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Abstract

We prove that the Traveling Salesman Problem (Min TSP) is Max SNP-hard (and thus
NP-hard to approximate within some constant r > 1) even if all cities lie in a Euclidean space
of dimension log n (n is the number of cities) and distances are computed with respect to any
lp norm. The running time of recent approximation schemes for geometric Min TSP is doubly
exponential in the number of dimensions. Our result implies that this dependence is necessary
unless NP has sub-exponential algorithms.

We prove a similar, but weaker, inapproximability result for the Steiner Minimal Tree Prob-
lem (Min ST). We also prove, as an intermediate step, the hardness of approximating Min TSP

in Hamming spaces.
The reduction for Min TSP uses error-correcting codes and random sampling; the reduction

for Min ST uses the integrality property of MIN-CUT linear programming relaxations. The
only previous inapproximability results for metric Min TSP involved metrics where all distances
are 1 or 2.

1 Introduction

Given a metric space and a set U of points into it, the Metric Traveling Salesman Problem
(Min TSP) is to find a closed tour of shortest total length visiting each point exactly once, while
the Metric Steiner Minimum Tree Problem (Min ST) is to find the minimum length tree connecting
all the points of U ; the tree can possibly contain points not in U , that are called “Steiner points”.

Both problems are among the most classical and most widely studied ones in Combinatorial
Optimization, Operations Research and Computer Science during the past few decades, and before.
Important special cases arise when the metric space is Rk and the distance is computed according
to the ℓ1 norm (the rectilinear case) or the ℓ2 norm (the Euclidean case).

We establish the first non-approximability results for this class of problems. As an intermediate
step, we use the fact that they are also hard to approximate in Hamming spaces. The approx-
imability of the Hamming versions of Min TSP seems to have never been considered before. The
hardness of approximating this problem is one of the main technical results of this paper. The
hardness of approximating Min ST in Hamming spaces has been studied for its application to
problems in computational biology (specifically, reconstructing evolutionary trees), but it has not
been linked to the hardness of the problem in geometric norms.

We now state and discuss our results for Min TSP and Min ST.
∗A preliminary version of this paper appeared in the proceedings of the 29th ACM Symposium on Theory of

Computing [Tre97].
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1.1 The Traveling Salesman Problem

Interest in the Min TSP started during the 1930’s. In 1966, the (already) long-standing failure of
developing an efficient algorithm for the Min TSP led Edmonds [Edm66] to conjecture that the
problem is not in P: this is sometimes referred to as the first statement of the P 6= NP conjecture.
See the book of Lawler et al. [LLKS85] for an extensive survey of results on Min TSP. Here we
will only review the results that are relevant to the present paper. The Min TSP is NP-hard
even if the cities are restricted to lie in R2 and the distances are computed according to the ℓ2

norm [GGJ76, Pap77]. Due to such a negative result, research concentrated on developing good
heuristics. Recall that an r-approximate algorithm (r > 1) is a polynomial-time heuristic that is
guaranteed to deliver a tour whose cost is at most r times the optimum cost. A 3/2-approximation
algorithm that works for any metric space is due to Christofides [Chr76]. For more than twenty
years, no improvement of this bound had been found, even in the restricted case of geometric
metrics.

In the late 1980’s, the discovery of the theory of Max SNP-hardness [PY91] gave a tool for
understanding this lack of results. Indeed, Papadimitriou and Yannakakis [PY93] proved that
the Min TSP is Max SNP-hard even when restricted to metric spaces (as we shall see later, the
result also holds for a particularly restricted class of metric spaces). As later shown by Arora et
al. [ALM+98], this implies that there exists a constant ǫ > 0 such that metric Min TSP cannot
be approximated within a factor (1 + ǫ) in polynomial time, unless P = NP. The complexity of
approximating Min TSP in the case of geometric metrics remained a major open question. In his
PhD thesis, Arora noted that proving the Max SNP-hardness of Euclidean Min TSP in R2 should
be very difficult, but that this could perhaps be done in Rk(n) for sufficiently large k(n) [Aro94,
Chapter 9]. In [GKP95], Grigni, Koutsopias and Papadimitriou proved that the restriction of the
Min TSP to shortest paths metrics of planar graphs can be approximated within (1 + ǫ) in time
nO(1/ǫ). Such an approximation algorithm is called a Polynomial Time Approximation Scheme
(PTAS). This result led Grigni et al. [GKP95] to conjecture that Euclidean Min TSP has a PTAS
in R2. They again posed the question of determining the approximability of the problem for higher
dimensions. In a recent breakthrough, Arora [Aro96] developed a PTAS for the Min TSP in R2

under any ℓp metric. Such an algorithm also works in higher dimensional spaces and, in particular,

it runs in time nÕ((logd−2 n)/ǫd−1) in Rd. A similar approximation scheme (but only for spaces of
dimension 2) was also found later by Mitchell [Mit97]. Arora has subsequently improved the running
time of his approximation scheme [Aro98]; his new scheme runs in nearly-linear time for any fixed
number of dimensions. Specifically, the algorithm of [Aro98] finds a (1+ ǫ)-approximate solution in

Rd in time n(log n)O((
√

d/ǫ)d)). An additional improvement is due to Rao and Smith [RS98]. Their

algorithm runs in time (
√

d/ǫ)O(d(
√

d/s)d−1)n+O(dn log n). The dependence of the running time on
the number of dimensions is however still doubly exponential.

This is a typical occurrence of the “curse of dimensionality”, a phenomenon empirically observed
in several cases in computational geometry, that is, the fact that the complexity of a geometric
problem grows exponentially or more in the number of dimensions of the space. In some cases
(e.g. nearest neighbor search [Kle97, KOR98, IM98]) clever algorithmic solutions can be developed
to avoid this exponential growth. In a preliminary version of [Aro96] Arora asked whether an
approximation scheme for geometric Min TSP exists for any arbitrary number of dimensions.

Our Results. In this paper we essentially answer negatively to this questions. We prove that
Min TSP in Rlog n is Max SNP-hard using any ℓp metric. It follows from our result that there
cannot be a PTAS for these problems (unless P= NP) and that there cannot be (1+ǫ)-approximate
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algorithms in Rd running in time nO(d/ǫ) for any ǫ > 0, unless NP ⊆ DTIME(nO(log n)).
The Max SNP-hardness is proved by means of a reduction from the version of the metric

Min TSP that was shown to be Max SNP-hard in [PY93]. In such metric spaces, any pair of
points is either at distance one or two, and an additional technical condition holds. The reduc-
tion uses a mapping (see Lemma 9) of the metric spaces of [PY93] into Hamming spaces and the
observation (see Proposition 3) that, for elements of {0, 1}n a “gap” in the Hamming distance is
preserved if distances are computed according to a ℓp metric. Our mapping of the metric spaces
of [PY91] into Hamming spaces does not preserve distances up to negligible distortion (in fact we
suspect that such kind of mapping would be provably impossible). Instead, our mapping intro-
duces a fairly high (yet constant) distortion, but satisfies an additional condition: cities at distance
one are mapped into cities at distance ≈ D1; cities at distance 2 are mapped into cities at dis-
tance ≈ D2, and D2 is larger than D1 by a multiplicative constant factor. This is sufficient to
make the mapping be an approximation preserving reduction. Our mapping uses error-correcting
codes (namely, Hadamard codes) to map cities into an O(n)-dimensional Hamming space, and then
random sampling to reduce the number of dimensions to O(log n).

The Minimum k-Cities Traveling Salesman Problem (Min k-TSP) and the Minimum Degree-
Restricted Steiner Tree Problem (two problems mentioned in Arora’s papers [Aro96, Aro98] on
approximation schemes for geometric problems) are generalizations of the Min TSP. The hardness
results that we prove for Min TSP clearly extend to them.

1.2 The Minimum Steiner Tree Problem

The origins of the Min ST problem are even more remote than the Min TSP’s ones: the case when
|U | = 3 and the metric space is R2 with the ℓ2 norm has been studied by Torricelli in the 17th
century. A more general case was later considered by Gauss. Recent results about this problem are
similar to the ones for Min TSP: exact optimization is NP-hard in R2 both in the Rectilinear (ℓ1)
case [GJ77] and in the Euclidean (ℓ2) case [GGJ77]. Constant-factor approximation is achievable in
any metric space (the best factor is 1.644 due to Karpinski and Zelikovsky [KZ97]), in general metric
spaces the problem is Max SNP-hard [BP89]. Arora [Aro96, Aro98], Mitchell [Mit97], and Rao and
Smith [RS98] show how to extend their geometric TSP approximation schemes to geometric Min

ST. The running time of these approximation schemes are the same as reported in the previous
section for TSP. See also the books by Hwang, Richards and Winters [HRW92] and by Ivanov and
Tuzhilin [IT94] and the web page maintained by Ganley [Gan] for extended surveys on the Steiner
tree literature. No non-approximability result was known for geometric versions of the Steiner
Tree problem. Steiner Tree in Hamming spaces is known to be Max SNP-hard, though this result
is usually expressed in terms of an equivalent problem in computational biology (see Wareham’s
Master Thesis [War93] and also [JW94, War95]).

Our Results. We prove the Max SNP-hardness of Min ST in Rn under the ℓ1 norm. We establish
this result by means of a reduction from the Min ST problem in Hamming spaces. The reduction
is based on the following combinatorial result (Theorem 14): for an instance where all the points
are in {0, 1}n ⊂ Rn, there exists an optimum solution where all the Steiner points lie in {0, 1}n.
We prove this fact using the integrality property of Min-CUT linear programming relaxations.

1.3 Discussion

For Euclidean Min TSP, there is still a slight slackness between recent approximation schemes

and our hardness result. Specifically, a running time 2(2
d)/ǫpoly(n) would be compatible with

3



our results, but if we believe that NP does not admit sub-exponential algorithms (i.e. NP 6⊆
DTIME(2no(1)

)), then even a running time 22o(d)/ǫpoly(n) is infeasible. For a fixed ǫ, the approxi-

mation scheme of Rao and Smith [RS98] runs in time (
√

d/ǫ)O(d(
√

d/s)d−1)n+O(dn log n) which, for

fixed ǫ, is roughly 22(d log d)/2+log d+log log d+log log n+O(1)
.

There is much more room for improvements for the Min STproblem, however our results at
least imply that the number of dimensions does matter in the running time of an approximation
scheme for this geometric problem.

We feel that one important contribution of this paper is the recognition of Hamming spaces
as a class of metric spaces that are somewhat “close” both to arbitrary metrics and to geometric
metrics, while also having a nice combinatorial structure. This combination of characteristics makes
problems on Hamming metrics an ideal “intermediate” step in reducing a combinatorial problem
to a geometric problem. Our hardness result for Hamming Min TSP has been used by Crescenzi
et al. [CGP+98] in order to prove the NP-hardness of the protein folding problem.

We also think that it should be worth trying to improve Christofides algorithm in Hamming
spaces. While the well-behaved structure of Hamming spaces should not make this task impossible,
it is likely that such an improved algorithm could give useful ideas for more general cases.

2 Preliminaries

We denote by R the set of real numbers. For an integer n we denote by [n] the set {1, . . . , n}. For
a vector a ∈ Rn and an index i ∈ [n], we denote by a[i] the i-th coordinate of a. The weight of a
Boolean vector a ∈ {0, 1}n is the number of non-zero entries.

Given an instance x of an optimization problem A, we will denote by optA(x) the cost of an
optimum solution for x, we will also typically omit the subscript. For a feasible solution y (usually
a tour or a tree) of an instance x of an optimization problem A, we denote its cost by costA(x, y) or,
more often, as cost(y). See e.g. [BC93, Pap94] for formal definitions about optimization problems.
In this paper we will use the notions of L-reduction and Max SNP-hardness. Max SNP is a class of
constant-factor approximable optimization problems that includes Max 3SAT, we refer the reader
to [PY91] for the formal definition.

Definition 1 (L-reduction) An optimization problem A us said to be L-reducible to an optimiza-
tion problem B if two constants α and β and two polynomial-time computable functions f and g
exist such that

1. For an instance x of A, x′ = f(x) is an instance of B, and it holds optB(x′) ≤ αoptA(x).

2. For an instance x of A, and a solution y′ feasible for x′ = f(x), y = g(x, y′) is a feasible
solution for x and it holds |optA(x) − costA(x, y)| ≤ β|optB(x′) − costB(x′, y′)|.

We say that an optimization problem A is Max SNP-hard if all Max SNP-problems are L-reducible
to A. From [ALM+98] it follows that if a problem A is Max SNP-hard, then a constant ǫ > 0 exists
such that (1 + ǫ)-approximating A is NP-hard.

A function d : U × U → R is a metric if the following properties hold:

1. d(u, v) ≥ 0 for all u, v ∈ U ;

2. d(u, v) = 0 if and only if u = v;
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3. d(u, v) = d(v, u) for any u, v ∈ U (symmetry);

4. d(u, v) ≤ d(u, z) + d(z, v) for any u, v, z ∈ U (triangle inequality.)

If all properties but (2) hold, then d is said to be a semi-metric. Abusing notation, we will usually
adopt the term “metric” both for metrics and semi-metrics.

Definition 2 ((1, 2) − B metrics) For a positive integer B, a metric d : U×U → R is a (1, 2)−B
metric if it satisfies the following properties:

1. For any u, v ∈ U , u 6= v, d(u, v) ∈ {1, 2}.

2. For any u ∈ U , at most B elements of U are at distance 1 from u.

Papadimitriou and Yannakakis [PY93] have shown that a constant B0 > 0 exists such that the
Min TSP is Max SNP-hard even when restricted to (1, 2) − B0 metrics.

For an integer p ≥ 1, the ℓp norm in Rn is defined as ||(u1, . . . , un)||p = (
∑n

i=1 |ui|p)(1/p). The
distance induced by the ℓp norm is defined as dp(u, v) = ||u − v||p. For a positive integer n, we
denote by dn

H the Hamming metric in {0, 1}n (we will usually omit the superscripts). We will make
use of the following fact.

Proposition 3 Let u, v ∈ {0, 1}n ⊆ Rn. Then dp(u, v) = dH(u, v)1/p.

Before starting with the presentation of our results, we make the following important caveat.

Remark 4 In some of the proofs of this paper we implicitly make the (unrealistic) assumption that
arbitrary real numbers can appear in an instance and that arithmetic operations (including squared
roots) can be computed over them in constant time. However, our results still hold if we instead
assume that numbers are rounded and stored in a floating point notation using O(log n) bits. This
fact follows from a modification of the argument used in [Aro96] to reduce a general instance of
Euclidean TSP or Steiner Tree into an instance where coordinates are positive integers whose value
is O(n2).

3 The Min TSP

Our hardness result is based on a “distance preserving” embeddings of (1, 2)−B metric spaces into
Hamming spaces. We first define the kind of embedding we are looking for.

Definition 5 For an integer B, a (1, 2) − B metric space (U, d), an integer k and positive reals
D1,D2 > 0 and 0 < ǫ < 1/2, we say that a mapping f : U → {0, 1}k is (k,D1,D2, ǫ)-good if for
any u, v ∈ U :

1. If d(u, v) = 1, then D1(1 − ǫ) ≤ dH(f(u), f(v)) ≤ D1(1 + ǫ).

2. If d(u, v) = 2, then D2(1 − ǫ) ≤ dH(f(u), f(v)) ≤ D2(1 + ǫ).

In particular, if f is a (k,D2,D1, 0)-good embedding, then pairs at distance 2 are mapped into
pairs at distance D2 nd pairs at distance 1 are mapped into pairs at distance D1.

Recall that, for any n = 2h that is a power of 2, the first-order Reed-Muller Code (which is also
an Hadamard Code) Hn ⊂ {0, 1}n is a set of n binary strings of length n whose pairwise Hamming
distance is n/2. The elements of Hn can be seen as the set of liner functions l : {0, 1}h → {0, 1}.
See e.g. [vLW92, Chapter 18] and the references therein for more details. The set Hn is computable
in time polynomial in n.
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Lemma 6 There exists a polynomial time algorithm that on input a (1, 2)−B metric with n points,
where n is a power of two, finds a ((B + 1)n,Bn/2, (B + 1)n/2, 0)-good embedding.

Proof: Let U = {u1, . . . , un}. Recall that a (1, 2) − B metric (U, d) can be represented as an
undirected graph G = (U,E), where {u, v} ∈ E iff d(u, v) = 1 (see [PY93]). Note that G has
maximum degree B.

We claim that we can find in polynomial time a partition of E into B+1 matchings E1, . . . , EB+1.
To prove this claim, it suffices to observe that the problem of partitioning the set of edges of a
graph into disjoint matchings is a restatement of the edge coloring problem. In a graph of maximum
degree B, an edge coloring with B + 1 colors can be found in polynomial time [Hol81].

We now describe the embedding. Each node u ∈ U is mapped into a string f(u) that is the
concatenation of B + 1 strings a1

u, . . . , aB+1
u ∈ Hn:

f(u) = a1
u ◦ . . . ◦ aB+1

u .

For a fixed i ∈ {1, . . . , B +1}, the strings {ai
u}u∈U are chosen arbitrarily in Hn such that ai

u = ai
v if

and only if {u, v} ∈ Ei. Since Hn can be generated in polynomial time in n, the overall construction
can be carried out in poly(n) time.

Let us now compute the distance between two strings f(u) and f(v). There are two cases to be
considered.

1. If {u, v} 6∈ E, then ai
u 6= ai

v for all i = 1, . . . , B + 1, and so dH(f(u), f(v)) = (B + 1) · n/2.

2. If {u, v} ∈ E, then {u, v} ∈ Ej for some j, and we have aj
u = aj

v and ai
u 6= ai

v for i 6= j. It
follows that dH(f(u), f(v)) = B · n/2.

2

We also observe the following simpler result

Lemma 7 There exists a polynomial time algorithm that on input a (1, 2)−B metric with n points
finds a ((B + 1)n, 2B, 2(B + 1), 0)-good embedding. Furthermore, any vector in the embedding has
weight precisely B + 1.

Proof: Use the same construction of the proof of Lemma 6, but using the code In ⊂ {0, 1}n

composed of all the n vectors of length n having exactly one non-zero entry. Any two elements of
such a code have distance precisely 2. 2

Our next goal is to map the instances of Hamming TSP produced by Lemma 6 into Hamming spaces
of logarithmic dimension. Observe that the distance between any two points is a constant fraction
of the number of dimensions. We will show how to exploit this property using random sampling.
The main fact about random sampling is the following: let b1, . . . , bn ∈ {0, 1} be unknown values.
If we pick a random sub(multi-)set bi1 , . . . , bim of m elements, where m = O((log 1/δ)/ǫ2), then
with probability 1 − δ it holds that

∣

∣

∣

∣

∣

∣

n
∑

i=j

bj −
n

m

m
∑

j=1

bij

∣

∣

∣

∣

∣

∣

≤ ǫn .

Now, if we pick m = O((log n)/ǫ2) coordinates from the target Hamming space of the previ-
ous reduction, and we project the mapping on this (multi)subset of coordinates, the distance
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between two fixed cities will deviate from the expected one by a factor at most ǫm with probability
(1− 1/poly(n)). In particular, there is a constant probability that all the pairwise distances are si-
multaneously “distorted” by at most ǫm. Using the oblivious sampler of Bellare and Rompel [BR94]
(or alternatively, the Chernoff bound for random walks on expander graphs [Gil98]) we can find
such a set of O((log n)/ǫ2) coordinates deterministically in polynomial time. Details follow. We
first state formally the result of Bellare and Rompel.

Lemma 8 (Randomness-efficient sampling [BR94]) There exists a randomized algorithm
(called sampler) that on input parameters ǫ > 0, δ > 0 and n, computes a sequence of (not nec-
essarily distinct) indices i1, . . . , ik where k = O((1/ǫ2) log 1/δ) such that for any fixed sequence of
boolean values b1, . . . , bn ∈ {0, 1}, the following holds:

Pr





∣

∣

∣

∣

∣

∣

1

n

∑

j

aj −
1

k

∑

j

aij

∣

∣

∣

∣

∣

∣

> ǫ



 ≤ δ

where the probability is taken over the random choices of the sampler. Furthermore, the sampler
only uses O(1/ǫ2 + log 1/δ) random bits.

We can now state and prove our result about embeddings in Hamming spaces with a logarithmic
number of dimensions.

Lemma 9 There exists a polynomial time algorithm that, for any B and γ > 0, on input a (1, 2)−
B metric (U, d) with n points finds a (k,DB/(B + 1),D, γ)-good embedding of U , where k =
O((log Bn)/γ2) and D = k/2.

Proof: The algorithm first computes an embedding of (U, d) into {0, 1}m according to Lemma 6,
where m ≤ 2(B + 1)|U | (recall that Lemma 6 can be applied only to metric spaces whose number
of points is power of two, but this can be achieved by adding an appropriate number of dummy
points; this at most doubles the number of dimensions of the final embedding.) Then Lemma 8 is
applied, with parameters ǫ = γ/3 and δ = 1/n2. Let i1, . . . , ik be the sequence of indices given by
the sampler, where k = O(log Bn/γ2). Consider the embedding f ′ defined as f ′(u)[j] = f(u)[ij ],
that is f ′ maps a point u into a substring of f(u) defined by the indices i1, . . . , ik. For any pair of
vertices u and v, consider the string a1, . . . , am where aj = |f(u)[j]− f(v)[j]| Clearly the Hamming
distance between f(u) and f(v) is equal to

∑m
j=1 aj. On the other hand, the Hamming distance

between f ′(u) and f ′(v) is
∑

j aij We observe that with probability at least 1 − δ = 1 − 1/n2 it
holds that

∣

∣

∣

∣

1

m
dH(f(u), f(v)) − 1

k
dH(f ′(u), f ′(v))

∣

∣

∣

∣

≤ ǫ

and such a relation holds for all the pairs u, v simultaneously with positive probability. Thus, one
of the possible outputs of the sampler is a sequence i1, . . . , ik such that for all u and v

∣

∣

∣

∣

k

m
dH(f(u), f(v)) − dH(f ′(u), f ′(v))

∣

∣

∣

∣

≤ kǫ

such a sequence can be found in polynomial time by considering all the polynomially many possible
random choices of the sampler. It is left to the reader to verify that the resulting embedding satisfies
the requirement of the Lemma. 2
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Theorem 10 For any p there exists a constant ǫp > 0 such that Min TSP is NP-hard to approx-
imate within a factor (1 + ǫp) even when restricted to ℓp spaces of logarithmic dimension.

Proof: From [PY93] and [ALM+98] we have the following result: constants B0 > 0 and r0 > 1
exist such that, given an instance (U, d) of Min TSP with a (1, 2) − B0 metric and n cities, and
given the promise that either opt(U, d) = n or opt(U, d) ≥ r0n, it is NP-hard to distinguish which
of the two cases holds.

Fix a constant γ such that

1 − γ

1 + γ

(

1 +
(r0 − 1)

B0

)

> 1 +
(r0 − 1)

2B0

def
= 1 + ǫp .

Such a constant γ must exists since for γ → 0 the left-hand side tends to a value strictly greater
than the right-hand side.

Given an instance (U, d) of (1, 2) −B0 Min TSP with n cities, we use Lemma 9 to map it into
a Hamming space of dimension k = O(log n) using a (k,DB0/(B0 +1),D, γ)-good embedding with
D = k/2. Let f : U → {0, 1}k denote such embedding. We consider two cases.

• If opt(U, d) = n, then an optimum solution for U will have cost at most n · D(B0/(B0 + 1)) ·
(1 + γ) for U ′.

• If opt(U, d) ≥ nr0, then there can be no solution for U ′ of cost less than nD(B0/(B0 +1))(1−
γ) + (r0 − 1)n(1/(B0 + 1))D(1 − γ). Otherwise, the same solution would have cost less than
nr0 for U .

Distinguishing between the two cases is NP-hard, therefore it is NP-hard to approximate the target
instance to within a factor

1 − γ

1 + γ
· (B0 + r0 − 1)/(B0 + 1)

B0/(B0 + 1)
≥ 1 + ǫp

2

Remark 11 The claim of the Theorem asks for the cities to be in Rlog n, rather than in Rc log n as
in the previous construction. However, we can add (nc −n) new cities, all at distance 1/nc+1 from
a given one. This perturbs the optimum in a negligible way, and gives an instance with N = nc

cities in Rlog N .

Using techniques of Khanna et al. [KMSV99], the non-approximability result of Theorem 10 implies
that geometric Min TSP in Rlog n under any ℓp norm is APX PB-hard (in particular, Max SNP-
hard) under E-reductions and APX-complete under AP-reductions [CKST95].

3.1 Additional Remarks

Using the embedding of Lemma 7 in the proof of Theorem 10 one can prove the Max SNP-hardness
of Min TSP when restricted to Hamming instances with a constant bound on the weight of the
points. Reducing from TSP(1,2) in graphs with maximum degree 3 (an NP-hard problem) it is
possible to prove the NP-hardness of the Hamming TSP problem in instances where all points
have weight precisely 4. These problems were not known to be NP-hard before. It is reasonable to
conjecture that Hamming TSP is solvable in polynomial time for instances where all points have
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weight at most 2 and is NP-hard for instances where all points have weight 3. We do not know how
to prove this conjecture.

The use of Hadamard codes in the proof of Lemma 6 is motivated by our desire to produce
Hamming instances where any two points have a linear (in the number of dimensions) distance.
This property is essential to project the embedding down to a logarithmic number of dimensions.

4 The Min ST Problem

The hardness of approximating Min ST will be established by means of a reduction from the
Hamming version of the problem.

The following result appears in [War93, Theorem 45, Part 3]. It is based on the observation
that the NP-hardness proof of Hamming Min TSP appeared in [DJS86] yields an L-reduction from
Vertex Cover in bounded degree graphs (a problem proved to be Max SNP-hard in [PY91]) to
Hamming Min ST.

Theorem 12 ([War93]) Min ST is Max SNP-hard even when restricted to Hamming spaces.

Remark 13 Unaware of these previous results, we presented a (independently found) proof of
Theorem 12 in a preliminary version of this paper [Tre97].

Our goal is to reduce the Steiner Tree problem in Hamming spaces to the Steiner Tree problem
under the ℓ1 distance. We note that for points in {0, 1}n the ℓ1 distance equals the Hamming
distance. However, the reduction is non-trivial since Rn contains many points that are not in
{0, 1}n and we have to argue that having much more choice for the Steiner nodes does not make the
problem easier. The Rectilinear Min ST problem looks very much like a relaxation of the Hamming
Min ST problem; our reduction makes use of a rounding scheme proving that the relaxation does
not change the optimum.

Theorem 14 Let U ⊆ {0, 1}n ⊂ Rn be an instance of Rectilinear Min ST all whose points are in
the Boolean cube. Let T be a feasible solution for U . Then it is possible to find in polynomial time
(in the size of T ) another solution T ′ such that cost(T ′) ≤ cost(T ) and all the Steiner nodes of T ′

are in {0, 1}n.

Before proving the theorem, we note the following relevant consequence.

Corollary 15 For any instance U ⊆ {0, 1}n of Rectilinear Min ST, an optimum solution exists
all whose Steiner points are in {0, 1}n.

We now prove Theorem 14.

Proof:[Of Theorem 14] Let S = {s1, . . . , sm} be the set of Steiner points of T , and let E be the
set of edges of T . For any sj ∈ S we will find a new point s′j ∈ {0, 1}n, so that if we let T ′ be the
tree obtained from T by substituting the s points with the corresponding s′ points, the cost of T ′

is not greater than the cost of T . The latter statement is equivalent to

∑

(sj ,u)∈E,u∈U

||sj − u||1 +
∑

(sj ,sh)∈E

||sj − sh||1

≥
∑

(s′j ,u)∈E,u∈U

||s′j − u||1 +
∑

(s′j ,s′h)∈E

||s′j − s′h||1

9



We will indeed prove something stronger, namely, that for any i ∈ [n] it holds

∑

(sj ,u)∈E,u∈U

|sj [i] − u[i]| +
∑

(sj ,sh)∈E

|sj [i] − sh[i]|

≥
∑

(s′j ,u)∈E,u∈U

|s′j [i] − u[i]| +
∑

(s′j ,s′h)∈E

|s′j [i] − s′h[i]| (1)

Let i ∈ [n] be fixed, we now see how to find values of s′1[i], . . . , s
′
m[i] ∈ {0, 1} such that (1) holds.

We express as a linear program the problem of finding values of s′1[i], . . . , s
′
m[i] that minimize the

right-hand side of (1). For any j ∈ [m] we have a variable xj (representing the value to be given
to s′j[i]) and for any edge e = (a, b) such that at least one endpoint is in S we have a variable ye,
representing the length |a[i] − b[i]|. The linear program is as follows

min
∑

e ye

s.t.
ye ≥ xj − xh ∀e = (sj, sh) ∈ E
ye ≥ xh − xj ∀e = (sj, sh) ∈ E
ye ≥ xj ∀e = (sj, uh) ∈ E.uh[i] = 0
ye ≥ 1 − xj ∀e = (sj, uh) ∈ E.uh[i] = 1
xj ≥ 0
ye ≥ 0

(LP).

Setting xj = sj[i] and setting y(a,b) = |a[i] − b[i]| yields a feasible solution, and its cost is the
left-hand side of (1). Let (x∗, y∗) be an optimum solution for (LP). From the previous observation
we have that setting s′j[i] = x∗

j we satisfy (1). It remains to be seen that (LP) has an optimum
solution where all variables take value from {0, 1}. This follows from the fact that (LP) is the linear
programming relaxation of an undirected Min-CUT problem, where all the u such that u[i] = 0
(respectively, u[i] = 1) are identified with the source (respectively, the sink), each sj is a node, and
the edges are like in T . It is well known (see e.g. [PS82]) that a Min-CUT linear programming
relaxation has optimum 0/1 solutions, and that such a solution can be found in polynomial time.

2

Remark 16 There seems to be no natural analog of Theorem 14 in other norms. Even in R2,
using the Euclidean metric, we have that the optimum solution of the instance {(0, 0), (1, 0), (0, 1)}
must use a Steiner point not in {0, 1}2.

Theorem 17 Rectilinear Min ST is Max SNP-hard.

Proof: We reduce from Hamming Min ST. The reduction leaves the instance unchanged. For an
instance U ⊆ {0, 1}n, we let optH(U) (respectively, optR(U)) be the cost of an optimum solution for
U , when seen as an instance of Hamming Min ST (respectively, of Rectilinear Min ST). Clearly,
we have that optR(U) ≤ optH(U). Given a solution T for U , we find a solution T ′ as in Theorem 14.
Since in {0, 1}n the distance induced by the ℓ1 norm equals the Hamming distance, we have that
costH(T ′) = costR(T ′) ≤ costR(T ). We have an L-reduction with α = β = 1. 2
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5 Conclusions and Open questions

We do not know how to extend our non-approximability result for Min ST to the Euclidean case.
Arora [Aro96] notes that, by inspecting the way his algorithm works, it is possible to claim that, for
any instance of Euclidean Min ST, there exists a near-optimal solution where the Steiner points
lie in some well-specified positions (either at “portals” or in positions chosen at the bottom of the
recursion). This observation could perhaps be a starting point.

We do not have explicit estimations of the constants to within which it is hard to approximate
geometric Min TSP and rectilinear Min ST. The constant for Min TSP should be only slightly
smaller than the corresponding constant for the (1, 2) − B case. An explicit non-approximability
factor has been estimated by Engebresten [Eng98] for the latter problem, and it is very close to 1.
The constant for Min ST should be slightly better. Finding much stronger estimations (comparable
to the 3/2 bound of Christofides and the 1.644 bound of Karpinski and Zelikovsky) is an open and
challenging question.
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Körner for very interesting and helpful discussions. I thank Ray Greenlaw for having read a pre-
liminary version of this paper and given several useful remarks. I wish to thank Jens Lagergren,
Tao Jiang and Todd Wareham for providing me references and reprints about their work in com-
putational biology, and for explaining to me the relation with the Hamming Steiner Tree Problem.

References

[ALM+98] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and hard-
ness of approximation problems. Journal of the ACM, 45(3):501–555, 1998. Preliminary
version in Proc. of FOCS’92.

[Aro94] S. Arora. Probabilistic Checking of Proofs and Hardness of Approximation Problems.
PhD thesis, University of California at Berkeley, 1994.

[Aro96] S. Arora. Polynomial time approximation schemes for Euclidean TSP and other geomet-
ric problems. In Proceedings of the 37th IEEE Symposium on Foundations of Computer
Science, pages 2–11, 1996.

[Aro98] S. Arora. Polynomial time approximation schemes for Euclidean Traveling Salesman
and other geometric problems. Journal of the ACM, 45(5), 1998.

[BC93] D.P. Bovet and P. Crescenzi. Introduction to the Theory of Complexity. Prentice Hall,
1993.

[BP89] M. Bern and P. Plassmann. The Steiner tree problem with edge lengths 1 and 2.
Information Processing Letters, 32:171–176, 1989.

[BR94] M. Bellare and J. Rompel. Randomness-efficient oblivious sampling. In Proceedings of
the 35th IEEE Symposium on Foundations of Computer Science, pages 276–287, 1994.

[CGP+98] P. Crescenzi, D. Goldman, C.H. Papadimitriou, A. Piccolboni, and M. Yannakakis.
On the complexity of protein folding. In Proceedings of the 30th ACM Symposium on
Theory of Computing, pages 597–603, 1998.

11



[Chr76] N. Christofides. Worst-case analysis of a new heuristic for the travelling salesman
problem. Technical report, Carnegie-Mellon University, 1976.

[CKST95] P. Crescenzi, V. Kann, R. Silvestri, and L. Trevisan. Structure in approximation classes.
In Proceedings of the 1st Combinatorics and Computing Conference, pages 539–548.
LNCS 959, Springer-Verlag, 1995.

[DJS86] W.H.E. Day, D.S. Johnson, and D. Sankoff. The computational complexity of inferring
rooted phylogenies by parsimony. Mathematical Biosciences, 81:33–42, 1986.

[Edm66] J. Edmonds. Optimum branchings. Journal of Research National Bureau of Standards,
Part B, 17B(4):233–240, 1966.

[Eng98] L. Engebrester. An explicit lower bound for TSP with distances one and two. Technical
Report TR98-046, Electronic Colloquium on Computational Complexity, 1998.

[Gan] J. Ganley. The Steiner tree page. Web page, URL http://www.cs.virginia.edu/
∼jlg8k/steiner.

[GGJ76] M.R. Garey, R.L. Graham, and D.S. Johnson. Some NP-complete geometric problems.
In Proceedings of the 8th ACM Symposium on Theory of Computing, pages 10–22, 1976.

[GGJ77] M.R. Garey, R.L. Graham, and D.S. Johnson. The complexity of computing Steiner
minimal trees. SIAM Journal of Applied Mathematics, 34:477–495, 1977.

[Gil98] D. Gillman. A Chernoff bound for random walks on expander graphs. SIAM Journal
on Computing, 27(4):1203–1220, 1998.

[GJ77] M.R. Garey and D.S. Johnson. The rectilinear Steiner tree problem is NP-complete.
SIAM Journal on Applied Mathematics, 32(4):826–834, 1977.

[GKP95] M. Grigni, E. Koutsoupias, and C.H. Papadimitriou. An approximation scheme for
planar graph TSP. In Proceedings of the 36th IEEE Symposium on Foundations of
Computer Science, pages 640–645, 1995.

[Hol81] I. Holyer. The NP-completeness of edge-coloring. SIAM Journal on Computing, 10:718–
720, 1981.

[HRW92] F.K. Hwang, D.S. Richards, and P. Winter. The Steiner Tree Problem. North-Holland,
1992.

[IM98] P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing the curse
of dimensionality. In Proceedings of the 30th ACM Symposium on Theory of Computing,
pages 604–613, 1998.

[IT94] A.O. Ivanov and A.A. Tuzhilin. Minimal Networks: The Steiner Problem and its Gen-
eralizations. CRC Press, 1994.

[JW94] T. Jiang and L. Wang. On the complexity of multiple sequence alignment. Journal of
Computational Biology, 1(4):337–348, 1994.

[Kle97] Jon M. Kleinberg. Two algorithms for nearest-neighbor search in high dimensions. In
Proceedings of the 29th ACM Symposium on Theory of Computing, pages 599–608, 1997.

12



[KMSV99] S. Khanna, R. Motwani, M. Sudan, and U. Vazirani. On syntactic versus computa-
tional views of approximability. SIAM Journal on Computing, 28(1):164–191, 1999.
Preliminary version in Proc. of FOCS’94.

[KOR98] E. Kushilevitz, R. Ostrovsky, and Y. Rabani. Efficient search for approximate nearest
neighbor in high dimensional spaces. In Proceedings of the 30th ACM Symposium on
Theory of Computing, pages 614–623, 1998.

[KZ97] M. Karpinski and A. Zelikovsky. New approximation algorithms for the Steiner tree
problems. Journal of Combinatorial Optimization, 1:1–19, 1997.

[LLKS85] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys. The Traveling
Salesman Problem. John Wiley, 1985.

[Mit97] J.S.B. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A simple
polynomial-time approximation scheme for geometric TSP, K-MST, and related prob-
lems. SIAM Journal on Computing, 1997. To appear.

[Pap77] C.H. Papadimitriou. Euclidean TSP is NP-complete. Theoretical Computer Science,
4:237–244, 1977.

[Pap94] C.H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[PS82] C.H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and
Complexity. Prentice-Hall, 1982.

[PY91] C. H. Papadimitriou and M. Yannakakis. Optimization, approximation, and complexity
classes. Journal of Computer and System Sciences, 43:425–440, 1991. Preliminary
version in Proc. of STOC’88.

[PY93] C.H. Papadimitriou and M. Yannakakis. The travelling salesman problem with distances
one and two. Mathematics of Operations Research, 18:1–11, 1993.

[RS98] S.B. Rao and W.D. Smith. Approximating geometrical graphs via “spanners” and
“banyans”. In Proceedings of the 30th ACM Symposium on Theory of Computing,
pages 540–550, 1998.

[Tre97] L. Trevisan. When Hamming meets Euclid: The approximability of geometric TSP
and MST. In Proceedings of the 29th ACM Symposium on Theory of Computing, pages
21–29, 1997.

[vLW92] J.H. van Lint and R.M. Wilson. A Course in Combinatorics. Cambridge University
Press, 1992.

[War93] H.T. Wareham. On the computational complexity of inferring evolutionary trees.
Master’s thesis, Memorial University of Newfoundland, Canada, 1993. Available at
http://www.csr.uvic.ca/∼harold/.

[War95] H.T. Wareham. A simplified proof of the NP- and MAX SNP-hardness of multiple
sequence tree alignment. Journal of Computational Biology, 2(4):509–514, 1995.

13


