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Abstract

We study query-efficient Probabilistically Checkable Rsoo
(PCPs) and linearity tests. We focus on the numbeamobr-
tized query bitsA testing algorithm useg amortized query
bits if, for some constant, it readsgk bits and has error
probability at most2=*. The best known PCP construc-
tion for NP in this respect usesamortized query bits [13];

at least one amortized query bit is necessary, urffess

NP [5]. This parameter is a fairly natural one and has appli-
cations to proving non-approximability results for coastt
satisfaction problems. Furthermore, a PCP charactevizati
of NP with less than 2 amortized query bits implies a sepa-
ration of the PCP model from the 2-Prover 1-Round model.

Our approach is to take an atomic verification procedure
and then iterate it several times, saving queries by reaycli
them between different iterations of the atomic test.

We first apply thisidea in order to develop query-efficient
linearity tests Linearity testing is a problem closely related
to testing thd_ong Codeand making PCP constructions. It
is also a significant combinatorial problem still lackingttt
characterizations, except for the case of three queries [4]
The best known linearity test uses 3 amortized query bits [4]
a different one achieves 1 amortized free bit (a different pa

rameter related to the Max Clique problem) but uses an un-

bounded number of amortized query bits [5]. We develop a
general analysis technique and a linearity test achieving s
multaneously amortized query complexity and amortized
free bit complexity.5. This test answers an open question
raised by Bellare, Goldreich and Sudan.

and has error probability/4, so that its amortized query
complexity is2.5.

1 Introduction

The PCP characterization NP [2, 1], orthe PCP Theorein

is a major achievement of complexity theory and a power-
ful tool for proving hardness of approximation for optimiza
tion problems. Informally stated, the PCP Theorem says
that there is a way of encoding proofsdP statements so
that such encoded proofs can be probabilistically tested us
ing logarithmic randomness and looking only at@nstant
number of bits of the encoding. The encoding of a correct
proof will pass the test with probability ohavhile, if the
statement is wrong, any adversarially chosen string submit
ted to the test will be accepted only with small probability,
say at most /2. The latter probability is therror probabil-

ity, or soundnessf the test. The algorithm implementing the
test is usually called theerifier. After the appearance of the
PCP Theorem, there has been a lot of effort devoted to find-
ing quantitativestrengthenings of it, with improved trade-
offs between the different parameters arising in the proof-
checking procedure. One of the main motivations for this
line of research has been the goal of getting improved, and
eventually tight, non-approximability results for certaip-
timization problems.

PCP RRAMETERS. Four main parameters have been con-
sidered for their applications to proving hardness of apipro
mation: the number ajuery bitsthe number ofree bitsand

We then show how to adapt a weaker result to the PCP theiramortizedversions (see also [3] for a survey on recent

setting, and we obtain a PCP NP that makesy queries
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PCP results and for the role of different parameters.) The
number of query bits is the number of bits of the proof that
are accessed by the verifier. We say that a verifier fisese

bits if there is a subset gfqueries such that for any possible
outcome to these queries there is only one possible answer
to the other queries that would make the verifier acéepe

1In some cases, including the construction presented iptiper, there
is the less restrictive assumption that correct proofs ecefgted with prob-
ability at leastt — ¢ where= can be made arbitrarily small independently of
the other parameters of interest.

2 A more general definition is given in [5].



say that a verifier useg amortized query bits if, for some  provers of the outer protocol. There is a way to compose the
constantk, it makesgk queries and has error probability at  two protocols so that the “composed verifiéf”inherits the
most2~*; amortized free bits are defined similarly. The no- query complexity and the error probability of the inner veri
tion of amortization is due to [7, 5]. fier Virrer and even if """ required a polynomial or even

PCPs with small query complexity (and, subject to that, exponential amount of random bits, the composed verifier
with low error) have applications to prove hardness of ap- will only use logarithmic randomness. Note that since the
proximation for the Max 3SAT problem; a tight result, due outer verifier given in Raz [19] is essentially the best pos-
to Hastad [13] is known in this context (the tightness is due sible, we only have to care about the inner one, i.e. on the
to [14, 26].) Protocols with small free bit complexity (and, definition of the code and on checking codewords and con-
subject to that, with low error) imply hardness of approxi- sistency.
mation results for the Vertex Cover problem; a tight result
is not known and is a major open question. The amortized
free bit complexity parameter is related to the hardnesp-of a
proximating Max Clique; in this case a tight result is known,
due to Hastad [12], showing thAlP can be characterized
with ¢ amortized free bits for any > 0. The amortized
guery complexity parameter is related to the approximigbili
of constraint satisfaction problems described below. Attig
result is not known.

Max kCSP (fork-ary Constraint Satisfaction Problem)
is the generalization of MakSAT where each clause is al-
lowed to be an arbitrary predicate over (at mdst)oolean
variables. Maxk CSP was implicitin [18], has been named
in [15] and then studied e.g. in [10, 22, 23, 25, 16, 26]. This
problem is known to b&-approximable fo: = 3 [26] and
2%~ 1l.approximable fork > 4 [22]; on the negative side it
is NP-hard to approximate within a fact@l*/3! — ¢ for
any k [13]. A PCP forNP usingg amortized query bits im-
plies theNP-hardness of approximation of M&CSP within
2lk/4l — ¢ for sufficiently largek:.

An additional motivation for the study of PCPs with TESTINGLINEARITY: THE PROBLEM AND PREVIOUS RE-
low amortized query complexity is the fact tHdP cannot SULTS. Inthe linearity test problem we are given oracle ac-
be characterized with 2-Provers 1-Round having amortized cess to a functiorf : {0,1}" — {0, 1} and we want to de-
query complexity smaller than (we take the query com-  termine whetheyf is linear, i.e.f(a) & f(b) = f(a & b) for
plexity of a 2-Prover 1-Round protocol as the sum of the anya,b € {0,1}", orif f is very far from every linear func-
answer sizes) unless= NP [20]. Thus, a characterization tion, where the distancBist(f, g) between two functions
of NP in terms of a PCP with.99 (say) amortized query bits  is the fraction of points where they disagree (for a function
implies a separation between the PCP and the MIP model, af and a family.F we also use the notatioDist(f, F) =
question asked in [6] and [5]. The best previous result was amin,c » Dist(f, ¢).) Observe that the set of linearary
characterization dllP with 3 + ¢ amortized query bits [13].  functions, denoted.IN, is a Hadamard Codewith code-
There cannot be a characterization with 1 amortized querywords of length2”; recall that this code has minimum dis-
bit unlessP = NP [5, 22]. We believe that + ¢ is the right tancel/2. We want a randomized test that always accepts
answer: our goal is to make progress in this direction. linear functions and that accepts with very small probapbili

. functions that are far from the set of linear functions. The
TESTING PrOOFS  The standard method of getting good oo probability of the test is the probability that it apte

PCPs is bycompositiona paradigm introduced in [2] and 5 fnction that is far; clearly this definition depends on tvha

then used €.g. in[1,6, 75,11, 12, 13]. _In the most re- 5 \ye mean by “far”. Bellare, Goldreich and Sudan [5] call
cent constructions [5, 12, 13] one starts witharter pro- “codeword test” the problem where “far” functions are atdis

tocol given by Raz [19], a 2-Prover 1-R0_und protocol with (once gt least/4 from the code. This definition is motivated
perfect completeness, constant answer size and smallsoundny the fact that “non-far” functions have unique decoding.

ness, a_nd then one tries to improve on t_he paramete_r of In'Defining “far” to be the set of functions at distance at least
terest, in our case the number of amortized query bits. To 1/2 — ¢ from the set of linear functions is still good (this

this aim, one defines an appropriate error correcting code;q ajied “relaxed codeword testing” in [5]) since a funetio

and a testing procedure, called tmmer protocol. Given that is at distance at mos$y2 — ¢ from some linear func-
two strings, the inner protocol checks whether or not they

are the encodings of two possible consistent answers of the 2in fact, itis a first-order Reed-Muller Code.

THE LONG CODE. A first series of works [1, 6, 7] devel-
oped inner verifiers using the Hadamard Code, and the essen-
tial testing problem was the “linearity test” problem, finst
vestigated by Blum, Luby and Rubinfeld [8]. More recently,
the Long Code was introduced in [5] and used in [5, 11, 13].
The Long Code of a string € {0, 1}” is a stringA of length

22" indexed by the functiong : {0, 1} — {0,1}, and such
that A(f) = f(a) for any functionf (we give an alternate
equivalent definitionin Section 2.) It should be noted thatt
linearity test is still relevant to the analysis of the Longd@:

in [5] the linearity testing was a subroutine of the Long Code
test; in [13] the analysis of the Long Code is based on a “per-
turbed” linearity test and its analysis follows the linefaga
with several complications) of the analysis of the lingarit
test given in [4]. Thus, it appears that techniques and ideas
developed to test linearity are, with appropriate extemsio
useful in testing the Long Code and eventually getting PCP
constructions. This motivates us to get, for starters, algoo
linearity tester with low amortized query complexity.




tion is at this distance from at most4<? other linear func-
tions, so we can still use bounded distance decoding. We
obtain the same bounid'4¢? if we say that a function is not
“far” whenever it is at distance at most2 — ¢ from either

LIN or from the set of functions that are the bitwise com-
plement of linear functions, denotédN. This is the notion

of “relaxed codeword test” that we adopt in this paper. The
linearity test of Blum, Luby and Rubinfeld [8] (henceforth
called theBLR tes} makes three queries: it picks random
a,b € {0,1}" and accepts iff (a) & f(b) = f(a ©b). The
BLR analysis has been improved in [9, 4, 17]; in [4] it has
been shown that the acceptance probability of this test is at
most1 — Dist(f,LIN), thatisl/2+ ¢ whenf is at distance

1/2 — ¢ from the set of linear functions. Thus, the BLR
test has amortized query complexity essentialljNo better

test is known with respect to amortized query complexity.
With respect to amortized free bit complexity, in [5] these i

a test that has amortized free bit complexity essentiallydl a
that distinguishes linear functions from functions at aiiste

1/4 from the set of linear functions. There is a lower bound
showing that this result is tight. Bellare et al. asked wheth
this lower bound can be beaten using relaxed codeword tests

TESTING LINEARITY: OUR RESULTS.  We develop a gen-
eral framework to define and analyse linearity tests that exe

3. The test associated with the grafgh ;. has acceptance
probability at most

1
2%

(2%7_1)(1 — 2Dist(f, LIN ULIN)),

92k

it reads3k + 2 bits, and usegk + 2 free bits. The amor-
tized query complexity is roughly.5 and the amor-
tized free bit complexity is roughly, beating the lower
bound of [5].

The only tool of Fourier analysis that we use is Parseval's
equality. In a sense that can be made forr&l,amortized
query bits are a natural limit to the techniques developed in
this paper (this is discussed in Section 6.)

PCP: QR REsuLTS.  All the results that we have for the
linearity test extend to the analysis afieLong Codeword,
using the random perturbation idea of [13]. Unfortunately,
it is necessary to look atwvo alleged Long Codewords in
order to build an inner verifier, and there is also a consgsten
test to be implemented. We are able to extend to the PCP
setting the analysis of the linearity test based on the star w
three vertices: this gives a PCP that makes five queries and
has soundnesls’4. The amortized query complexity of our

cute several instances of the BLR test and recycle query bitsPCP is thu2.5. This also implies that Max 5CSP is hard

between different executions.

In order to analyse the acceptance probability of such
tests, we describe the way bits are recycled in terms of
graphs. To every grapff with k vertices andn edges we
associate a test that we chlhTestGraph (G, -). Such a test
queriesk + m bits, usesk free bits, and runs. instances
of the BLR test. We show that the acceptance probability of
LinTestGraph (G, ) can be formulated in a way that is very
convenient for Fourier analysis (Theorem 5). We then use
Fourier analysis to obtain tight bounds on the error proba-
bility of three infinite families of tests. The use of Fourier
analysis to study linearity tests was introduced in [4]stdd
elected it to a fine art in his papers on testing the Long Code
and on improved PCP constructions[11, 13]. Our results are
as follows ¢ > 1 is any fixed positive integer):

1. The test associated with a path of lengthas accep-
tance probability at most

(1 — Dist(f, LIN ULIN))*,

with 2% + 1 query bits and: + 1 free bits. Thus it uses
roughly 2 amortized query bits and 1 amortized free bit.

. The test associated with a star withrays has accep-
tance probability at most

1
ot

2" =1 1 opist(f, LN UTIV)).

9k
Its (amortized) query and free bit complexity are as be-
fore.

to approximate withint — ¢ and that MaxkCSP is hard to
approximate withirel-4* — <. (This result has been recently
improved, see Section 6.)

OVERVIEW OF THEPAPER. We introduce basic definitions

in Section 2. We describe graph-based linearity tests in Sec
tion 3 and present a first analysis of their acceptance prob-
ability. In Section 4 we present a Fourier analysis of three
graph-based families of tests. Section 5 is devoted to our
PCP construction. In Section 6 we discuss a recent improve-
ment and some open questions.

2 Linear Functions, Fourier Analysis, and PCP

From now on boolean functions will be defined with values
in {1,—1} rather than{0,1}. The association is that1
stands forl (or true) and1 stands foi) (or false). Observe
that multiplication in{1, —1} acts as boolean xor if0, 1}.
For an integerk, we denote byfk] the set{1,... k}. For
two setse and 5 we denote byvAg = (a U §) — (a N f)
their symmetric difference. Recall tha&t is commutative
and associative.

We will often blur the difference between vectors in
{1,—1}"* and functions from[n] to {1,—1}; for a vec-
torz € {1,—1}", its a-th entry @ € [n]) is denoted by
z(a) and can be thought of as the evaluation of a function
z : [n] = {1,—1} in the pointa. If = : [m] — [n] and
z € {1,—1}", the vectorz o 7 € {1,—1}" is defined as
zom(b) = x(n(b)) foranyb € [m].

Given two vectorse andy, their bit-wise product, de-
notedzy, is defined agy(a) = z(a)y(a).



Given two functionsf,g : {1,—1}* — {1, —1}, their
distance is the fraction of points where they disagree,ithat

_ He: f(2) # g(2)}]

Dist(f, ) o

= Pry[f(2) # g()] .

We say that a functiogf : {1,—-1}" — {1,—1} is linear
iff f(x)f(y) = f(zy) forall z,y € {1,—1}". There are
2™ linear functions. There is a linear functién for any set
a C{1,...,n};itis defined as

lo(z) = [] z(a) -

acoa

By convention, we say that a product ranging over the empty
set equals 1. We will be using three standard properties of

linear functions, the fact that they are lineaminlinear inz
and that they are equally oftérand—1, except for the case
of the function that is identically 1:

la(2)lg(2) = laap(z) , la(@)la(y) = la(zy) ,

Bl (z) = fa=0

1
- { 0 otherwise. 2)

We denote byLIN,, the set of linear functions of arity:
this set is a Hadamard Code with codewords of lergjth
We also use the notatiohlN,, = {f : —f & LIN}.
We usually drop the subscript. It is useful to see a func-
tion f : {1,—1}" — {1,—1} as a real-valued functions
f:{l,—1}" > R. The set of functiong : {1,-1}" > R
is a vector space over the reals of dimensibnWe define a
scalar product between functions.
1
Fa=g Y, fagl)= E[f(z)g(x)]

ze{l,—1}"

For functionsf : {1,—1}" — {1,—1}, the scalar product
has a couple of alternative characterizations.

fg Pr,[f(z) = g(2)] — Pro[f(x) # g(2)]

1 —2Dist(f, g) .

The set of linear functions is easily seen to form an orthenor
mal basis for the set of functions: {1,—1}" — R. This
implies that for any functiotf : {1,—1}" — R we have

flz) = Zfala(x) wheref, = f 1 .

For a functionf : {1,—-1}" — {1,—1}, we also have sev-
eral useful properties of the coefficients, namely

o —1<fu<1,

o fo=1—2Dist(f,l.),

o |fo] =1 —2min{Dist(f, L), Dist(f, —la)},

o maxy fo=1— 2Dist(f,LIN),

e max, |fa| = 1 — 2Dist(f, LIN ULIN).

We now state the only result from Fourier analysis that will
be used in the rest of the paper.

Lemma 1 (Parseval's equality) For any function f

{1, -1} = {1,-1}, %, f2 = 1.

The Long Code is the set of linear functions whose sup-
port is a singleton, i.eLONG,, = {ljs : a € [n]}. We
say thatl;,, is the Long Code oti. Thus, the Long Code
is formed byn codewords of lengtl2™. An alternate but
equivalent definition was used in [5]. We think that our defi-
nition makes more explicit the relation between linear func
tions and the Long Code.

We give the definition of PCP parameters and classes.
We follow the notation of [6, 5].

Definition 2 (Verifier) A verifier V' for a languagel is a
probabilistic polynomial time algorithm that receives am i
put 2 and has oracle access to a strititj that is supposed
to represent a proof of the statement &£ L”. For a verifier
V, aninputr and a proofP, we denote b cc(V, z, P) the
probability over the random choices of that}” acceptse
having oracle access tB.

Definition 3 (PCP Classes)For constants) < s < ¢ <
1 and for an integery, we say that. € naPCP, ,[log, q]
if there exists a verifiel/ for L. that satisfies the following

properties:

¢ [NUMBER OF RANDOM BITS AND QUERIES] For any
inputz and any proofP, V tossex)(log |«|) random
coins, wherdz| is the length of:, and makes at most
non-adaptivejueries toP;

e [COMPLETENESS] For anyz € L, there exists aP
such thatAce(V, z, P) > ¢;

e [SOUNDNESS]
Acc(V,z, P) <s.

For any = ¢ L, for all P,

We have the following connection with the M&CSP
problem.

Theorem 4 ([1]) If NP = naPCP. ,[log, k] then it isNP-
hard to approximate MaxCSP within: — ¢ for anye > 0.

In [22] Theorem 4 was extended to the case of adaptive
gueries, we will not need such extension in this paper.



3 Graph-Based Tests and Their Acceptance and thus

Probability AccGraph(([k], ), f)
The BLR test picks:; andx» independently and uniformly r
at random and tests whethgz1 ) f(x2) = f(z122) (€qQuiv- _ E /\f(xi)f(x . x])]
alently, whetherf(x1)f(x2)f(z122) = 1). In order to Ty T
run several instances of the BLR test we will pick at ran- - -
domzy, ..., x5, and then, for some paifs, j), test whether
f(z;)f(z;) f(ziz;) = 1; the total number of queries will be = LB 2|E| > I Fleofey)fle)
k plus the numbem of tests that we performed. If we are us- SCE(,j)es
ing the same:; more than once, then the number of queries is 1 1
smaller thar8m and this may lead to an improvement in the = 3@ H fles)f (mizj)
amortized query complexity. The problem is that we have to SgE“’ "R Gg)es ]
show that re-using queries does not increase the error prob- 0

ability. A convenient way to represent a test that recycles
queries is to think of it as a graphi = ([], £) where the 4 Fourier Analysis of the Path-Test, the Star-Test and

k vertices are associated with thelementseq, . . ., zy that the K ,-Test
we pick at random and the edgés;j) € E are associated
with the testsf (x;) f(x;) f(z;x;) that we perform. Foranyk, let [k + 1], Px) be a path of length whereP, =
Formally, for a grapl: = ([k], £') we define the follow- {(¢,7+ 1) :i=1,...,k}. Inorder to study the_test induced
ing testLinTestGraph (G, £). t_)y such graph we hgve _to study the expgctatlon of products
like the ones appearing in the left-hand side of Eq. (3).
LinTestGraph(G, f)
Choose uniformly at random,, . . .,z € {1, —1}" Lemma 6 For any functionf : {1, —1}" — {1, -1},
if f(l‘l)f(l‘])f(l‘ll‘]) =1 forall (Z,j) <y
then accept fh2
else rejectp xl, Eap EP f@a) f(zg) faizg) | = ZO; fat?.

LinTestGraph (([£], E), f) readsk + | E| bits, k of which are
free bits. We denote b ccGraph(G, f) the probability
thatLinTestGraph (G, f) accepts. The acceptance probabil-
ity of the test is expressed by the following formula.

PROOF. We first note that all the terms of the forfifz;) in
the product cancel except f@xz,) and f(xx41). Thus the
product can be rewritten as

Theorem 5 fl@) f(mize) - fon, 2e) F(h41) - (5)
AccGraph(([k], E), ) = We expand each function and distribute the products. We use
Y the following expansions:
1 _ ; .
o 2., B [ IT Fea)fes)fe xj)] NG o fle) =2, f%laf(m),
s (aes o [(xjzjp) =20, foslos(2j2i40);
PROOF ~ We introduce the following operaton )
{1, —1}* — {0, 1}: i f(xk+1) = Eak+1 fOék+1lak+1 ($k+1)-
1 o= =ap=1 Using Equations (1), Expression (5) becames
TAA N TR = { 0 Otherwise.
It is not hard to see that it holds Z Joo fapsrlaonas (1) Loy Aagys (Th41) -
1 1 QO X4
A A = (L) () ZHM ()
2 2 ;
k]i€s When we take the average over the choicesof . ., zx41,
4) all the expression&,, aq,,, (¢;+1) are independent random

where the latter equality may e.g. be proved by induc- variables, whose average is zero unles&«; 1 = §. Thus,
tion on k. The reader may want to notice that the last everything cancels except when = Q1 e, Q= Qg
term in Equation (4) is the Fourier expansion of the func- so that the expression reducesty, fijz. o
tion f(x1,...,2,) = #1 A --- A zg. It remains to observe

that whenLinTestGraph(([4], ), f) picks z1, ..., zg, it Lemma 7 For any graph([k + 1], 5), wheres C P,

accepts if and only if [
l‘1, “HT (

A S Fei) flaiz) =1, LI seasense m] < (max|fa]) "1



PROOE The lemma is certainly true fa¥ = . Otherwise,

S is a non-empty subset of a path, and so it is a collection

of paths. Let us say thaf is a collection of paths, of
lengthly, ..., I, respectively. Note thatS| = 4 + ... +

ProoF. Omitted from this extended abstract.

O
Theorem 10 AccGraph(([k + 1],5%),f) < 2% +
“1(1 — 2Dist(f, LIN)).

ln. The outcomes of the BLR test in different subpaths are proor From Theorem 5, Lemma 9, and the fact that a sub-

clearly independent random variables, so that the expestat
of their product is equal to the product of the expectations.

Applying Lemma 6 to each subpath we get

[H Flai)f

(i,j)es i=l «a

xa:]] <H2fl+2.
Now, observe that, using Parseval’s equality,

YLt < ZF = (max|f,

(a4

max

)"

We thus have

[T /()
T1,.. kayxk"'l
g

(i,j)es

fai) [z x])]

h
< H max|fa L = (moex|fa|)|5| .
i=1

O

The analysis of the Path-Test is now straightforward.

Theorem 8 AccGraph(([k + 1], P),f) <
Dist(f, LIN ULIN)).

(-

PROOF. To save notation, let us defing,., = max, |fa]|.
Recall thatl — Dist(f, LINULIN) = (1 + fmax)/2. Using
Theorem 5, Lemma 7 and the Binomial Theorem, we get

AccGraph(([k+ 1], Py), f)

S gl

SCPy

()

— _k(l + fmax)k
= (

IA

— | —

— Dist(f, LIN ULIN))* .

O
For anyk, let([k + 1], Si) be the star witlt rays, i.e. the
graph whose set ofedgesds = {(i, k+1) :i=1,... k}.
We now analyse the associated test.

Lemma9 Foranyf : {1,—1}" = {1,—1},and anyk > 1

graph of a star is a star we have

AccGraph(([k + 1], Sk), f)
1 1
T >
SCSk, S50
1 2k —1 T

max|fa|
(a4

O
We finally consider the bipartite complete graph with
components of size 2and K., = ([k —|— 2] By), where
Be={(i,k+1) i€ [KYU{(i,k+2):ie K}

Lemma 11 For any graph([k + 2], S) whereS C B and
S # 0, it holds

E I fafe)f(ee;) < max|fol.

T1,...,T o
PTEY G es

PROOE We can assume without loss of generality that all
the verticesl, ..., k in ([k + 2], S) have degree at least one,
otherwise the analysis reduces to that of a smaller gragh wit
such property. We can also assume that lkothl andk + 2
have degree at least one, otherwise the analysis reduces to
the analysis of the star. Let C [k] be the set of vertices
connected withk + 1, B the set of vertices connected with
k + 2, andC the set of vertices connected with bath- 1
andk + 2. We have to consider the three cases arising when
k + 1 andk + 2 have odd and even degree (there are four
cases, but two of them are symmetric).

If both have odd degree, then we have to estimate the
expression of Figure 1.
If ¥ + ¢ has even degreé & 1,2), then f(zx;) does not
appear at the beginning of the expression. We will give a
complete analysis only for the expression of Figure 1. For
the other cases we will just give the final result. We eall
and«y the Fourier coefficients used to expafidty+1) and
f(zr42) respectively. For any € [k], z; occurs in two
functions; we call3; and~; the sets used in the Fourier ex-
pansion of the two functions (in the order they appear in the
expression of Figure 1). We get the expression of Figure 2.

When we take the average everything cancels except

wheng; = ~; forall i, a1 = A 5 A G;, anday =
iEA =

A B A v. Sothe average is

1€EB 1€C
Z f,efusﬁ (legucmfgl'“fgk
< max|fa Z f@l f;k
<

max | fa| .
(a4



L1y, Tr42 jea

E  fleest1)f(2ig2) (Hf$k+1$]

) (H f(@hq2z;) f
JjEB
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Figure 1: An expression arising in the proof of Lemma 11.
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Figure 2: Another expression arising in the proof of Lemma 11

The reader can verify that when the degreé af 1 is even
and the degree of + 2 is odd (or vice-versa), the the ex-
pectation is bounded bfmax, |f.|)® (the path of length

{1,-1}and B : {1,—1}™ — {1, —1} decides whether to
accept or reject.

three is a special case of this analysis), and when the degredefinition 14 (Decoding Procedure) A decoding proce-
of bothk + 1 andk + 2 is even the expectation is at most dureis a pair of randomized algorithmgD,, D-) such that

(max, | fo|)%, or (max, |f.])? in the special case occurring
whenA = B = § (thatis, whenS = B, andk is even). O

Theorem 12 AccGraph(([k + 2], Bx), f)

271 (1 — 2Dist(f, LIN ULIN)).

< ww

5 Application to PCP Constructions

foranyA:{1,—-1}" = {l,—1}andanyB : {1,—-1}" —
{1,—1}, D1(A) returns an element di] and D;(B) re-
turns an element din].

Definition 15 (Good Inner Verifier) An inner verifierV is
(¢, s, ¢)-good with respect to a decoding procedyf2, , D-)
if forany = : [m] — [n], any A : {I,—1}" — {1,—1},
and anyB : {1,—1}™ — {1, —1}, the following properties

In this Section we present our PCP construction and its anal-p|d.

ysis. To this aim, we first extend the framework of proof-

composition of [5]. Our definition of inner verifier and of

decoding procedure is general enough to capture (some of)
the recent results of Hastad, is fairly compact and congept

ally simpler than previous similar definitions.
5.1 The General Framework

We first need a definition analogous to that folding
from [5]. Observe that ifA = [;,; is a Long Code-
word, thenA(z) = —A(—=) for any z; for any function
A {1, =1} = {1, -1} we will define a new functiom’

that satisfies such a property. The definition4fis as fol-

lows:
Al(z) = {

We stress that, for any, A’(x) can be evaluated with one
query toA, moreoverd’ is equal toA if A is a Long Code-
word. From the fact that’(z) = —A’(—«x) for any « it
follows thatfl’a = 0 for any « of even size, in particular for

Afe)
~A(-2)

If z(1) =1
If (1) = —1.

o = . This property is useful in applying Lemma 17 below.

Definition 13 (Inner Verifier) An inner verifieris a ran-
domized algorithni” that given a functionr : [m] — [n]
and given oracle access to two functioas: {1, —1}" —

e [NUMBER OF QUERIES] V makes at total number of
at mosty non-adaptive oracle queries.

o [COMPLETENESS] If A isthe Long Code af, B isthe
long code ob, andx[b] = a, then
Pr[V (A’ B, m)accepts] > c .
¢ [SOUNDNESS] For any constand > 0, there is a pos-
itive constan®’ > 0 independent ofz andn such that
if

Pr[V (A’ B’ m)accepts] > s + 4 ,

then
Pr(Dy(A') = 7(Dy(B'))] > ¢ .

Theorem 16 If there exists a(c, s, ¢)-good inner verifier
then, for any > 0, NP = naPCP. ,4s[log, ¢].

A proof of Theorem 16 can be found in a preliminary full
version of this paper [24]. It differs from a similar proof
in [5] since, in our definition of inner verifier, we allow ran-
domized decoding procedures (which is easy to deal with)
and we do not have a “circuit test” (this requires some more
care).



Using Theorem 16, the goal of developing a PCP con- It has been proved in [13] that
struction reduces to find an inner verifier and a decoding pro-

cedure. We will use a decoding procedure from [13] and its E  A(xi)B(y)B((w: o m)ye;)

Fourier analysis. Before quoting this result, we need one x“y’ef - 9]
more piece of notation: let. andn be two integers and = ZAWQ(ﬁ)Bﬁ(l - 2)
7 : [m] = [n]; for a set? C [m] we denote byr,(5) the set P

of elements: € [n] such that there is an odd numbemefin
[ that are mapped into by 7. In symbols,

Fz({bl, ceey bh}) = F(bl)Aﬂ'(bz)A . Aﬂ'(bh) .

The reason why we introduce this operator isthat o) =
lx,(s)(x), and, in turn, evaluating a linear functionim r is
a problemthat arises in the Fourier analysis of inner vesifie

Lemma 17 ([13]) A decoding procedur¢ D! D) exists
with the following property. For every, § > 0 there exists a
¢’ such that, for anyt and B such thatdy = By = 0, if

Y @ BE(1 - 2071 >4,
5Cm]

then
Pr[D{(A) = n(Dy(B))] > ¢" .

A proof of Lemma 17 is given in [13, Lemma 2.2]. In [24]
we present a slight simplification of the proof of [13] (our de

coding procedure is simpler.) Our alternative proof is emit

ted from this extended abstract.

5.2 Our PCP Construction

We now define our inner verifier and analyse it. It performs

< D A Bi(1—2¢)0
B

It remains to evaluate the last term. We use the following
expansions:

o Alxy) = Zal Aaloy (21),
o Alxs) = ZQQ A%l%(l‘z),

o Bleyomyer) = Y, Baylon (01 0 s, ()15, (e1),

B(ws o myes) = Y. 5. Ba,ls, (wa 0 7)lg, (y)ls, (ea)-

The expectation of the product is given in Figure 4.
Let us first estimate the last two terms. Following [13] we

have
€; be@le’

For the other terms, everything cancels except when-
B2 = fanda; = ay = m(B). We thus have that (7) is
equal to
AL 5 Ba(1—20) VN <AL IBE(1 - 20)10T
8 8
O

two executions of the protocol of Hastad [13]. One query i | emma 19 For any0 < ¢ < 1/2, Inner, is a ((1 —
recycled between the two executions. The reader can COM-;)2 1 /4 5)-good inner verifier with respect ) | D).

pare our analysis with the analysis of the linearity tesbass

ciated with a path of length two (or a star with two rays). The Proor. Of courselnner.(A’, B’, ) makes 5 queries, two

inner verifier is described in Figure 3.

Lemma 18 For any A {-,1}" - {-1,1}, B
{-1L,1}" = {=1,1}, 7 :[m] = [n],e > 0,

Pr[Inner. (A, B, r) acceptd
1 3 . .
< 1 + 1 Z |Aﬂ2(@)|35(1 — 26)'*6' .
B
PrROOEF It is immediate to see that

Pr[Inner. (A, B, r) accepty =

1

1y

f B A@)B@B(@ o myer)+

%x }zi/)e A(x2)B(y)B((z2 o m)yez)+

% E A(x1)A(22) B((21 o m)yer ) B((w2 o m)yes) .
L1, T2
Y,€1,€2

to A’ and three taB’. If A is the long code ofi and B is
the long code of and~(b) = «, then the test performed by
Inner. reduces to check whether(b) = e2(b) = 1. This
test is satisfied with probabilityt — ). It remains to check
the third property of the definition of inner verifier. Assume
that

1
Pr[Inner.(A’, B', m)accepts] > 1 +4.

Then we have that

. . 4
/ 1201 _ B =
> AL | BE (1= 2¢)7 > 0>
8
and by applying Lemma 17 td’ and B’ we deduce that
there exists @’ (depending only od and ong) such that
Pr{Dy (4') = n(Da(B'))] > 8"
O

Theorem 20 For anye > 0, NP = naPCP,__ 1 [log,5].



Inner. (A, B, 7)
Choose uniformly at random, z» € {1, -1} andy € {1, —-1}™
Choose at randomy, es € {1,—1}" such that'b € [m].Prle;(b) =1]=1—¢
if A(z1)B(y)B((x1 o m)yer) =1 andA(z2)B(y)B((x2 o m)yes) =1
then accept
else reject

Figure 3: The inner verifier.

Z AO&1A062B51§@2 (E lOélAﬂ'z(ﬁl)(xl)) (E lOézAﬂ'z(ﬁz)(xZ)) (ElﬁlAﬁz(y)) (E’lﬁl(el)) ((5152(62)) : (7)

a1,az,81,52

Figure 4: An expression arising in the proof of Lemma 18.

As observed by Oded Goldreich, one can also deike= qguery complexityl +¢ (for anye and sufficiently largé). In
naPCP,_. ;,4[log, 5] by letting the verifier fail uncondition-  order to prove that, we have to bound expectations of prod-
ally with probability 1 — (1/4)/ (1 + ¢) and proceed nor-  ucts over all the subgraphs &% ;. The expectations always
mally otherwise. In this way, the soundness becaiies simplify to a sum of coefficients, and Parseval's equality is

and the completeness becontés- ¢)/(1 + 4¢), that is ar- the only tool that we know in order to bound such summa-

bitrarily close to 1 since was arbitrary. tions in a convenient way. In order to have squares in the
summation (and to apply Parseval) we need vertices with de-

6 Related Results and Open Questions gree two in the graph. Thus, our approach only works for
graphs where most vertices have degree two /&pd is the

We believe thaNP can be characterized usitig+ £ amor- densest one with this property. In order to beat amortized

tized query bits and that there exists a linearity testekimdr  query complexityi.5 we have to bound summations without

with 1 4 ¢ amortized query bits. using Parseval’s equation. At a higher level, we hope theat th

A significant progress in the first direction has been re- following statement holds.
cently achieved by Sudan and Trevisan [21] who adapted our
analysis of the Bipartite-Graph Linearity Tester to the PCP Conjecture 21 For any f : {1,—1}" — {1,—1}, for any
setting, obtaining a PCP characterizatiorNéf with 3k + 2 non-empty grapli: = ([k], E),
queries, completeness — ¢) and soundness2*, for any
k ande (such a verifier uses, asymptotically, essentialby E H Fla) fla;) fe;e;) < max Ifal . (8)
amortized query bits, and thus shows a separation between T G eR “
the PCP model and the 2-Prover 1-Round model.) ) _ _

The main difficulty in obtaining such result is the neces- The t_echm(_:al lemmas of Section 4 prove some_speC|aI cases
sity to depart from the definition of inner verifier giveningh  Of this conjecture (namely, for the case whéves a col-
paper. It is indeed possible to show that whenever an innerl€ction of paths, or a edge-induced subgrapthef;.) An
verifier is limited to look at two tables and has to check con- inspection of the proofs of the lemmas of Section 4 shows
sistency between them, then it must use at least 2 amortizedhat in fact, whenever we can prove the inequality of Equa-
query bits. In order to do better, it is necessary to consider tion (8), we can prove it for any functioff such that
inner verifiers that look at a larger number of tables, anti tha 2~ fa = 1. This motivates the following (unfortunately
try to check some weak form of consistency between the ta- false) claim.
bles. This approach was originally used by Hastad [12] to

obtain his tight result for the Max Clique problem. False Conjecture 22Forany f : {1, —1}" — R, such that

P2 —
It remains an open question whether it is possible to use 2.0 o = 1, forany non-empty grapty = ([k], £),
less thanl.5 amortized query bits either for the Linearit ;
Test problem or in PCchonztructions. Regarding Lineazty xl,.}.?f,xk H fa) f(zg) f(@iz;) < mo?X|f°‘| - O
Testing, a reasonable conjecture is that the test assciate
with a bipartite complete grapi; , has acceptance proba- |n fact the above statement fails quite dramatically. Coersi
bility at most 4 + 2L (max, |f.]). If this is the case,  the functionf : {1, —1}" — R such thatf,, = 2=/ for
then the test associated with the graph, has amortized  anya. Then for a graph witlt vertices and at leagt: + 1

(i,j)€E



edges the left-hand side of (9) tends to infinity withwhile

the right-hand side tends to zero. A proof of Conjecture 21
needs to use the fact thgtis a Boolean function, and not
just a function of unit, norm.
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