is de�ned as

n �

m

X

p=2

��

n

p� 1

�

�

�

n

p

��

m

X

i=1

x

p

i

: (6)

In order to express the objective function with only binary coe�cients we have to introduce n

new variables y

1

; : : : ; y

n

where y

j

= 1 �

P

m

i=1

x

p

i

for bn=pc < j � bn=(p � 1)c and y

j

= 1 for

j � bn=mc. The objective function is then

P

n

j=1

y

j

. One can now verify that an independent

dominating set of size s will exactly correspond to a solution of the 0�1 programming problem

with objective value

�

n

s

�

and vice versa.

Suppose that the minimum independent dominating set has size M , then the performance

ratio s=M for the independent dominating set problem will correspond to the performance

ratio

�

n

M

�

�

n

s

�

=

s

M

�

1�

m

n

�

for the 0 � 1 programming problem, where

m

n

is the relative error due to the oor operation.

By choosing n large enough the relative error can be made arbitrarily small. Thus It is easy to

see that the reduction is an AP-reduction.

Halld�orsson has proved that, unless P = NP, Minimum Independent Dominating Set

is not approximable within n

1�"

for any " > 0, where n is the sum of the number of nodes

and edges in the graph [34]. Together with the reduction above this result will tell that, unless

P = NP, Maximum PB 0� 1 Programming is not approximable within q

1�"

for any " > 0,

where q is the number of inequalities, and is not approximable within r

1=2�"

for any " > 0,

where r is the number of variables.

A similar construction can be used to reduce Longest Induced Path to Minimum PB

0 � 1 Programming. Given an instance of Minimum Independent Dominating Set, i.e.

a graph with nodes V = fv

1

; : : : ; v

m

g and edges E, construct m

2

variables x

j

i

, 1 � i; j � m as

above and use the inequalities (1){(3) together with the new inequalities:

8(v

i

; v

j

) 2 E; k 2 [1::m� 2]; l 2 [k + 2::m] x

k

i

+ x

l

j

� 1 (induced) (7)

8(v

i

; v

j

) =2 E 8k 2 [1::m� 1] x

k

i

+ x

k+1

j

� 1 (path) (8)

Use the same objective function as (6) above. It is not hard to show that this reduction is a

AP-reduction. ut

The results of Theorem 6 are proved in [35].

C. Proof of the results of Section 4

Proof of Proposition 3. Assume that A is a maximization problem (the proof for minimization

problems is similar), let T be an r-approximate polynomial-time algorithm for A, for some

19

r > 1, and let L 2 P

A

�

for some �. Two polynomial-time computable functions f and g then

exist witnessing this fact. For any x, let m = m(f(x); T (f(x))), so that m � opt(f(x)) � rm.

We can then partition the interval [m; rm] into dlog

�

re subintervals

[m; �m); [�m; �

2

m); : : : ; [�

blog

�

rc

; rm];

and start looking for the subinterval containing the optimum value (a similar technique has

been used in [8, 6]). This can clearly be done using dlog

�

re queries to an NP-complete oracle.

One more query is su�cient to know whether a feasible solution y exists in that interval such

that g(x; y) = 1. Since y is �-approximate, it follows that L can be decided using dlog

�

re + 1

queries, that is, L 2 QH. ut

Proof of Proposition 4. Let A be a minimization problem in PTAS

1

(the proof for maximization

problem is very similar). By de�nition, a constant k and an algorithm T exist such that for

any instance x and for any r > 1

m(x; T (x; r))� r � opt(x) + k:

We will now prove that a constant h exists such that for any r > 1 a function l

r

2 PF

NP[h�1]

exists such that for any instance x of the problem A

opt(x) � l

r

(x) � r � opt(x):

Given an instance x, we can check whether opt(x) = 0 by means of a single query to an

NP oracle, so we can restrict ourselves to instances such that opt(x) � 1. Note that, for these

instances, T

2

is a (k+2)-approximate algorithm. Let us �x an r > 1, let " = r�1, y = T

1+"=2

(x)

and m

app

= m(x; T

2

(x)). We have to distinguish two cases.

1. m

app

� 2k(k + 2)=": in this case, opt(x) � 2k=", that is, opt(x)"=2 � 1. Then

m(x; y) � opt(x)(1 + "=2) + opt(x)"=2 = opt(x)(1+ ") = r � opt(x):

That is, y is a r-approximate solution for x, and we can set l

r

(x) = m(x; y).

2. m(x; y) < 2k(k + 2)=": in this case, opt(x) < 2k(k+ 2)=". Then,

m(x; y) � opt(x) + opt(x)"=2 + k < opt(x) + 2k(k + 2) + k:

If h = dlog k(2k+ 5)e+1, then h� 1 queries to NP are su�cient to �nd the optimum value

m

�

= opt(x) by means of a binary search technique: in this case l

r

(x) = m

�

.

Let now L be a language in AQH(A), then L 2 P

A

r

for some r > 1: let f and g be the

functions witnessing that L 2 P

A

r

. Observe that, for any x, x 2 L if and only if a solution y

for f(x) exists such that m(x; y) � l

r

(x) and g(x; y) = 1: that is, given h

r

(x), deciding whether

x 2 L is an NP problem. Since l

r

(x) is computable by means of h � 1 queries to NP, we have

that L 2 P

np[h]

. ut

In order to prove Proposition 5, we need the following technical result.

Claim. For any APX-complete problem A and for any k, two polynomial-time computable

functions f and g and a constant r exist such that, for any k-tuple (x

1

; : : : ; x

k

) of instances of

Partition, x = f(x

1

; : : : ; x

k

) is an instance of A and if y is a solution of x whose performance

ratio is smaller than r then g(x; y) = (b

1

; : : : ; b

k

) where b

i

2 f0; 1g and b

i

= 1 if and only if x

i

is a yes-instance.

20

Proof. Let x

i

= (U

i

; s

i

) be an instance of Partition for i = 1; : : : ; k. Without loss of generality,

we can assume that the U

i

s are pairwise disjoint and that, for any i,

P

u2U

i

s

i

(u) = 2. Let w

be an instance ofMinimum Ordered Bin Packing de�ned as follows (a similar construction

has been used in [37] in order to prove negative results on the approximability of Minimum

Ordered Bin Packing).

1. U =

S

k

i=1

U

i

[fu

1

; : : : ; u

k�1

g where the u

i

s are new items.

2. For any u 2 U

i

, s(u) = s

i

(u) and s(u

i

) = 1 for i = 1; : : : ; k � 1.

3. For any i < j � k, for any u 2 U

i

, and for any u

0

2 U

j

, u � u

i

� u

0

.

Any solution of w must be formed by a sequence of packings of U

1

; : : : ; U

k

such that, for

any i, the bins used for U

i

are separated by the bins used for U

i+1

by means of one bin which

is completely �lled by u

i

. In particular, the packings of the U

i

s in any optimum solution must

use either two or three bins: two bins are used if and only if x

i

is a yes-instance. The optimum

measure thus is upper bounded by 4k � 1 so that any (1 + 1=4k)-approximate solution is

optimum.

Since Minimum Ordered Bin Packing belongs to APX and A is APX-complete, then

an AP-reducibility (f

1

; g

1

; �) exists from Minimum Ordered Bin Packing to A. We can

then de�ne x = f(x

1

; : : : ; x

k

) = f

1

(w; 1 + 1=(4�k) and r = 1 + 1=4�k. For any r-approximate

solution y of x, the fourth property of the AP-reducibility implies that z = g

1

(x; y; 1+ 1=4�k)

is a (1 + 1=4k)-approximate solution of w and thus an optimum solution of w. From z, we can

easily derive the right answers to the k queries x

1

; : : : ; x

k

. ut

Proof of Proposition 5. Let L 2 QH, then L 2 P

NP[h]

. It is well known that L can be reduced to

the problem of answering k = 2

h�1

non-adaptive queries to NP. More formally, two functions

t

1

and t

2

exist such that, for any x, t

1

(x) = (x

1

; : : : ; x

k

), where x

1

; : : : ; x

k

are k instances of the

Partition problem, and for any (b

1

; : : : ; b

k

) 2 f0; 1g

k

, t

2

(x; b

1

; : : : ; b

k

) 2 f0; 1g. Moreover, if,

for any j, b

j

= 1 if and only if I

j

2 Partition, then t

2

(x; b

1

; : : : ; b

k

) = 1 if and only if x 2 L.

Let now f ,g and r be the two functions and the constant from the preceding Claim applied

to problem A and constant k. For any x, x

0

= f(t

1

(x)) is an instance of A such that if y is a

r-approximate solution for x

0

, then t

2

(g(x; y)) = 1 if and only if x 2 L. Thus, L 2 P

A

r

. ut

Propositions 6 and 7 can be easily proved similarly to Proposition 3 by means of the binary

search technique.

D. Proof of the results of Section 5

Proof of Theorem 9. Let A be a poly-APX-complete problem. Since Maximum Clique is

self-improvable [12] and poly-APX-complete [19], we have that A is self-improvable. It is then

su�cient to prove that A

2

is hard for NPF

NP[log logn+O(1)]

.

Since A is poly-APX-complete, Maximum Clique �

AP

A: let � be the constant of

this reduction. From [7] we have that any function F in NPF

NP[log logn+O(1)]

many-one re-

duces to Maximum Clique

1+1=�

. From the de�nition of AP-reducibility, we also have that

Maximum Clique

1+1=�

�

mv

A

2

so that F many-one reduces to A

2

.

Conversely, let A be a poly-APX self-improvable problem such that, for some r

0

, A

r

0

is NPF

NP[log logn+O(1)]

-hard. We will show that, for any problem B in poly-APX, B is

AP-reducible to A. To this aim, we introduce the following partial multi-valued function

multisat: given in input a sequence (�

1

; : : : ; �

m

) of instances of the satis�ability problem

with m � log j(�

1

; : : : ; �

m

)j, a possible output is a satisfying truth-assignment for �

i

�

where

21

i

�

= maxfij�

i

is satis�ableg. From [7] it follows that this function is NPF

NP[log logn+O(1)]

-

complete.

It is easy to see that, since B is in poly-APX, two algorithms t

B

1

and t

B

2

exist such that,

for any �xed r > 1, t

1

(x) = t

B

1

(x; r) and t

2

(x) = t

B

2

(x; r) are a many-one reduction from

B

r

to multisat. Moreover, since A

r

0

is NPF

NP[log logn+O(1)]

-hard, then a many-one reduction

(t

M

1

; t

M

2

) exists from multisat to A

r

0

. Finally, let t

A

1

and t

A

2

be the functions witnessing the

self-improvability of A.

The AP-reduction from B to A can then be derived as follows:

x; r

t

B

1

(x;r)

�����������! x

0

t

M

1

(x

0

)

�����������! x

00

t

A

1

(x

00

;r

0

;r)

�����������! x

000

#

y

t

B

2

(x;y

0

;r)

 ����������� y

0

t

M

2

(x

0

;y

00

)

 ����������� y

00

t

A

2

(x

00

;y

000

;r

0

;r)

 ����������� y

000

It is easy to see that if y

000

is an r-approximate solution for the instance x

000

of A, then y is an

r-approximate solution of the instance x of B. ut

Recall that in [7] an extension of Theorem 1 is proved, that is, for any q(n) 2 O(logn), if

NPF

NP[q(n)+1]

is contained in NPF

NP[q(n)]

, then the polynomial hierarchy collapses.

In the same paper, a characterization of the classes NPF

NP[q(n)]

is given such that any

function F 2 NPF

NP[k]

is reducible to answering with witnesses a set of 2

k

non-adaptive

queries to NP. Moreover, it is easy to see that any function that is reducible to answering

with witnesses 2

k

� 1 non-adaptive queries to NP is contained in NPF

NP[k]

. From the proofs of

Propositions 3 and 4, it follows the following fact.

Claim. Let A be an r

A

-approximable APX problem, then, for any r > 1, A

r

is reducible to

answering with witnesses a set of dlog

r

r

A

e non-adaptive queries to an NP oracle. Let A be an

APX-complete problem, then a constant exists such that, for any k, the problem of answering

with witnesses a set of k non-adaptive queries to Partition is reducible to A

1+=k

.

Proof of Theorem 10. Let A be an r

A

-approximable APX-complete problem, let be the

constant in the preceding Claim, then A

1+=2

is hard for NPF

NP[1]

. Fix any r > 1, let r = 1+"

and let x

1

; : : : ; x

k

be instances of A: for any i = 1; : : : ; k the problem of �nding a r-approximate

solution y

i

for x

i

is reducible to the problem of answering with witnesses a set of dlog

r

r

A

e

parallel queries to Partition. Without loss of generality, we can assume r < r

A

(otherwise

the reduction is trivial), and thus we have dlog

r

r

A

e � 1 + (r

A

� 1)=(r � 1) � c=" for a

certain constant ". Moreover, answering kc=" non-adaptive queries to Partition is reducible

to (1 + "=kc)-approximating a single instance of A, that is, A is linearly additive.

Conversely, let A be a linearly additive APX problem such that A

r

0

is NPF

NP[1]

-hard and

let B be an r

B

-approximable APX problem. Given an instance x of B, for any r = 1 + " > 1

we can reduce the problem of �nding an 1 + "-approximate solution for x to the problem of

answering with witnesses c=" queries to Partition, for a proper constant c not depending on ".

Moreover, each of these questions is reducible to A

r

0

, since an NPF

NP[1]

can clearly answer with

witness to an NP query. From linear additivity, it follows that r

0

-approximating c=" instance

of A is reducible to (1 + �"=c)-approximating a single instance of A. This is an AP-reduction

from B to A with � = c=�. ut

Proof of Theorem 11. Let us consider the optimization problemMax Number of Satisfiable

Formulas-log de�ned as follows.

22

Instance: Set of m boolean formulas �

1

; : : : ; �

m

in 3CNF, such that �

1

is a tautology and

m � log j�

1

; : : : ; �

m

j

Solution: Truth-value assignment � to the variables of �

1

; : : : ; �

m

Measure: The number of satis�ed formulas, i.e., jfi such that �

i

is satis�ed by �gj.

Clearly,Max Number of Satisfiable Formulas-log is in log-APX, since the measure of

any assignment � is at least 1, and the optimum value is always smaller that logn, where n is

the size of the input. We will show that, for any r < 2, MNSF

r

is hard for NPF

NP[log log logn�1]

,

where MNSF stands for Max Number of Satisfiable Formulas-log.

Given log logn queries to NP (of size polynomial in n)

1

; : : : ;

log logn

, we can construct

an instance � = �

1

; : : : ; �

m

of Max Number of Satisfiable Formulas-log where �

1

is a

tautology and the formulas �

2

i = : : : = �

2

i+1

�1

are satis�able if and only if at least i clauses

among

1

; : : : ;

log logn

(these formulas can be easily constructed using the standard proof of

Cook's theorem). Note thatm = 2

log logn+1

�1, and by adding dummy clauses to some formulas

we can achieve the bound m � log j�

1

; : : : ; �

m

j. Moreover, from a r-approximate solution for

� we can decide how many clauses in

1

; : : : ;

log logn

are satis�able, and we can also recover

witnesses for such formulas, that is, any function in NPF

NP[log log logn�1]

is MV-reducible to

MNSF

r

.

Let A be a self-improvable log-APX-complete problem, then, for any function F 2

NPF

NP[log log logn�1]

, F�

mv

MNSF

1:5

�

mv

A

1+�=2

�

mv

A

256

where � is the constant in the AP-

reduction fromMax Number of Satisfiable Formulas-log to A. Thus, for any x instance

of F , computing F (x) is reducible to �nding a 256-approximate solution for an instance x

0

of

A, moreover, the size of x

0

is polynomial in jxj, that is jx

0

j � jxj

c

for a certain constant c. Since

A 2 log � APX, it is possible to �nd in polynomial time a (r log jx

0

j)-approximate solution y

for x

0

. By means of the usual binary search technique, we can �nd a 256-approximate solution

for x

0

using dlogdlog

256

(r log jx

0

j)ee � log log log jxj

rc

� 3 adaptive queries to NP. Thus,

NPF

NP[log log logn�1]

� NPF

NP[log log log jxj

rc

�3]

which implies the collapse of the polynomial hierarchy. ut

E. A List of NPO Problems

E.1.Maximum Clique

Instance: Graph G = (V;E).

Solution: A clique in G, i.e. a subset V

0

� V such that every two vertices in V

0

are joined

by an edge in E.

Measure: Cardinality of the clique, i.e., jV

0

j.

E.2.Minimum Independent Dominating Set

Instance: Graph G = (V;E).

Solution: An independent dominating set for G, i.e., a subset V

0

� V such that for all

u 2 V � V

0

there is a v 2 V

0

for which (u; v) 2 E, and such that no two vertices in V

0

are

joined by an edge in E.

Measure: Cardinality of the independent dominating set, i.e., jV

0

j.

23

E.3.Minimum Weighted Independent Dominating Set

Instance: Graph G = (V;E) and a weight function w : V ! N .

Solution: An independent dominating set for G, i.e., a subset V

0

� V such that for all

u 2 V � V

0

there is a v 2 V

0

for which (u; v) 2 E, and such that no two vertices in V

0

are

joined by an edge in E.

Measure: The sum of the weights of the independent dominating set, i.e.,

P

v2jV

0

j

w(v).

E.4.Maximum Weighted Satisfiability and Minimum Weighted Satisfiability

Instance: Set of variables X , boolean quanti�er-free �rst-order formula � over the variables

X , and a weight function w : X ! N .

Solution: Truth assignment that satis�es �.

Measure: The sum of the weight of the satis�ed variables.

E.5.Maximum 0� 1 Programming and Minimum 0� 1 Programming

Instance: Integer m � n-matrix A 2 Z

m�n

, integer m-vector b 2 Z

m

, nonnegative integer

n-vector c 2 N

n

.

Solution: A binary n-vector x 2 f0; 1g

n

such that Ax � b.

Measure: The scalar product of c and x, i.e.,

n

X

i=1

c

i

x

i

.

E.6.Maximum PB 0� 1 Programming and Minimum PB 0� 1 Programming

Instance: Integer m � n-matrix A 2 Z

m�n

, integer m-vector b 2 Z

m

, nonnegative binary

n-vector c 2 f0; 1g

n

.

Solution: A binary n-vector x 2 f0; 1g

n

such that Ax � b.

Measure: The scalar product of c and x, i.e.,

n

X

i=1

c

i

x

i

.

F. A List of APX Problems

F.1.Minimum Bin Packing

Instance: Finite set U of items, and a size s(u) 2 Q \ (0; 1] for each u 2 U .

Solution: A partition of U into disjoint sets U

1

; U

2

; : : : ; U

m

such that the sum of the sizes of

the items in each U

i

is at most 1.

Measure: The number of used bins, i.e., the number of disjoint sets, m.

F.2.Minimum Ordered Bin Packing

Instance: Finite set U of items, a size s(u) 2 Q\ (0; 1] for each u 2 U , and a partial order �

on U .

Solution: A partition of U into disjoint sets U

1

; U

2

; : : : ; U

m

such that the sum of the sizes of

the items in each U

i

is at most 1 and, for any u 2 U

i

and for any u

0

2 U

j

such that u � u

0

,

i � j.

Measure: The number of used bins, i.e., the number of disjoint sets, m.

24

F.3.Maximum Knapsack

Instance: Finite set U , for each U a size s(u) 2 Z

+

and a value v(u) 2 Z

+

, a positive integer

B 2 Z

+

.

Solution: A subset U

0

� U such that

P

u2U

0

s(u) � B.

Measure: Total weight of the chosen elements, i.e.,

P

u2U

0

v(u).

G. Additional references

34. Halld�orsson, M. M. (1993), \Approximating the minimummaximal independence number", Inform.

Process. Lett. 46, 169{172.

35. Kann, V. (1995), \Strong lower bounds of the approximability of some NPO PB-complete max-

imization problems", Technical Report TRITA-NA-9501, Department of Numerical Analysis and

Computing Science, Royal Institute of Technology, Stockholm.

36. Long, T.J. (1981), \On -reducibility versus polynomial time many-one reducibility", Theoretical

Computer Science 14, 91{101.

37. Queyranne, M. (1985), \Bounds for assembly line balancing heuristics", Operations Research 33,

1353{1359.

