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Abstract

We study query-efficient Probabilistically Checkable Proofs
(PCPs) and linearity tests. We focus on the number ofamor-
tized query bits. A testing algorithm uses�q amortized query
bits if, for some constantk, it reads�qk bits and has error
probability at most2�k. The best known PCP construc-
tion for NP in this respect uses3 amortized query bits [13];
at least one amortized query bit is necessary, unlessP =

NP [5]. This parameter is a fairly natural one and has appli-
cations to proving non-approximability results for constraint
satisfaction problems. Furthermore, a PCP characterization
of NP with less than 2 amortized query bits implies a sepa-
ration of the PCP model from the 2-Prover 1-Round model.

Our approach is to take an atomic verification procedure
and then iterate it several times, saving queries by recycling
them between different iterations of the atomic test.

We first apply this idea in order to develop query-efficient
linearity tests. Linearity testing is a problem closely related
to testing theLong Codeand making PCP constructions. It
is also a significant combinatorial problem still lacking tight
characterizations, except for the case of three queries [4].
The best known linearity test uses 3 amortized query bits [4];
a different one achieves 1 amortized free bit (a different pa-
rameter related to the Max Clique problem) but uses an un-
bounded number of amortized query bits [5]. We develop a
general analysis technique and a linearity test achieving si-
multaneously amortized query complexity1:5 and amortized
free bit complexity:5. This test answers an open question
raised by Bellare, Goldreich and Sudan.

We then show how to adapt a weaker result to the PCP
setting, and we obtain a PCP forNP that makes5 queries
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and has error probability1=4, so that its amortized query
complexity is2:5.

1 Introduction

The PCP characterization ofNP [2, 1], or the PCP Theorem,
is a major achievement of complexity theory and a power-
ful tool for proving hardness of approximation for optimiza-
tion problems. Informally stated, the PCP Theorem says
that there is a way of encoding proofs ofNP statements so
that such encoded proofs can be probabilistically tested us-
ing logarithmic randomness and looking only at aconstant
number of bits of the encoding. The encoding of a correct
proof will pass the test with probability one1 while, if the
statement is wrong, any adversarially chosen string submit-
ted to the test will be accepted only with small probability,
say at most1=2. The latter probability is theerror probabil-
ity, orsoundnessof the test. The algorithm implementing the
test is usually called theverifier. After the appearance of the
PCP Theorem, there has been a lot of effort devoted to find-
ing quantitativestrengthenings of it, with improved trade-
offs between the different parameters arising in the proof-
checking procedure. One of the main motivations for this
line of research has been the goal of getting improved, and
eventually tight, non-approximability results for certain op-
timization problems.

PCP PARAMETERS. Four main parameters have been con-
sidered for their applications to proving hardness of approxi-
mation: the number ofquery bits, the number offree bitsand
their amortizedversions (see also [3] for a survey on recent
PCP results and for the role of different parameters.) The
number of query bits is the number of bits of the proof that
are accessed by the verifier. We say that a verifier usesf free
bits if there is a subset off queries such that for any possible
outcome to these queries there is only one possible answer
to the other queries that would make the verifier accept.2 We

1In some cases, including the construction presented in thispaper, there
is the less restrictive assumption that correct proofs are accepted with prob-
ability at least1� " where" can be made arbitrarily small independentlyof
the other parameters of interest.

2A more general definition is given in [5].



say that a verifier uses�q amortized query bits if, for some
constantk, it makes�qk queries and has error probability at
most2�k; amortized free bits are defined similarly. The no-
tion of amortization is due to [7, 5].

PCPs with small query complexity (and, subject to that,
with low error) have applications to prove hardness of ap-
proximation for the Max 3SAT problem; a tight result, due
to Håstad [13] is known in this context (the tightness is due
to [14, 26].) Protocols with small free bit complexity (and,
subject to that, with low error) imply hardness of approxi-
mation results for the Vertex Cover problem; a tight result
is not known and is a major open question. The amortized
free bit complexity parameter is related to the hardness of ap-
proximating Max Clique; in this case a tight result is known,
due to Håstad [12], showing thatNP can be characterized
with " amortized free bits for any" > 0. The amortized
query complexity parameter is related to the approximability
of constraint satisfaction problems described below. A tight
result is not known.

Max kCSP (fork-ary Constraint Satisfaction Problem)
is the generalization of MaxkSAT where each clause is al-
lowed to be an arbitrary predicate over (at most)k boolean
variables. Maxk CSP was implicit in [18], has been named
in [15] and then studied e.g. in [10, 22, 23, 25, 16, 26]. This
problem is known to be2-approximable fork = 3 [26] and
2

k�1-approximable fork � 4 [22]; on the negative side it
is NP-hard to approximate within a factor2bk=3c � " for
anyk [13]. A PCP forNP using�q amortized query bits im-
plies theNP-hardness of approximation of MaxkCSP within
2

bk=�qc

� " for sufficiently largek.
An additional motivation for the study of PCPs with

low amortized query complexity is the fact thatNP cannot
be characterized with 2-Provers 1-Round having amortized
query complexity smaller than2 (we take the query com-
plexity of a 2-Prover 1-Round protocol as the sum of the
answer sizes) unlessP = NP [20]. Thus, a characterization
of NP in terms of a PCP with1:99 (say) amortized query bits
implies a separation between the PCP and the MIP model, a
question asked in [6] and [5]. The best previous result was a
characterization ofNP with 3 + " amortized query bits [13].
There cannot be a characterization with 1 amortized query
bit unlessP = NP [5, 22]. We believe that1 + " is the right
answer: our goal is to make progress in this direction.

TESTING PROOFS. The standard method of getting good
PCPs is bycomposition, a paradigm introduced in [2] and
then used e.g. in [1, 6, 7, 5, 11, 12, 13]. In the most re-
cent constructions [5, 12, 13] one starts with anouterpro-
tocol given by Raz [19], a 2-Prover 1-Round protocol with
perfect completeness, constant answer size and small sound-
ness, and then one tries to improve on the parameter of in-
terest, in our case the number of amortized query bits. To
this aim, one defines an appropriate error correcting code
and a testing procedure, called theinner protocol. Given
two strings, the inner protocol checks whether or not they
are the encodings of two possible consistent answers of the

provers of the outer protocol. There is a way to compose the
two protocols so that the “composed verifier”V inherits the
query complexity and the error probability of the inner veri-
fier V inner, and even ifV inner required a polynomial or even
exponential amount of random bits, the composed verifierV

will only use logarithmic randomness. Note that since the
outer verifier given in Raz [19] is essentially the best pos-
sible, we only have to care about the inner one, i.e. on the
definition of the code and on checking codewords and con-
sistency.

THE LONG CODE. A first series of works [1, 6, 7] devel-
oped inner verifiers using the Hadamard Code, and the essen-
tial testing problem was the “linearity test” problem, firstin-
vestigated by Blum, Luby and Rubinfeld [8]. More recently,
the Long Code was introduced in [5] and used in [5, 11, 13].
The Long Code of a stringa 2 f0; 1g

n is a stringA of length
2

2

n

indexed by the functionsf : f0; 1g

n

! f0; 1g, and such
thatA(f) = f(a) for any functionf (we give an alternate
equivalent definition in Section 2.) It should be noted that the
linearity test is still relevant to the analysis of the Long Code:
in [5] the linearity testing was a subroutine of the Long Code
test; in [13] the analysis of the Long Code is based on a “per-
turbed” linearity test and its analysis follows the lines (alas
with several complications) of the analysis of the linearity
test given in [4]. Thus, it appears that techniques and ideas
developed to test linearity are, with appropriate extensions,
useful in testing the Long Code and eventually getting PCP
constructions. This motivates us to get, for starters, a good
linearity tester with low amortized query complexity.

TESTING L INEARITY: THE PROBLEM AND PREVIOUSRE-
SULTS. In the linearity test problem we are given oracle ac-
cess to a functionf : f0; 1g

n

! f0; 1g and we want to de-
termine whetherf is linear, i.e.f(a) � f(b) = f(a � b) for
anya; b 2 f0; 1gn, or if f is very far from every linear func-
tion, where the distanceDist(f; g) between two functions
is the fraction of points where they disagree (for a function
f and a familyF we also use the notationDist(f;F) =

min

g2F

Dist(f; g).) Observe that the set of linearn-ary
functions, denotedLIN, is a Hadamard Code3 with code-
words of length2n; recall that this code has minimum dis-
tance1=2. We want a randomized test that always accepts
linear functions and that accepts with very small probability
functions that are far from the set of linear functions. The
error probability of the test is the probability that it accepts
a function that is far; clearly this definition depends on what
do we mean by “far”. Bellare, Goldreich and Sudan [5] call
“codeword test” the problem where “far” functions are at dis-
tance at least1=4 from the code. This definition is motivated
by the fact that “non-far” functions have unique decoding.
Defining “far” to be the set of functions at distance at least
1=2 � " from the set of linear functions is still good (this
is called “relaxed codeword testing” in [5]) since a function
that is at distance at most1=2 � " from some linear func-

3In fact, it is a first-order Reed-Muller Code.



tion is at this distance from at most1=4"2 other linear func-
tions, so we can still use bounded distance decoding. We
obtain the same bound1=4"2 if we say that a function is not
“far” whenever it is at distance at most1=2 � " from either
LIN or from the set of functions that are the bitwise com-
plement of linear functions, denotedLIN. This is the notion
of “relaxed codeword test” that we adopt in this paper. The
linearity test of Blum, Luby and Rubinfeld [8] (henceforth
called theBLR test) makes three queries: it picks random
a; b 2 f0; 1g

n and accepts ifff(a) � f(b) = f(a � b). The
BLR analysis has been improved in [9, 4, 17]; in [4] it has
been shown that the acceptance probability of this test is at
most1�Dist(f; LIN), that is1=2+ " whenf is at distance
1=2 � " from the set of linear functions. Thus, the BLR
test has amortized query complexity essentially3. No better
test is known with respect to amortized query complexity.
With respect to amortized free bit complexity, in [5] there is
a test that has amortized free bit complexity essentially 1 and
that distinguishes linear functions from functions at distance
1=4 from the set of linear functions. There is a lower bound
showing that this result is tight. Bellare et al. asked whether
this lower bound can be beaten using relaxed codeword tests.

TESTING L INEARITY: OUR RESULTS. We develop a gen-
eral framework to define and analyse linearity tests that exe-
cute several instances of the BLR test and recycle query bits
between different executions.

In order to analyse the acceptance probability of such
tests, we describe the way bits are recycled in terms of
graphs. To every graphG with k vertices andm edges we
associate a test that we callLinTestGraph(G; �). Such a test
queriesk + m bits, usesk free bits, and runsm instances
of the BLR test. We show that the acceptance probability of
LinTestGraph(G; �) can be formulated in a way that is very
convenient for Fourier analysis (Theorem 5). We then use
Fourier analysis to obtain tight bounds on the error proba-
bility of three infinite families of tests. The use of Fourier
analysis to study linearity tests was introduced in [4]. Håstad
elected it to a fine art in his papers on testing the Long Code
and on improved PCP constructions [11, 13]. Our results are
as follows (k � 1 is any fixed positive integer):

1. The test associated with a path of lengthk has accep-
tance probability at most

(1�Dist(f; LIN [ LIN))

k

;

with 2k + 1 query bits andk + 1 free bits. Thus it uses
roughly 2 amortized query bits and 1 amortized free bit.

2. The test associated with a star withk rays has accep-
tance probability at most

1

2

k

+

(2

k

� 1)

2

k

(1 � 2Dist(f; LIN [ LIN)):

Its (amortized) query and free bit complexity are as be-
fore.

3. The test associated with the graphK

2;k

has acceptance
probability at most

1

2

2k

+

(2

2k

� 1)

2

2k

(1 � 2Dist(f; LIN [ LIN));

it reads3k+2 bits, and uses2k+2 free bits. The amor-
tized query complexity is roughly1:5 and the amor-
tized free bit complexity is roughly:5, beating the lower
bound of [5].

The only tool of Fourier analysis that we use is Parseval’s
equality. In a sense that can be made formal,1:5 amortized
query bits are a natural limit to the techniques developed in
this paper (this is discussed in Section 6.)

PCP: OUR RESULTS. All the results that we have for the
linearity test extend to the analysis ofoneLong Codeword,
using the random perturbation idea of [13]. Unfortunately,
it is necessary to look attwo alleged Long Codewords in
order to build an inner verifier, and there is also a consistency
test to be implemented. We are able to extend to the PCP
setting the analysis of the linearity test based on the star with
three vertices: this gives a PCP that makes five queries and
has soundness1=4. The amortized query complexity of our
PCP is thus2:5. This also implies that Max 5CSP is hard
to approximate within4 � " and that MaxkCSP is hard to
approximate within2b:4kc�". (This result has been recently
improved, see Section 6.)

OVERVIEW OF THEPAPER. We introducebasic definitions
in Section 2. We describe graph-based linearity tests in Sec-
tion 3 and present a first analysis of their acceptance prob-
ability. In Section 4 we present a Fourier analysis of three
graph-based families of tests. Section 5 is devoted to our
PCP construction. In Section 6 we discuss a recent improve-
ment and some open questions.

2 Linear Functions, Fourier Analysis, and PCP

From now on boolean functions will be defined with values
in f1;�1g rather thanf0; 1g. The association is that�1
stands for1 (or true) and1 stands for0 (or false). Observe
that multiplication inf1;�1g acts as boolean xor inf0; 1g.
For an integerk, we denote by[k] the setf1; : : : ; kg. For
two sets� and� we denote by��� = (� [ �) � (� \ �)

their symmetric difference. Recall that� is commutative
and associative.

We will often blur the difference between vectors in
f1;�1g

n and functions from[n] to f1;�1g; for a vec-
tor x 2 f1;�1g

n, its a-th entry (a 2 [n]) is denoted by
x(a) and can be thought of as the evaluation of a function
x : [n] ! f1;�1g in the pointa. If � : [m] ! [n] and
x 2 f1;�1g

n, the vectorx � � 2 f1;�1g

m is defined as
x � �(b) = x(�(b)) for anyb 2 [m].

Given two vectorsx andy, their bit-wise product, de-
notedxy, is defined asxy(a) = x(a)y(a).



Given two functionsf; g : f1;�1g

n

! f1;�1g, their
distance is the fraction of points where they disagree, thatis

Dist(f; g) =

jfx : f(x) 6= g(x)gj

2

n

= Pr

x

[f(x) 6= g(x)] :

We say that a functionf : f1;�1g

n

! f1;�1g is linear
iff f(x)f(y) = f(xy) for all x; y 2 f1;�1g

n. There are
2

n linear functions. There is a linear functionl
�

for any set
� � f1; : : : ; ng; it is defined as

l

�

(x) =

Y

a2�

x(a) :

By convention, we say that a product ranging over the empty
set equals 1. We will be using three standard properties of
linear functions, the fact that they are linear in�, linear inx
and that they are equally often1 and�1, except for the case
of the function that is identically 1:

l

�

(x)l

�

(x) = l

���

(x) ; l

�

(x)l

�

(y) = l

�

(xy) ; (1)

E

x

l

�

(x) =

�

1 If � = ;

0 otherwise.
(2)

We denote byLIN
n

the set of linear functions of arityn:
this set is a Hadamard Code with codewords of length2

n.
We also use the notationLIN

n

= ff : �f 2 LINg.
We usually drop the subscript. It is useful to see a func-
tion f : f1;�1g

n

! f1;�1g as a real-valued functions
f : f1;�1g

n

! R. The set of functionsf : f1;�1g

n

! R

is a vector space over the reals of dimension2

n. We define a
scalar product between functions.

f � g =

1

2

n

X

x2f1;�1g

n

f(x)g(x) =

E

x

[f(x)g(x)] :

For functionsf : f1;�1g

n

! f1;�1g, the scalar product
has a couple of alternative characterizations.

f � g = Pr

x

[f(x) = g(x)]�Pr

x

[f(x) 6= g(x)]

= 1� 2Dist(f; g) :

The set of linear functions is easily seen to form an orthonor-
mal basis for the set of functionsf : f1;�1g

n

! R. This
implies that for any functionf : f1;�1g

n

! R we have

f(x) =

X

�

^

f

�

l

�

(x) where ^

f

�

= f � l

�

:

For a functionf : f1;�1g

n

! f1;�1g, we also have sev-
eral useful properties of the coefficients^f

�

, namely

� �1 �

^

f

�

� 1,

�

^

f

�

= 1� 2Dist(f; l

�

),

� j

^

f

�

j = 1� 2minfDist(f; l

�

);Dist(f;�l

�

)g,

� max

�

^

f

�

= 1� 2Dist(f; LIN),

� max

�

j

^

f

�

j = 1� 2Dist(f; LIN [ LIN).

We now state the only result from Fourier analysis that will
be used in the rest of the paper.

Lemma 1 (Parseval’s equality) For any function f :

f1;�1g

n

! f1;�1g,
P

�

^

f

2

�

= 1.

The Long Code is the set of linear functions whose sup-
port is a singleton, i.e.LONG

n

= fl

fag

: a 2 [n]g. We
say thatl

fag

is the Long Code ofa. Thus, the Long Code
is formed byn codewords of length2n. An alternate but
equivalent definition was used in [5]. We think that our defi-
nition makes more explicit the relation between linear func-
tions and the Long Code.

We give the definition of PCP parameters and classes.
We follow the notation of [6, 5].

Definition 2 (Verifier) A verifier V for a languageL is a
probabilistic polynomial time algorithm that receives an in-
putx and has oracle access to a stringP , that is supposed
to represent a proof of the statement “x 2 L”. For a verifier
V , an inputx and a proofP , we denote byAcc(V; x; P ) the
probability over the random choices ofV thatV acceptsx
having oracle access toP .

Definition 3 (PCP Classes)For constants0 � s � c �

1 and for an integerq, we say thatL 2 naPCP

c;s

[log; q]

if there exists a verifierV for L that satisfies the following
properties:

� [NUMBER OF RANDOM BITS AND QUERIES.] For any
inputx and any proofP , V tossesO(log jxj) random
coins, wherejxj is the length ofx, and makes at mostq
non-adaptivequeries toP ;

� [COMPLETENESS.] For anyx 2 L, there exists aP
such thatAcc(V; x; P ) � c;

� [SOUNDNESS.] For any x 62 L, for all P ,
Acc(V; x; P ) � s.

We have the following connection with the MaxkCSP
problem.

Theorem 4 ([1]) If NP = naPCP

c;s

[log; k] then it isNP-
hard to approximate MaxkCSP withinc

s

� " for any" > 0.

In [22] Theorem 4 was extended to the case of adaptive
queries, we will not need such extension in this paper.



3 Graph-Based Tests and Their Acceptance
Probability

The BLR test picksx
1

andx
2

independently and uniformly
at random and tests whetherf(x

1

)f(x

2

) = f(x

1

x

2

) (equiv-
alently, whetherf(x

1

)f(x

2

)f(x

1

x

2

) = 1). In order to
run several instances of the BLR test we will pick at ran-
domx

1

; : : : ; x

k

, and then, for some pairs(i; j), test whether
f(x

i

)f(x

j

)f(x

i

x

j

) = 1; the total number of queries will be
k plus the numberm of tests that we performed. If we are us-
ing the samex

i

more than once, then the number of queries is
smaller than3m and this may lead to an improvement in the
amortized query complexity. The problem is that we have to
show that re-using queries does not increase the error prob-
ability. A convenient way to represent a test that recycles
queries is to think of it as a graphG = ([k]; E) where the
k vertices are associated with thek elementsx

1

; : : : ; x

k

that
we pick at random and the edges(i; j) 2 E are associated
with the testsf(x

i

)f(x

j

)f(x

i

x

j

) that we perform.
Formally, for a graphG = ([k]; E) we define the follow-

ing testLinTestGraph(G; f).

LinTestGraph(G; f)
Choose uniformly at randomx

1

; : : : ; x

k

2 f1;�1g

n

if f(x
i

)f(x

j

)f(x

i

x

j

) = 1 for all (i; j) 2 E

then accept
else reject

LinTestGraph(([k]; E); f) readsk+ jEj bits,k of which are
free bits. We denote byAccGraph(G; f) the probability
thatLinTestGraph(G; f) accepts. The acceptance probabil-
ity of the test is expressed by the following formula.

Theorem 5

AccGraph(([k]; E); f) =

1

2

jEj

X

S�E

E

x

1

;:::;x

k

2

4

Y

(i;j)2S

f(x

i

)f(x

j

)f(x

i

x

j

)

3

5

: (3)

PROOF: We introduce the following operator̂ :

f1;�1g

�

! f0; 1g:

x

1

^ � � � ^ x

k

=

�

1 If x
1

= � � � = x

k

= 1

0 Otherwise.

It is not hard to see that it holds

x

1

^� � �̂ x

k

=

�

1 + x

1

2

�

� � �

�

1 + x

k

2

�

=

1

2

k

X

S�[k]

Y

i2S

x

i

:

(4)
where the latter equality may e.g. be proved by induc-
tion on k. The reader may want to notice that the last
term in Equation (4) is the Fourier expansion of the func-
tion f(x

1

; : : : ; x

k

) = x

1

^ � � � ^ x

k

. It remains to observe
that whenLinTestGraph(([k]; E); f) picks x

1

; : : : ; x

k

, it
accepts if and only if

^

i;j

f(x

i

)f(x

j

)f(x

i

x

j

) = 1 ;

and thus

AccGraph(([k]; E); f)

=

E

x

1

;:::;x

k

2

4

^

i;j

f(x

i

)f(x

j

)f(x

i

x

j

)

3

5

=

E

x

1

;:::;x

k

2

4

1

2

jEj

X

S�E

Y

(i;j)2S

f(x

i

)f(x

j

)f(x

i

x

j

)

3

5

=

1

2

jEj

X

S�E

E

x

1

;:::;x

k

2

4

Y

(i;j)2S

f(x

i

)f(x

j

)f(x

i

x

j

)

3

5

:

2

4 Fourier Analysis of the Path-Test, the Star-Test and
theK

2;k

-Test

For anyk, let ([k+1]; P

k

) be a path of lengthk whereP
k

=

f(i; i+ 1) : i = 1; : : : ; kg. In order to study the test induced
by such graph we have to study the expectation of products
like the ones appearing in the left-hand side of Eq. (3).

Lemma 6 For any functionf : f1;�1g

n

! f1;�1g,

E

x

1

;:::;x

k

2

4

Y

(i;j)2P

k

f(x

i

)f(x

j

)f(x

i

x

j

)

3

5

=

X

�

^

f

k+2

�

:

PROOF: We first note that all the terms of the formf(x
i

) in
the product cancel except forf(x

1

) andf(x
k+1

). Thus the
product can be rewritten as

f(x

1

)f(x

1

x

2

) � � �f(x

k

; x

k+1

)f(x

k+1

) : (5)

We expand each function and distribute the products. We use
the following expansions:

� f(x

1

) =

P

�

0

^

f

�

0

l

�

0

(x

1

);

� f(x

j

x

j+1

) =

P

�

j

^

f

�

j

l

�

j

(x

j

x

j+1

);

� f(x

k+1

) =

P

�

k+1

^

f

�

k+1

l

�

k+1
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Using Equations (1), Expression (5) becames
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When we take the average over the choices ofx

1

; : : : ; x

k+1

,
all the expressionsl

�

i

��

i+1

(x

i+1

) are independent random
variables, whose average is zero unless�

i

��

i+1

= ;. Thus,
everything cancels except when�

0

= �

1

, . . . , �
k

= �

k+1

so that the expression reduces to
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^

f
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0
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Lemma 7 For any graph([k + 1]; S), whereS � P

k

,
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Y
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)f(x

j
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PROOF: The lemma is certainly true forS = ;. Otherwise,
S is a non-empty subset of a path, and so it is a collection
of paths. Let us say thatS is a collection ofh paths, of
length l

1

; : : : ; l

h

respectively. Note thatjSj = l

1

+ : : : +

l

h

. The outcomes of the BLR test in different subpaths are
clearly independent random variables, so that the expectation
of their product is equal to the product of the expectations.
Applying Lemma 6 to each subpath we get
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Now, observe that, using Parseval’s equality,
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We thus have
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The analysis of the Path-Test is now straightforward.

Theorem 8 AccGraph(([k + 1]; P

k

); f) � (1 �

Dist(f; LIN [ LIN))

k.

PROOF: To save notation, let us define^f
max

= max

�

j

^

f

�

j.
Recall that1�Dist(f; LIN [ LIN) = (1 +

^

f

max

)=2. Using
Theorem 5, Lemma 7 and the Binomial Theorem, we get
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For anyk, let ([k+1]; S

k

) be the star withk rays, i.e. the
graph whose set of edges isS

k

= f(i; k+1) : i = 1; : : : ; kg.
We now analyse the associated test.

Lemma 9 For anyf : f1;�1g

n

! f1;�1g, and anyk � 1
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PROOF: Omitted from this extended abstract. 2

Theorem 10 AccGraph(([k + 1]; S

k

); f) �
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k

+

2
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�1

2

k

(1� 2Dist(f; LIN)).

PROOF: From Theorem 5, Lemma 9, and the fact that a sub-
graph of a star is a star we have
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We finally consider the bipartite complete graph with
components of size 2 andk, K

2;k

= ([k + 2]; B

k

), where
B

k

= f(i; k + 1) : i 2 [k]g [ f(i; k + 2) : i 2 [k]g.

Lemma 11 For any graph([k + 2]; S) whereS � B

k

and
S 6= ;, it holds
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�
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PROOF: We can assume without loss of generality that all
the vertices1; : : : ; k in ([k+ 2]; S) have degree at least one,
otherwise the analysis reduces to that of a smaller graph with
such property. We can also assume that bothk+1 andk+2

have degree at least one, otherwise the analysis reduces to
the analysis of the star. LetA � [k] be the set of vertices
connected withk + 1, B the set of vertices connected with
k + 2, andC the set of vertices connected with bothk + 1

andk + 2. We have to consider the three cases arising when
k + 1 andk + 2 have odd and even degree (there are four
cases, but two of them are symmetric).

If both have odd degree, then we have to estimate the
expression of Figure 1.
If k + i has even degree (i = 1; 2), thenf(x

k+i

) does not
appear at the beginning of the expression. We will give a
complete analysis only for the expression of Figure 1. For
the other cases we will just give the final result. We call�

1

and�
2

the Fourier coefficients used to expandf(x
k+1

) and
f(x

k+2

) respectively. For anyj 2 [k], x
j

occurs in two
functions; we call�

j

and

j

the sets used in the Fourier ex-
pansion of the two functions (in the order they appear in the
expression of Figure 1). We get the expression of Figure 2.

When we take the average, everything cancels except
when �

i
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Figure 1: An expression arising in the proof of Lemma 11.
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Figure 2: Another expression arising in the proof of Lemma 11.

The reader can verify that when the degree ofk + 1 is even
and the degree ofk + 2 is odd (or vice-versa), the the ex-
pectation is bounded by(max

�

j

^

f

�

j)

3 (the path of length
three is a special case of this analysis), and when the degree
of bothk + 1 andk + 2 is even the expectation is at most
(max

�

j

^

f

�

j)

4, or (max

�

j

^

f

�

j)

2 in the special case occurring
whenA = B = ; (that is, whenS = B

k

andk is even). 2

Theorem 12 AccGraph(([k + 2]; B
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�1

2

2k

(1� 2Dist(f; LIN [ LIN)).

5 Application to PCP Constructions

In this Section we present our PCP construction and its anal-
ysis. To this aim, we first extend the framework of proof-
composition of [5]. Our definition of inner verifier and of
decoding procedure is general enough to capture (some of)
the recent results of Håstad, is fairly compact and conceptu-
ally simpler than previous similar definitions.

5.1 The General Framework

We first need a definition analogous to that offolding
from [5]. Observe that ifA = l

fag

is a Long Code-
word, thenA(x) = �A(�x) for any x; for any function
A : f1;�1g

n

! f1;�1g we will define a new functionA0

that satisfies such a property. The definition ofA

0 is as fol-
lows:

A

0

(x) =

�

A(x) If x(1) = 1

�A(�x) If x(1) = �1:

We stress that, for anyx, A0

(x) can be evaluated with one
query toA, moreoverA0 is equal toA if A is a Long Code-
word. From the fact thatA0

(x) = �A

0

(�x) for any x it
follows that ^A0

�

= 0 for any� of even size, in particular for
� = ;. This property is useful in applying Lemma 17 below.

Definition 13 (Inner Verifier) An inner verifier is a ran-
domized algorithmV that given a function� : [m] ! [n]

and given oracle access to two functionsA : f1;�1g

n

!

f1;�1g andB : f1;�1g

m

! f1;�1g decides whether to
accept or reject.

Definition 14 (Decoding Procedure)A decoding proce-
dureis a pair of randomized algorithms(D

1

; D

2

) such that
for anyA : f1;�1g

n

! f1;�1g and anyB : f1;�1g

m

!

f1;�1g, D
1

(A) returns an element of[n] andD
2

(B) re-
turns an element of[m].

Definition 15 (Good Inner Verifier) An inner verifierV is
(c; s; q)-good with respect to a decoding procedure(D

1

; D

2

)

if for any � : [m] ! [n], anyA : f1;�1g

n

! f1;�1g,
and anyB : f1;�1g

m

! f1;�1g, the following properties
hold.

� [NUMBER OF QUERIES.] V makes at total number of
at mostq non-adaptive oracle queries.

� [COMPLETENESS.] If A is the Long Code ofa,B is the
long code ofb, and�[b] = a, then

Pr[V (A

0

; B

0

; �)accepts] � c :

� [SOUNDNESS.] For any constant� > 0, there is a pos-
itive constant�0 > 0 independent ofm andn such that
if

Pr[V (A

0

; B

0

; �)accepts] � s + � ;

then
Pr[D

1

(A

0

) = �(D

2

(B

0

))] � �

0

:

Theorem 16 If there exists a(c; s; q)-good inner verifier
then, for any� > 0, NP = naPCP

c;s+�

[log; q].

A proof of Theorem 16 can be found in a preliminary full
version of this paper [24]. It differs from a similar proof
in [5] since, in our definition of inner verifier, we allow ran-
domized decoding procedures (which is easy to deal with)
and we do not have a “circuit test” (this requires some more
care).



Using Theorem 16, the goal of developing a PCP con-
struction reduces to find an inner verifier and a decoding pro-
cedure. We will use a decoding procedure from [13] and its
Fourier analysis. Before quoting this result, we need one
more piece of notation: letm and n be two integers and
� : [m]! [n]; for a set� � [m] we denote by�

2

(�) the set
of elementsa 2 [n] such that there is an odd number ofbs in
� that are mapped intoa by �. In symbols,
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2

(fb
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; : : : ; b

h

g) = �(b

1

)��(b

2

)� � � ���(b

h

) :

The reason why we introduce this operator is thatl

�

(x��) =

l

�

2

(�)

(x), and, in turn, evaluating a linear function inx�� is
a problem that arises in the Fourier analysis of inner verifiers.

Lemma 17 ([13]) A decoding procedure(DH

1

; D

H

2

) exists
with the following property. For every"; � > 0 there exists a
�

0 such that, for anyA andB such that^A
;

=

^

B

;

= 0, if
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then
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(B))] � �

0

:

A proof of Lemma 17 is given in [13, Lemma 2.2]. In [24]
we present a slight simplification of the proof of [13] (our de-
coding procedure is simpler.) Our alternative proof is omit-
ted from this extended abstract.

5.2 Our PCP Construction

We now define our inner verifier and analyse it. It performs
two executions of the protocol of Håstad [13]. One query is
recycled between the two executions. The reader can com-
pare our analysis with the analysis of the linearity test asso-
ciated with a path of length two (or a star with two rays). The
inner verifier is described in Figure 3.

Lemma 18 For any A : f�1; 1g

n

! f�1; 1g, B :

f�1; 1g
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PROOF: It is immediate to see that
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It has been proved in [13] that
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It remains to evaluate the last term. We use the following
expansions:
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The expectation of the product is given in Figure 4.
Let us first estimate the last two terms. Following [13] we
have
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For the other terms, everything cancels except when�
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Lemma 19 For any 0 < " � 1=2, Inner
"

is a ((1 �
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2

; 1=4; 5)-good inner verifier with respect to(DH

1

; D

H

2

).

PROOF: Of courseInner
"

(A

0

; B

0

; �) makes 5 queries, two
to A

0 and three toB0. If A is the long code ofa andB is
the long code ofb and�(b) = a, then the test performed by
Inner

"

reduces to check whethere
1

(b) = e

2

(b) = 1. This
test is satisfied with probability(1� ")

2. It remains to check
the third property of the definition of inner verifier. Assume
that
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and by applying Lemma 17 toA0 andB0 we deduce that
there exists a�0 (depending only on� and on") such that
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Theorem 20 For any" > 0, NP = naPCP

1�";

1

4

+"

[log; 5].



Inner
"
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Choose uniformly at randomx
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; x
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n andy 2 f1;�1gm
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then accept
else reject

Figure 3: The inner verifier.

X

�

1

;�

2

;�

1

;�

2

^

A

�

1

^

A

�

2

^

B

�

1

^

B

�

2

�

E

x

1

l

�

1

��

2

(�

1

)

(x

1

)

��

E

x

2

l

�

2

��

2

(�

2

)

(x

2

)

��

E

y

l

�

1

��

2

(y)

��

E

e

1

l

�

1

(e

1

)

��

E

e

2

l

�

2

(e

2

)

�

: (7)

Figure 4: An expression arising in the proof of Lemma 18.

As observed by Oded Goldreich, one can also deriveNP =

naPCP

1�";1=4

[log; 5] by letting the verifier fail uncondition-
ally with probability1 � (1=4)=

�

1

4

+ "

�

and proceed nor-
mally otherwise. In this way, the soundness becames1=4

and the completeness becomes(1 � ")=(1 + 4"), that is ar-
bitrarily close to 1 since" was arbitrary.

6 Related Results and Open Questions

We believe thatNP can be characterized using1 + " amor-
tized query bits and that there exists a linearity tester working
with 1 + " amortized query bits.

A significant progress in the first direction has been re-
cently achieved by Sudan and Trevisan [21] who adapted our
analysis of the Bipartite-Graph Linearity Tester to the PCP
setting, obtaining a PCP characterization ofNP with 3k + 2

queries, completeness(1 � ") and soundness2�2k, for any
k and" (such a verifier uses, asymptotically, essentially1:5

amortized query bits, and thus shows a separation between
the PCP model and the 2-Prover 1-Round model.)

The main difficulty in obtaining such result is the neces-
sity to depart from the definition of inner verifier given in this
paper. It is indeed possible to show that whenever an inner
verifier is limited to look at two tables and has to check con-
sistency between them, then it must use at least 2 amortized
query bits. In order to do better, it is necessary to consider
inner verifiers that look at a larger number of tables, and that
try to check some weak form of consistency between the ta-
bles. This approach was originally used by Håstad [12] to
obtain his tight result for the Max Clique problem.

It remains an open question whether it is possible to use
less than1:5 amortized query bits either for the Linearity
Test problem or in PCP constructions. Regarding Linearity
Testing, a reasonable conjecture is that the test associated
with a bipartite complete graphK

k;h

has acceptance proba-

bility at most 1

2

kh

+

2

kh

�1

2

kh

(max

�

j

^

f

�

j). If this is the case,
then the test associated with the graphK

k;k

has amortized

query complexity1+" (for any" and sufficiently largek). In
order to prove that, we have to bound expectations of prod-
ucts over all the subgraphs ofK

k;h

. The expectations always
simplify to a sum of coefficients, and Parseval’s equality is
the only tool that we know in order to bound such summa-
tions in a convenient way. In order to have squares in the
summation (and to apply Parseval) we need vertices with de-
gree two in the graph. Thus, our approach only works for
graphs where most vertices have degree two, andK

k;2

is the
densest one with this property. In order to beat amortized
query complexity1:5we have to bound summations without
using Parseval’s equation. At a higher level, we hope that the
following statement holds.

Conjecture 21 For any f : f1;�1g

n

! f1;�1g, for any
non-empty graphG = ([k]; E),

E

x

1

;:::;x

k

Y

(i;j)2E

f(x

i

)f(x

j

)f(x

i

x

j

) � max

�

j

^

f

�

j : (8)

The technical lemmas of Section 4 prove some special cases
of this conjecture (namely, for the case whereG is a col-
lection of paths, or a edge-induced subgraph ofK

2;k

.) An
inspection of the proofs of the lemmas of Section 4 shows
that in fact, whenever we can prove the inequality of Equa-
tion (8), we can prove it for any functionf such that
P

�

^

f

2

�

= 1. This motivates the following (unfortunately
false) claim.

False Conjecture 22For anyf : f1;�1g

n

! R, such that
P

�

^

f

2

�

= 1, for any non-empty graphG = ([k]; E),

E

x

1

;:::;x

k

Y

(i;j)2E

f(x

i

)f(x

j

)f(x

i

x

j

) � max

�

j

^

f

�

j : (9)

In fact the above statement fails quite dramatically. Consider
the functionf : f1;�1g

n

! R such that^f
�

= 2

�n=2 for
any�. Then for a graph withk vertices and at least2k + 1



edges the left-hand side of (9) tends to infinity withn, while
the right-hand side tends to zero. A proof of Conjecture 21
needs to use the fact thatf is a Boolean function, and not
just a function of unit̀

2

norm.
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