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ABSTRACT
We 
onsider error-
orre
ting 
odes where a bit of the mes-

sage 
an be probabilisti
ally re
overed by looking at a lim-

ited number of bits (or blo
ks of bits) of a (possibly) 
or-

rupted en
oding. Su
h 
odes 
an be derived from multivari-

ate polynomial en
odings, and have several appli
ations in


omplexity theory, su
h as worst-
ase to average-
ase redu
-

tions, probabilisti
ally 
he
kable proofs, and private infor-

mation retrieval.

Su
h 
odes 
ould have pra
ti
al appli
ations if they had

at the same time 
onstant information rate, the ability to


orre
t a linear number of errors, and very eÆ
ient (ide-

ally, 
onstant-time) re
onstru
tion pro
edures. In parti
ular

they would give fault-tolerant data storage with unlimited

s
alability.

We show a negative result on the existen
e of su
h 
odes;

namely, that linear en
oding length is in
ompatible with a

de
oding pro
edure making a 
onstant number of queries

(whi
h is ne
essary if one is to have 
onstant re
onstru
tion

time). In parti
ular, if a bit of a message of length n 
an be

retrieved by looking at q blo
ks of length l, and the re
on-

stru
tion pro
edure is robust to a fra
tion Æ of errors, then

the en
oding is made of m = 
(poly(1=q; Æ; �)(n=l)

q=(q�1)

)

blo
ks of length l.

This is the �rst lower bound for this 
lass of 
odes. Our

bound is far from the known (exponential) upper bound

when q is a 
onstant. Closing this gap remains a 
hallenge.

1. INTRODUCTION
Error-
orre
ting 
odes are typi
ally used to reliably transmit

information over noisy 
hannels. An equally useful appli
a-

tion of error-
orre
ting 
odes is to reliably store information

on a medium whose 
ontent may be partially 
orrupted over
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time (or whose reading devi
e is subje
t to errors). For ex-

ample, the data stored in musi
 CDs and in CD-ROMs is

en
oded using Reed-Solomon 
odes. In appli
ations to data

storage (and also in appli
ations to data transmission) a

message is typi
ally divided into small blo
ks, and then ea
h

blo
k is en
oded separately. This allows eÆ
ient retrieval of

the information, sin
e one need de
ode only the portion of

data one is interested in; on the other hand, it limits reli-

ability, sin
e even if the data in one blo
k (out of possibly

millions of others) is 
orrupted, then some information is

irreparably lost. One would have mu
h higher robustness

if the entire information were en
oded as a single 
odeword

in an error-
orre
ting 
ode. One 
ould then 
orrupt even a

large fra
tion of the entire en
oding and still not lose any

information. The downside is that even using 
odes that

are de
odable in linear time, one still has to read the entire

en
oding in order to retrieve even a single bit of its original


ontent. More radi
ally, one 
an think of en
oding an entire

library as a single 
odeword (this example is used in [12℄),

and then splitting the en
oding into several disks. Then

the whole 
ontent of the library would be resilient to 
atas-

trophi
 losses. On
e again, if re
onstru
ting a small pie
e

of the original data involves pro
essing the entire en
oding,

this is not an implementable proposal.

Locally decodable codes.

During the 
ourse of investigations on the appli
ations of

error-
orre
ting 
odes to 
omplexity theory and 
ryptogra-

phy, it has been proved that 
ertain 
odes admit sub-linear

time randomized de
oding pro
edures. In parti
ular, one


an re
onstru
t a single bit of the original data by reading

only a small number of randomly 
hosen lo
ations in the

en
oding. Codes based on multivariate polynomials have

this property, and this property, along with the re
onstru
-

tion pro
edure, has been des
ribed in the language of self-


orre
ting 
omputations and random self-redu
ibility (see

e.g. [6; 13; 9; 8; 10℄). A more expli
it observation that

multivariate polynomials yield error-
orre
ting 
odes with

eÆ
ient re
onstru
tion 
an be found in works on proba-

bilisti
ally 
he
kable proofs; in parti
ular, an expli
it state-

ment 
an be found in [4℄. Re
ent work on worst-
ase to

average-
ase redu
tions with appli
ations to pseudorandom-

ness [5℄ (see also [16℄ for expli
it statements in terms of error-


orre
tion), as well as work on private information retrieval

[7℄ also fo
uses, more or less expli
itly, on 
odes having eÆ-


ient re
onstru
tion pro
edures.



Efficiency.
There are two main parameters measuring the performan
e

of an error-
orre
ting 
ode. For a 
ode C : f0; 1g

n

!

f0; 1g

m

mapping an n-bit input into an m-bit en
oding, the

information rate is de�ned as n=m, and is the \amortized"

amount of information stored in every bit of the en
oding.

One would like this parameter to be as large possible|

ideally, lower bounded by a �xed 
onstant for every n. The

other parameter is the fra
tion of the m bits of the en
oding

that 
an be 
orrupted while still allowing 
orre
t re
onstru
-

tion. One would like this parameter to be as large as possi-

ble as well|ideally, lower bounded by a �xed 
onstant. In

the 
ontext of eÆ
ient randomized re
onstru
tion, two ad-

ditional eÆ
ien
y parameters are the running time of the

re
onstru
tion pro
edure (for re
onstru
ting one bit) and

the error probability. The ideal error-
orre
ting 
ode would

have 
onstant rate, resilien
e to a linear number of errors

in the en
oding, and a re
onstru
tion pro
edure having a

(small) 
onstant error probability and running in 
onstant

time. Su
h a 
ode would implement fault-tolerant data stor-

age with optimal s
alability. By doubling the size of the stor-

age support one 
ould store twi
e as mu
h data, and be able

to 
orre
t twi
e as many errors, while random a

ess time

to the original data (as well as the probability of in
orre
t

de
oding, even in the presen
e of errors) would remain the

same. In this paper we show that su
h a 
ode 
annot exist.

Note that, in 
ontrast, there are error 
orre
ting 
odes hav-

ing 
onstant rate, 
orre
ting a linear number of errors, and

having a re
onstru
tion pro
edure that re
onstru
ts all the

original data in linear time, whi
h has 
onstant amortized

time per bit of the original message.

Our Results.
The pre
ise statement of our result is as follows. Suppose

there is an en
oding of n bits of information into m blo
ks

ea
h of length l, and that there is a re
onstru
tion pro
edure

that 
an de
ode a single bit of a message with probability

1=2+ � when given random a

ess to an input that is within

distan
e Æm from a 
orre
t en
oding; also assume that the

re
onstru
tion pro
edure reads at most q bits of its input

(q � 2). Then m = 
((n=l)

q=(q�1)

) where the 
onstant

in the 
 notation depends on �, Æ and q. For the spe
ial


ase q = 1, we show that n is bounded by a 
onstant of

size O(l�

�O(1)

Æ

�1

) (whi
h is independent of m). Note that

in proving these lower bounds we do not assume that the

re
onstru
tion pro
edure is eÆ
iently 
omputable, but only

assume that it reads a bounded number of (blo
ks of) bits

from its input.

Our result shows that 
onstant-time re
onstru
tion pro
e-

dures are impossible for 
odes having 
onstant rate. In fa
t,

every re
onstru
tion pro
edure for a 
ode having 
onstant

rate must read 
(log n= log log n) bits of the en
oding.

Comparison with previous results.
This is the �rst lower bound proved for this 
lass of error-


orre
ting 
odes, and the �rst time that an eÆ
ien
y re-

stri
tion in the re
onstru
tion pro
edure (although a very

strong one, and information-theoreti
 in nature) implies a

limitation to the information rate of a 
ode.

Our bounds are far from known a
hievable upper bounds. In

parti
ular, for l = 1, 
onstant q, and suÆ
iently small (but


onstant) Æ and �, the best known 
odes allowing re
onstru
-

tion by reading q bits use en
odings of length 2

O(n

1=(q�1)

)

.

1

En
odings using multivariate low-degree polynomials 
on-


atenated with standard error-
orre
ting 
odes give 
odes

with m = n

1+o(1)

and the re
onstru
tion pro
edure reads

poly log n bits and runs in poly log n time [4℄. It remains an

open question whether one 
an a
hieve polynomial length in

the en
oding while having a re
onstru
tion pro
edure with


onstant query 
omplexity, or linear length with a polylog-

arithmi
 number of queries.

There are better positive results for 
odes having lo
al 
he
k-

ing pro
edures. An eÆ
ient 
he
ker for a 
ode is a random-

ized pro
edure that looks at a small number of entries of

a given string, and a

epts with probability 1 if the given

string is a valid 
odeword, and a

epts with probability, say,

less than 3/4 if the given string is far from every 
odeword.

Results about \low-degree tests" as developed for PCP 
on-

stru
tions [3; 2; 15℄ imply the existen
e of 
odes having an

en
oding of polynomial length and a 
he
king pro
edure

that only reads a 
onstant number of entries. We do not

know how to prove negative results on the trade-o� between

query 
omplexity and en
oding length for lo
ally 
he
kable


odes, and we point it out as an interesting open question.

Techniques.
The known 
onstru
tions of lo
ally 
he
kable 
odes, be they

linear-algebrai
 [7℄ or based on low-degree polynomials [6℄,

have the property that ea
h individual query is uniformly

distributed over the bits of the input string. One 
an show

that, for 
ertain ranges of the parameters, this already guar-

antees error-
orre
tion, sin
e if the fra
tion Æ of errors is

small 
ompared to 1=q (where q is the number of queries),

then a union bound tells us that there is a high probability

(at least 1 � Æq) of reading q non-
orrupted entries. The

analysis in [10℄ allows treatment of values of Æ that are big-

ger than 1=q, but the re
onstru
tion pro
edure still has the

property of making uniformly distributed queries.

One 
an 
on
eive of 
odes having a re
onstru
tion pro
edure

that queries with very high probability a 
ertain parti
ular

entry; in fa
t, one 
an modify any 
onstru
tion so that it

makes a 
ertain query with probability 1 (and then ignores

it). Our �rst result is that this is more-or-less the only sit-

uation that 
an o

ur. If a re
onstru
tion pro
edure makes


ertain queries with probability mu
h higher than under the

uniform distribution, then it 
an work more-or-less equally

well without making those queries. Intuitively, the reason is

that no matter how an adversary 
orrupts a fra
tion Æ of the

entries of a 
odeword, the re
onstru
tion is still guaranteed

to work. If some entries are queried with very high proba-

bility (say, more than q=Æm) and the pro
edure is making

de
isive use of them, then the adversary has an easy time


orrupting those entries and a�e
ting the performan
e of

the de
oding pro
edure. We 
all a re
onstru
tion pro
edure

smooth if the distribution of queries is su
h that no entry

of the en
oding is ever queried by the re
onstru
tion pro-


edure with probability mu
h higher than in the uniform

distribution (see Se
tion 2 below for a pre
ise quantitative

de�nition). We prove that every 
ode having a good re
on-

stru
tion pro
edure also has a smooth de
oding pro
edure.

1

No published 
onstru
tion gives quite this bound, but a

variation of [1℄ due to Goldrei
h [11℄ does. Multivariate

polynomial en
odings, 
on
atenated with a binary error 
or-

re
ting 
ode, do give, without further elaborations, lo
ally-

de
odable 
odes of length 2

n

O(1=q)

.



This redu
tion is important be
ause our lower bound uses

smoothness in an essential way.

In order to prove our lower bound, we show that for ev-

ery smooth en
oding C : f0; 1g

n

! (f0; 1g

l

)

m

that has a

q-query re
onstru
tion pro
edure, it is possible to �nd a

subset of O(m

(q�1)=q

) entries of the en
oding su
h that C,

restri
ted to su
h entries, still en
odes a linear amount of

information about its input. An information-theoreti
 argu-

ment then implies that lm

(q�1)=q

= 
(n), whi
h is our main

result. This approa
h was introdu
ed in [14℄ to prove a lower

bound for private information retrieval. Implementing this

idea for smooth en
odings requires some new te
hni
al work.

The main intermediate step in our analysis 
an be des
ribed

as follows. Let C : f0; 1g

n

! (f0; 1g

l

)

m

be a smooth en
od-

ing that has a q-query re
onstru
tion pro
edure. For every

index i in f1; : : : ; ng and q-tuple (j

1

; : : : ; j

q

) of indi
es in

f1; : : : ;mg, we say that (j

1

; : : : ; j

q

) is good for i if the en
od-

ing C(x), restri
ted to the entries (j

1

; : : : ; j

q

), allows predi
-

tion of the value of x

i

with probability noti
eably bounded

away from 1/2 (the probability being taken over a random


hoi
e of x in f0; 1g

n

). We show that for every i, there are


(m) disjoint q-tuples that are good for i. Let S be a ran-

dom subset of f1; : : : ;mg of size �(m

(q�1)=q

). We show that

on average (over the 
hoi
e of S) there are 
(n) indi
es i in

f1; : : : ; ng su
h that there is a q-tuple in S whi
h is good for

i. In parti
ular, there is a set S

�

with this property. If we

restri
t C(x) to the entries in S

�

, we see that we maintain


(n) bits of information about x.

Organization of the paper.
In Se
tion 2 we give de�nitions of lo
ally de
odable 
odes

and of 
odes admitting smooth de
odings, and we prove a

redu
tion between the two notions. Our negative results are

proved in Se
tion 3. Se
tion 4 dis
usses extensions of our

results as well as some open questions.

2. PRELIMINARIES AND DEFINITIONS
Throughout this paper we use the following notation: [m℄ �

f1; 2; : : : ;mg, the metri
 d(�; �) always refers to the Hamming

distan
e between two 
odewords, and the fun
tion H(�) is

the standard entropy fun
tion.

We now present the formal de�nition of a lo
ally de
odable


ode. The reader will noti
e that the de�nitions introdu
ed

in this se
tion allow for both adaptive and non-adaptive

probabilisti
 de
oding pro
edures. >From here on, however,

we restri
t ourselves to the non-adaptive 
ase unless expli
-

itly stated otherwise.

De�nition 1 For �xed Æ; �, and integer q we say that C :

f0; 1g

n

! �

m

is a (q; Æ; �)-lo
ally de
odable 
ode if there ex-

ists a probabilisti
 algorithm A su
h that:

� For every x 2 f0; 1g

n

, for every y 2 �

m

with

d(y;C(x)) � Æm, and for every i 2 [n℄, we have:

Pr [A(y; i) = x

i

℄ � 1=2 + �;

where the probability is taken over the internal 
oin

tosses of A.

� In every invo
ation, A reads at most q indi
es of y (in

fa
t, without loss of generality, we 
an assume that A

reads exa
tly q indi
es of y).

An algorithm A satisfying the above requirements is 
alled

a (q; Æ; �)-lo
al de
oding algorithm for C.

All known 
onstru
tions of lo
al de
oding algorithms [6; 10;

7; 16℄ have the additional feature that indi
es of the 
ode-

word are probed uniformly at random. While one 
an 
on-

stru
t arbitrary examples in whi
h this is no longer true

(for example, an algorithm whi
h always reads a parti
u-

lar index and ignores the value), it seems natural that those

indi
es whi
h are read very often 
annot give mu
h informa-

tion about the original data. Indeed, in this 
ase, 
orruption

of the bits whi
h are read very often would ruin the su

ess

probability of the de
oding algorithm. This idea motivates

our de�nition of smooth 
odes.

De�nition 2 For �xed 
; �, and integer q we say that C :

f0; 1g

n

! �

m

is a (q; 
; �)-smooth 
ode if there exists a prob-

abilisti
 algorithm A su
h that:

� For every x 2 f0; 1g

n

and for every i 2 [n℄, we have:

Pr [A(C(x); i) = x

i

℄ � 1=2 + �:

� For every i 2 [n℄ and j 2 [m℄, we have:

Pr [A(�; i) reads index j℄ � 
=m:

� In every invo
ation, A reads at most q indi
es of y.

(The probabilities are taken over the internal 
oin tosses of

A.) An algorithm A satisfying the above requirements is


alled a (q; 
; �)-smooth de
oding algorithm for C.

Note that unlike a lo
ally de
odable 
ode, the de
oding pro-


edure for a smooth 
ode is required to work only for valid


odewords of C; it is not required to work for all strings

within some radius of valid 
odewords. Instead, we only re-

quire that A not read any parti
ular index \too often" (in

a way made formal by the de�nition). This is what gives

rise to the name smooth: the distribution of indi
es whi
h

are read is \smooth" as opposed to being peaked at some

parti
ular index or set of indi
es. Note also that in the 
ase

of smooth 
odes we do not require that A read exa
tly q

indi
es of y. In fa
t, it may be advantageous for an algo-

rithm to sometimes read fewer than q indi
es to maintain

the smoothness requirement.

As mentioned previously, all known examples of lo
ally de-


odable 
odes are smooth (in fa
t, in known 
onstru
tions

the queries are uniformly distributed; i.e., the 
odes are

(q; q; �)-smooth). The following theorem shows that this is

always the 
ase.

Theorem 1. Let C : f0; 1g

n

! �

m

be a (q; Æ; �)-lo
ally

de
odable 
ode. Then C is also a (q; q=Æ; �)-smooth 
ode.

Proof. Let algorithm A be a (q; Æ; �)-lo
al de
oding al-

gorithm for C. For all i 2 [n℄, let S

i

be the set of indi
es

j 2 [m℄ su
h that Pr [A(�; i) reads index j℄ > q=Æm. Sin
e A

reads at most q indi
es in every invo
ation, it is 
lear that,

for all i, the number of indi
es in S

i


an be at most Æm.

De�ne algorithm A

0

as follows: A

0

(�; i) runsA(�; i) in a bla
k-

box manner by reading indi
es from the 
odeword, as re-

quested by A, and returning their values to A. The only

ex
eption is that if A requests to read an index in S

i

, A

0

does not read that index, but instead simply returns 0 to A.

We now have:

Pr

�

A

0

(C(x); i) = x

i

�

= Pr

�

A(C

0

(x); i) = x

i

�

; (1)



where:

C

0

(x)

j

=

�

0 if j 2 S

i

C(x)

j

otherwise

:

Sin
e the size of S

i

is at most Æm, we have d(C(x);C

0

(x)) �

Æm. Be
ause A is a (q; Æ; �)-lo
al de
oding algorithm, the

probability on the right side of (1) is at least 1=2 + �. A

0

is

therefore a (q; q=Æ; �)-smooth de
oding algorithm for C, and

the theorem follows.

3. MAIN RESULTS
We now turn to proving lower bounds on the length of lo
ally

de
odable 
odes.

We begin with a theorem in Se
tion 3.1 whi
h relates 
ertain

information-theoreti
 
on
epts to lower bounds for en
oding

length. We will appeal to this result often in the se
tions

whi
h follow. In Se
tion 3.2 we 
onsider lo
al de
oding al-

gorithms whi
h read only one index of the 
odeword (i.e.,

q = 1). In this 
ase, we work dire
tly with the de�nition

of C as a lo
ally de
odable 
ode and show that su
h 
odes


annot exist when the length of the input string is too large

(see below for an exa
t statement of results). In Se
tion 3.3

we turn to the 
ase of q > 1. Here, we �nd it more 
onve-

nient to view C as a smooth 
ode. We show a super-linear

lower bound for the length of an en
oding in this 
ase.

It is interesting to note that an appli
ation of the approa
h

from Se
tion 3.3 to the 
ase q = 1 also gives an absolute

upper bound on the length of the input string. However,

the bound is not as tight as that given in Se
tion 3.2 using

a di�erent approa
h.

3.1 Information Theory
Our bounds on lo
ally de
odable 
odes are all obtained via

information-theoreti
 arguments. Therefore, although the

following result is a straightforward appli
ation of informa-

tion theory, we single it out be
ause we will refer to it often

in the remainder of the paper.

Theorem 2. Let C : f0; 1g

n

! R be a fun
tion. Assume

there is an algorithm A su
h that:

8i 2 [n℄;Pr

x

[A(C(x); i) = x

i

℄ � 1=2 + �:

(Where the notation Pr

x

[ ℄ indi
ates that the probability is

taken over the random 
oins of A as well as over all strings

x.) Then log jRj � (1�H(1=2 + �))n:

Proof. Let I(x;C(x)) be the mutual information be-

tween x and C(x). Then:

I(x;C(x)) � H(C(x)) � log jRj:

But we also have:

I(x;C(x)) = H(x)�H(xjC(x))

� H(x)�

X

i

H(x

i

jC(x))

� (1�H(1=2 + �))n:

Combining these results gives the stated theorem.

3.2 Impossibility Result for q = 1

We begin with a parti
ularly strong result for the 
ase q = 1:

�x �, Æ, and en
oding alphabet �. Then there is a 
onstant

upper bound on the length of the data whi
h 
an be en-


oded by a (1; Æ; �)-lo
ally de
odable 
ode. The result is

independent of the 
ode length|even when the 
odeword

is exponentially longer than the input, su
h 
odes 
annot

be 
onstru
ted. The intuition is as follows: given su
h

a 
ode, there must be some index of the 
odewords whi
h


ontains information about a 
onstant fra
tion of the bits

of the original data. But appli
ation of Theorem 2 shows

that this 
annot o

ur when the input is too long. Stated

another way, the Theorem shows that there exist no families

of (1; Æ; �)-lo
ally de
odable 
odes.

Theorem 3. Let C : f0; 1g

n

! �

m

be a (1; Æ; �)-lo
ally

de
odable 
ode. Then:

n �

log j�j

Æ(1�H(1=2 + �))

:

Proof. For i 2 [n℄, j 2 [m℄, say that j is �-good for i if:

Pr

x

[A(C(x); i) = x

i

jA(�; i) reads j℄ � 1=2 + �:

Fix i 2 [n℄. By de�nition of a lo
ally de
odable 
ode, we

have:

X

j2[m℄

Pr

x

[A(C(x); i) = x

i

jA(�; i) reads j℄ Pr [A(�; i) reads j℄

= Pr

x

[A(C(x); i) = x

i

℄

� 1=2 + �:

But then there must exist some index j

1

su
h that:

Pr

x

[A(C(x); i) = x

i

jA(�; i) reads j

1

℄ � 1=2 + �:

In other words, j

1

is good for i.

Denote by �

j

1

;j

2

;:::

2 �

m

a \perturbation" ve
tor whi
h

is zero in all positions ex
ept j

1

; j

2

; : : :, where it takes on

value(s) randomly 
hosen from �. Ve
tor C(x) ��

j

1

;j

2

;:::

(where � denotes addition in the appropriate �eld) is then

identi
al to C(x) on every index ex
ept for j

1

; j

2

; : : :, where

it takes on all value(s) with equal probability. Sin
e lo
ally

de
odable 
odes are tolerant of errors in fewer than Æm po-

sitions, we have:

X

j2[m℄

Pr

x

[A(C(x)��

j

1

; i) = x

i

jA(�; i) reads j℄ Pr [A(�; i) reads j℄

� 1=2 + �;

where the probability is now taken over all 
oin tosses of

A, all strings x, and all (random) ve
tors �

j

1

. Again, this

implies that there exists some index j

2

su
h that:

Pr

x

[A(C(x)��

j

1

; i) = x

i

jA(�; i) reads j

2

℄ � 1=2 + �:

Note that we must have j

2

6= j

1

; this is so be
ause the value

at index j

1

of the 
odeword given as input to A is random

and independent of the underlying data word x. Sin
e the

algorithm A does not know what is lo
ated in positions of

the 
odeword other than the one it reads, we have:

Pr

x

[A(C(x); i) = x

i

jA(�; i) reads j

2

℄ � 1=2 + �:

Or, in other words, j

2

is good for i.

Repeating this argument, we see that:

X

j2[m℄

Pr

x

[A(C(x)��

j

1

;j

2

; i) = x

i

jA(�; i) reads j℄ Pr [A(�; i) reads j℄

� 1=2 + �:



Therefore, there exists an index j

3

su
h that:

Pr

x

[A(C(x)��

j

1

;j

2

; i) = x

i

jA(�; i) reads j

3

℄

� 1=2 + �;

so that j

3

is good for i with j

3

6= j

1

; j

2

.

Sin
e the 
ode is tolerant of errors in up to Æm positions,


ontinuing in this manner shows that there is a set J

i

of Æm

distin
t indi
es, su
h that j 2 J

i

implies j is good for i. But

remember that this was for a �xed, arbitrary value i. Thus,

for all i 2 [n℄ we have a set J

i

; jJ

i

j � Æm su
h that j 2 J

i

implies j is good for i.

By the pigeonhole prin
iple, there must exist some j

�

2 [m℄

whi
h is good for Æn indi
es i

1

; : : : ; i

Æn

2 [n℄. Theorem 2

then shows that we must have log j�j � (1�H(1=2 + �))Æn.

This gives the stated result.

3.3 Lower Bounds forq > 1

In this se
tion we prove lower bounds for lo
ally de
odable


odes with q > 1. As mentioned previously, we �nd it 
on-

venient to work with, and to prove lower bounds for, the


lass of smooth 
odes. Re
alling the earlier relationship be-

tween smooth 
odes and lo
ally de
odable 
odes as outlined

in Theorem 1, we use this result to obtain our desired lower

bound.

We seek to repli
ate the idea underlying the proof of Theo-

rem 3. There, we sought a single index j

�

whi
h was good for

a 
onstant fra
tion of the indi
es of the data; that is, whi
h

gave information about a 
onstant fra
tion of the input bits.

Now we seek a subset S

�

of the indi
es of the 
odeword su
h

that knowledge of the values of all the indi
es in S

�

gives in-

formation about a 
onstant fra
tion of the input bits. On
e

we �nd su
h a subset, we apply Theorem 2 to obtain a lower

bound on the length of the input.

Let C : f0; 1g

n

! �

m

be a (q; 
; �)-smooth 
ode and let

algorithm A be a (q; 
; �)-smooth de
oding algorithm for C.

Let s � [m℄. We say that a given invo
ation of A reads s if

the set of indi
es whi
h A reads in that invo
ation is exa
tly

equal to the set s. Sin
e A is restri
ted to read at most q

indi
es in any invo
ation, we must have jsj � q for any s

whi
h is read by A in some invo
ation. Analogous to the

de�nition above, we say that s is �-good for i (where jsj � q)

if:

Pr [A(C(x); i) = x

i

jA reads s℄ � 1=2 + �:

For all i 2 [n℄, de�ne the hypergraph H

i

as follows: H

i


on-

tains m verti
es labeled by elements of [m℄. The hyperedges

of H

i

, denoted E

i

, are de�ned by:

E

i

=

�

e � [m℄ j e is

�

2

-good for i

	

:

We say A reads from E

i

(for brevity, A reads E

i

) if A reads

e and e 2 E

i

. Re
all some standard terminology for hyper-

graphs: a mat
hing in a hypergraph H with hyperedges E is

de�ned as a setM � E of hyperedges su
h that the interse
-

tion of any pair of (distin
t) hyperedges in M is empty. A

vertex 
over for a hypergraph H is a set V of verti
es su
h

that every hyperedge in the set of hyperedges E 
ontains

at least one element of V . A standard result is that in a

hypergraph whose hyperedges 
ontain at most q verti
es, if

the size of the minimum vertex 
over is at least jV j, then

there is a mat
hing of size at least jV j=q. With this in mind

we now state the following lemma:

Lemma 4. Let C be a (q; 
; �)-smooth 
ode and fH

i

g

n

i=1

be the asso
iated set of hypergraphs as des
ribed above. For

all i, H

i

has a mat
hing M

i

of size at least �m=
q.

Proof. Using the de�nition of a smooth 
ode, we have:

1=2 + �

� Pr

x

[A(C(x); i) = x

i

jA(�; i) reads E

i

℄ Pr [A(�; i) reads E

i

℄

+ Pr

x

[A(C(x); i) = x

i

jA(�; i) reads E




i

℄ Pr [A(�; i) reads E




i

℄

< Pr [A(�; i) reads E

i

℄

+ (1=2 + �=2)(1 � Pr [A(�; i) reads E

i

℄);

where the se
ond term of the inequality 
omes from the def-

inition of the set of hyperedges E

i

. This, in turn, implies

that Pr [A(�; i) reads from E

i

℄ > �.

We asso
iate with ea
h hyperedge e 2 E

i

the number P

e

whi
h is de�ned as the probability that A(�; i) reads e. Using

this notation, we have

P

e2E

i

P

e

> �. Furthermore, sin
e

the 
ode C is (q; 
; �)-smooth, for every j 2 [m℄ we have

P

e2E

i

jj2e

P

e

� 
=m.

Let V be a vertex 
over for H

i

. Sin
e for all e 2 E

i

we have

e \ V 6= ; (by de�nition of a vertex 
over), it follows from

the previous statements that

P

e2E

i

je\V 6=;

P

e

> �. Then:

� <

X

e2E

i

je\V 6=;

P

e

�

X

j2V

X

e2E

i

jj2e

P

e

� jV j
=m;

whi
h implies that the minimum vertex 
over for H

i

has size

at least �m=
. This means that H

i

has a mat
hing of size

at least �m=
q.

Before stating our main result, we �rst state a te
hni
al

lemma. Re
all that M

i

is a mat
hing in H

i

. The following

lemma provides a bound on the number of verti
es whi
h

must be 
hosen at random from H

i

in order to have a 
on-

stant probability of 
overing at least one hyperedge in M

i

.

More pre
isely, form a (multi)set S by 
hoosing jSj elements

of the verti
es of H

i

at random, with repla
ement. Say that

S hits M

i

if there exists a subset s � S su
h that s 2M

i

.

Lemma 5. Let H be a hypergraph on m verti
es whose hy-

peredges all 
ontain q or fewer verti
es. Let H have a mat
h-

ing M of size 
m (
 < 1=q). There exists t = �(


�

1

q

m

q�1

q

)

su
h that for a 
olle
tion S of size jSj = t of randomly se-

le
ted verti
es of H:

Pr [S hits M ℄ > 3=4:

Proof. The worst 
ase o

urs when H is q-uniform; that

is, ea
h hyperedge in H (and hen
e in M) has exa
tly q

verti
es. This is be
ause we 
an form a new mat
hing M

0

by adding verti
es to all those hyperedges in M 
ontaining

fewer than q verti
es (this 
an be done while maintaining a

mat
hing be
ause we have 
 < 1=q). The required proba-

bility is therefore lower bounded by the probability in the

setting where H is q-uniform.

Let S = fv

1

; : : : ; v

t

g be a 
olle
tion of randomly 
hosen

verti
es of H. Let a be a q-element subset of [t℄. De�ne the

random variable Y

a

as:

Y

a

=

�

1 if fv

a

1

; : : : ; v

a

q

g 2M

0 otherwise

;



and furthermore de�ne the random variable Y as the sum

of the Y

a

over all q-element subsets of [t℄. A

ording to this

formulation, the quantity of interest 
an be expressed as:

Pr [S hits M ℄ = Pr [Y 6= 0℄ :

We bound this probability by bounding the expe
tation and

varian
e of Y . Sin
e elements of S are 
hosen with repla
e-

ment, all Y

a

have the same distribution; thus:

E[Y ℄ =

�

t

q

�

� E[Y

a

℄ =

�

t

q

�

jM j

m

q

=q!

=


m

�

t

q

�

q!

m

q

:

Consider the auxiliary random variables Z

a

= Y

a

� E[Y

a

℄.

The varian
e of Y 
an be 
al
ulated as:

Var[Y ℄ = E

" 

X

a

Z

a

!

2

#

=

X

a

E

�

Z

2

a

�

+

X

a;a

0

ja 6=a

0

E [Z

a

Z

a

0

℄ : (2)

The �rst term of (2) 
an be bounded as follows:

E

�

Z

2

a

�

= Var[Y

a

℄ = E

�

Y

2

a

�

� E

2

[Y

a

℄

< E

�

Y

2

a

�

= E[Y

a

℄ =

jM jq!

m

q

=


mq!

m

q

:

As for the se
ond term of (2), note that if a\a

0

= ;, then Z

a

and Z

a

0

are independent, so that E[Z

a

Z

a

0

℄ = E[Z

a

℄E[Z

a

0

℄ =

0: On the other hand, if the interse
tion of a and a

0

is

nonempty, sin
e M is a mat
hing we 
annot have both

fv

a

1

; : : : ; v

a

q

g; fv

a

0

1

; : : : ; v

a

0

q

g 2M , and therefore E[Y

a

Y

a

0

℄ =

0. Thus:

E[Z

a

Z

a

0

℄ = E[Y

a

Y

a

0

℄ � E[Y

a

℄E[Y

a

0

℄

< E[Y

a

Y

a

0

℄ � 0 = 0:

Putting everything together, we see that:

Var[Y ℄ <


m

�

t

q

�

q!

m

q

:

Using Chebyshev's inequality gives:

Pr [Y = 0℄ � Pr [jY � E[Y ℄j � E[Y ℄℄

� Var[Y ℄=E

2

[Y ℄

<

m

q


m

�

t

q

�

q!

;

whi
h is bounded above by 1=4 for t = �(


�

1

q

m

q�1

q

).

Using the previously developed lemmas, we are now able to

state and prove our main result:

Theorem 6. Let C : f0; 1g

n

! �

m

be a (q; Æ; �)-lo
ally

de
odable 
ode. Then:

m � (�Æ=q

2

)

1

q�1

�

3n(1�H(1=2 + �))

4 log j�j

�

q

q�1

:

Proof. Theorem 1 shows that C is (q; q=Æ; �)-smooth.

Lemma 4 and the dis
ussion whi
h pre
edes it show that,

for ea
h i 2 [n℄, there exists a set M

i

of disjoint q-or-fewer-

tuples of [m℄ su
h that:

� For all e 2M

i

,

Pr

x

[A(C(x); i) = x

i

jA reads e℄ � 1=2 + �=2:

� The size of M

i

is at least �Æm=q

2

.

Re
all that we 
onsider ea
h setM

i

as a mat
hing in a hyper-

graph withm verti
es. Lemma 5 shows the existen
e of some

set S

�

of size t = �((�Æ=q

2

)

�

1

q

m

q�1

q

) su
h that for 3n=4 in-

di
es i

1

; : : : ; i

3n=4

2 [n℄, S

�

hits ea
h of M

i

1

; : : : ;M

i

3n=4

.

Restated, this means that reading from 
odewordC(x) these

t elements (whi
h are elements of �) gives information about

3n=4 bits of the original data. Theorem 2 then shows that

t log j�j �

3n(1�H(1=2+�))

4

, and this gives the result stated in

the Theorem.

4. EXTENSIONS AND OPEN QUESTIONS
We brie
y point out some extensions and further appli
a-

tions of our results.

Adaptive versus non-adaptive queries.
One open question 
on
erns lower bounds for lo
ally de
od-

able/smooth 
odes when the de
oding pro
edure is allowed

to make adaptive queries (for the 
ase q � 2). We see no fun-

damental reason why the lower bounds given above should

not hold, but the given proof fails in the 
onsideration of the

adaptive 
ase. We note, however, that any adaptive (q; Æ; �)-

lo
al de
oding algorithm A 
an be 
onverted into a non-

adaptive (

j�j

q

�1

j�j�1

; Æ; �)-de
oding algorithm A

0

for the same


ode: simply have A

0

toss the same 
oins as A, and then

have A

0

make all possible queries depending on the j�j

q�1

possible values of the �rst q� 1 queries. Similarly, an adap-

tive (q; Æ; �)-lo
al de
oding algorithm A 
an be 
onverted

into a non-adaptive (q; Æ; �=j�j

q�1

)-lo
al de
oding algorithm

A

0

by having A

0

\guess" the values of the 
odeword in the

�rst q � 1 indi
es queried and submitting a set of queries

based upon this guess. If A

0

guesses 
orre
tly, the de
od-

ing pro
edure works with probability 1=2 + �; otherwise, A

0

outputs a random bit whi
h is 
orre
t with probability 1/2.

Better redu
tions, whi
h would imply better lower bounds,

should be possible.

Smooth encodings versus locally-decodable en-
codings.
As the 
ounterpart to Theorem 1, we note that the 
onverse

to the theorem also holds. That is, any (q; 
; �)-smooth de-


oding algorithm 
an be used as a (q; Æ; ��
Æ)-lo
al de
oding

algorithm (sin
e the probability of reading from only non-


orrupted entries is at least (1 � 
Æ)). Again, perhaps a

better redu
tion is possible.

Smooth encodings and PIR.
It is interesting to note that the arguments presented in Se
-

tion 3.3 above indi
ate that any (q; 
; �)-smooth de
oding al-

gorithm A (with 
 > q) 
an be 
onverted into a (q; q; �

2

=2
)-

smooth de
oding algorithm A

0

where the queries made by A

0

have uniform distribution. The 
onstru
tion uses the mat
h-

ings M

i

shown to exist by Lemma 4; additional hyperedges

are formed with the remaining verti
es (while maintaining a

mat
hing) in an arbitrary fashion to form M

0

i

. A

0

(�; i) sim-

ply pi
ks a hyperedge at random from M

0

i

; with probability

�=
 the hyperedge is good for i and the su

ess probability



is greater than 1=2 + �=2. Otherwise, A

0

outputs a random

bit and has su

ess probability 1/2. When a (q; q; �)-smooth

en
oding C : f0; 1g

n

! �

m

has a de
oding pro
edure where

ea
h query is asked a

ording to the uniform distribution,

the en
oding gives an information-theoreti
 PIR s
heme (see

[7℄) with q servers, query size logm, and answer size log j�j,

su
h that the user has probability 1=2 + � of 
orre
tly re-

trieving the bit he is interested in. There is also a reverse


onne
tion. A PIR s
heme with q servers, query size t, an-

swer size l, and probability of 
orre
t retrieval 1=2 + � 
an

be turned into a system where ea
h query is uniformly dis-

tributed, the query size is t+ logO(1=�), and the probabil-

ity of 
orre
t retrieval is 1=2 + �=2. This in turn gives a

(q; q; �=2)-smooth en
oding C : f0; 1g

n

! (f0; 1g

l

)

m

where

m = O(q2

t

=�). These 
onne
tions show that the problem

of �nding lower bounds for information-theoreti
 PIR is es-

sentially equivalent to the problem of �nding lower bounds

for lo
ally de
odable 
odes. An important di�eren
e is that

in lo
ally de
odable 
odes one is interested in the 
ase of

en
odings over small alphabets, while in PIR the eÆ
ien
y

measure is given by logm+ log j�j (and so one is interested

in the 
ase where m � j�j).
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