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ABSTRACT
We onsider error-orreting odes where a bit of the mes-

sage an be probabilistially reovered by looking at a lim-

ited number of bits (or bloks of bits) of a (possibly) or-

rupted enoding. Suh odes an be derived from multivari-

ate polynomial enodings, and have several appliations in

omplexity theory, suh as worst-ase to average-ase redu-

tions, probabilistially hekable proofs, and private infor-

mation retrieval.

Suh odes ould have pratial appliations if they had

at the same time onstant information rate, the ability to

orret a linear number of errors, and very eÆient (ide-

ally, onstant-time) reonstrution proedures. In partiular

they would give fault-tolerant data storage with unlimited

salability.

We show a negative result on the existene of suh odes;

namely, that linear enoding length is inompatible with a

deoding proedure making a onstant number of queries

(whih is neessary if one is to have onstant reonstrution

time). In partiular, if a bit of a message of length n an be

retrieved by looking at q bloks of length l, and the reon-

strution proedure is robust to a fration Æ of errors, then

the enoding is made of m = 
(poly(1=q; Æ; �)(n=l)

q=(q�1)

)

bloks of length l.

This is the �rst lower bound for this lass of odes. Our

bound is far from the known (exponential) upper bound

when q is a onstant. Closing this gap remains a hallenge.

1. INTRODUCTION
Error-orreting odes are typially used to reliably transmit

information over noisy hannels. An equally useful applia-

tion of error-orreting odes is to reliably store information

on a medium whose ontent may be partially orrupted over
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time (or whose reading devie is subjet to errors). For ex-

ample, the data stored in musi CDs and in CD-ROMs is

enoded using Reed-Solomon odes. In appliations to data

storage (and also in appliations to data transmission) a

message is typially divided into small bloks, and then eah

blok is enoded separately. This allows eÆient retrieval of

the information, sine one need deode only the portion of

data one is interested in; on the other hand, it limits reli-

ability, sine even if the data in one blok (out of possibly

millions of others) is orrupted, then some information is

irreparably lost. One would have muh higher robustness

if the entire information were enoded as a single odeword

in an error-orreting ode. One ould then orrupt even a

large fration of the entire enoding and still not lose any

information. The downside is that even using odes that

are deodable in linear time, one still has to read the entire

enoding in order to retrieve even a single bit of its original

ontent. More radially, one an think of enoding an entire

library as a single odeword (this example is used in [12℄),

and then splitting the enoding into several disks. Then

the whole ontent of the library would be resilient to atas-

trophi losses. One again, if reonstruting a small piee

of the original data involves proessing the entire enoding,

this is not an implementable proposal.

Locally decodable codes.

During the ourse of investigations on the appliations of

error-orreting odes to omplexity theory and ryptogra-

phy, it has been proved that ertain odes admit sub-linear

time randomized deoding proedures. In partiular, one

an reonstrut a single bit of the original data by reading

only a small number of randomly hosen loations in the

enoding. Codes based on multivariate polynomials have

this property, and this property, along with the reonstru-

tion proedure, has been desribed in the language of self-

orreting omputations and random self-reduibility (see

e.g. [6; 13; 9; 8; 10℄). A more expliit observation that

multivariate polynomials yield error-orreting odes with

eÆient reonstrution an be found in works on proba-

bilistially hekable proofs; in partiular, an expliit state-

ment an be found in [4℄. Reent work on worst-ase to

average-ase redutions with appliations to pseudorandom-

ness [5℄ (see also [16℄ for expliit statements in terms of error-

orretion), as well as work on private information retrieval

[7℄ also fouses, more or less expliitly, on odes having eÆ-

ient reonstrution proedures.



Efficiency.
There are two main parameters measuring the performane

of an error-orreting ode. For a ode C : f0; 1g

n

!

f0; 1g

m

mapping an n-bit input into an m-bit enoding, the

information rate is de�ned as n=m, and is the \amortized"

amount of information stored in every bit of the enoding.

One would like this parameter to be as large possible|

ideally, lower bounded by a �xed onstant for every n. The

other parameter is the fration of the m bits of the enoding

that an be orrupted while still allowing orret reonstru-

tion. One would like this parameter to be as large as possi-

ble as well|ideally, lower bounded by a �xed onstant. In

the ontext of eÆient randomized reonstrution, two ad-

ditional eÆieny parameters are the running time of the

reonstrution proedure (for reonstruting one bit) and

the error probability. The ideal error-orreting ode would

have onstant rate, resiliene to a linear number of errors

in the enoding, and a reonstrution proedure having a

(small) onstant error probability and running in onstant

time. Suh a ode would implement fault-tolerant data stor-

age with optimal salability. By doubling the size of the stor-

age support one ould store twie as muh data, and be able

to orret twie as many errors, while random aess time

to the original data (as well as the probability of inorret

deoding, even in the presene of errors) would remain the

same. In this paper we show that suh a ode annot exist.

Note that, in ontrast, there are error orreting odes hav-

ing onstant rate, orreting a linear number of errors, and

having a reonstrution proedure that reonstruts all the

original data in linear time, whih has onstant amortized

time per bit of the original message.

Our Results.
The preise statement of our result is as follows. Suppose

there is an enoding of n bits of information into m bloks

eah of length l, and that there is a reonstrution proedure

that an deode a single bit of a message with probability

1=2+ � when given random aess to an input that is within

distane Æm from a orret enoding; also assume that the

reonstrution proedure reads at most q bits of its input

(q � 2). Then m = 
((n=l)

q=(q�1)

) where the onstant

in the 
 notation depends on �, Æ and q. For the speial

ase q = 1, we show that n is bounded by a onstant of

size O(l�

�O(1)

Æ

�1

) (whih is independent of m). Note that

in proving these lower bounds we do not assume that the

reonstrution proedure is eÆiently omputable, but only

assume that it reads a bounded number of (bloks of) bits

from its input.

Our result shows that onstant-time reonstrution proe-

dures are impossible for odes having onstant rate. In fat,

every reonstrution proedure for a ode having onstant

rate must read 
(log n= log log n) bits of the enoding.

Comparison with previous results.
This is the �rst lower bound proved for this lass of error-

orreting odes, and the �rst time that an eÆieny re-

strition in the reonstrution proedure (although a very

strong one, and information-theoreti in nature) implies a

limitation to the information rate of a ode.

Our bounds are far from known ahievable upper bounds. In

partiular, for l = 1, onstant q, and suÆiently small (but

onstant) Æ and �, the best known odes allowing reonstru-

tion by reading q bits use enodings of length 2

O(n

1=(q�1)

)

.

1

Enodings using multivariate low-degree polynomials on-

atenated with standard error-orreting odes give odes

with m = n

1+o(1)

and the reonstrution proedure reads

poly log n bits and runs in poly log n time [4℄. It remains an

open question whether one an ahieve polynomial length in

the enoding while having a reonstrution proedure with

onstant query omplexity, or linear length with a polylog-

arithmi number of queries.

There are better positive results for odes having loal hek-

ing proedures. An eÆient heker for a ode is a random-

ized proedure that looks at a small number of entries of

a given string, and aepts with probability 1 if the given

string is a valid odeword, and aepts with probability, say,

less than 3/4 if the given string is far from every odeword.

Results about \low-degree tests" as developed for PCP on-

strutions [3; 2; 15℄ imply the existene of odes having an

enoding of polynomial length and a heking proedure

that only reads a onstant number of entries. We do not

know how to prove negative results on the trade-o� between

query omplexity and enoding length for loally hekable

odes, and we point it out as an interesting open question.

Techniques.
The known onstrutions of loally hekable odes, be they

linear-algebrai [7℄ or based on low-degree polynomials [6℄,

have the property that eah individual query is uniformly

distributed over the bits of the input string. One an show

that, for ertain ranges of the parameters, this already guar-

antees error-orretion, sine if the fration Æ of errors is

small ompared to 1=q (where q is the number of queries),

then a union bound tells us that there is a high probability

(at least 1 � Æq) of reading q non-orrupted entries. The

analysis in [10℄ allows treatment of values of Æ that are big-

ger than 1=q, but the reonstrution proedure still has the

property of making uniformly distributed queries.

One an oneive of odes having a reonstrution proedure

that queries with very high probability a ertain partiular

entry; in fat, one an modify any onstrution so that it

makes a ertain query with probability 1 (and then ignores

it). Our �rst result is that this is more-or-less the only sit-

uation that an our. If a reonstrution proedure makes

ertain queries with probability muh higher than under the

uniform distribution, then it an work more-or-less equally

well without making those queries. Intuitively, the reason is

that no matter how an adversary orrupts a fration Æ of the

entries of a odeword, the reonstrution is still guaranteed

to work. If some entries are queried with very high proba-

bility (say, more than q=Æm) and the proedure is making

deisive use of them, then the adversary has an easy time

orrupting those entries and a�eting the performane of

the deoding proedure. We all a reonstrution proedure

smooth if the distribution of queries is suh that no entry

of the enoding is ever queried by the reonstrution pro-

edure with probability muh higher than in the uniform

distribution (see Setion 2 below for a preise quantitative

de�nition). We prove that every ode having a good reon-

strution proedure also has a smooth deoding proedure.

1

No published onstrution gives quite this bound, but a

variation of [1℄ due to Goldreih [11℄ does. Multivariate

polynomial enodings, onatenated with a binary error or-

reting ode, do give, without further elaborations, loally-

deodable odes of length 2

n

O(1=q)

.



This redution is important beause our lower bound uses

smoothness in an essential way.

In order to prove our lower bound, we show that for ev-

ery smooth enoding C : f0; 1g

n

! (f0; 1g

l

)

m

that has a

q-query reonstrution proedure, it is possible to �nd a

subset of O(m

(q�1)=q

) entries of the enoding suh that C,

restrited to suh entries, still enodes a linear amount of

information about its input. An information-theoreti argu-

ment then implies that lm

(q�1)=q

= 
(n), whih is our main

result. This approah was introdued in [14℄ to prove a lower

bound for private information retrieval. Implementing this

idea for smooth enodings requires some new tehnial work.

The main intermediate step in our analysis an be desribed

as follows. Let C : f0; 1g

n

! (f0; 1g

l

)

m

be a smooth enod-

ing that has a q-query reonstrution proedure. For every

index i in f1; : : : ; ng and q-tuple (j

1

; : : : ; j

q

) of indies in

f1; : : : ;mg, we say that (j

1

; : : : ; j

q

) is good for i if the enod-

ing C(x), restrited to the entries (j

1

; : : : ; j

q

), allows predi-

tion of the value of x

i

with probability notieably bounded

away from 1/2 (the probability being taken over a random

hoie of x in f0; 1g

n

). We show that for every i, there are


(m) disjoint q-tuples that are good for i. Let S be a ran-

dom subset of f1; : : : ;mg of size �(m

(q�1)=q

). We show that

on average (over the hoie of S) there are 
(n) indies i in

f1; : : : ; ng suh that there is a q-tuple in S whih is good for

i. In partiular, there is a set S

�

with this property. If we

restrit C(x) to the entries in S

�

, we see that we maintain


(n) bits of information about x.

Organization of the paper.
In Setion 2 we give de�nitions of loally deodable odes

and of odes admitting smooth deodings, and we prove a

redution between the two notions. Our negative results are

proved in Setion 3. Setion 4 disusses extensions of our

results as well as some open questions.

2. PRELIMINARIES AND DEFINITIONS
Throughout this paper we use the following notation: [m℄ �

f1; 2; : : : ;mg, the metri d(�; �) always refers to the Hamming

distane between two odewords, and the funtion H(�) is

the standard entropy funtion.

We now present the formal de�nition of a loally deodable

ode. The reader will notie that the de�nitions introdued

in this setion allow for both adaptive and non-adaptive

probabilisti deoding proedures. >From here on, however,

we restrit ourselves to the non-adaptive ase unless expli-

itly stated otherwise.

De�nition 1 For �xed Æ; �, and integer q we say that C :

f0; 1g

n

! �

m

is a (q; Æ; �)-loally deodable ode if there ex-

ists a probabilisti algorithm A suh that:

� For every x 2 f0; 1g

n

, for every y 2 �

m

with

d(y;C(x)) � Æm, and for every i 2 [n℄, we have:

Pr [A(y; i) = x

i

℄ � 1=2 + �;

where the probability is taken over the internal oin

tosses of A.

� In every invoation, A reads at most q indies of y (in

fat, without loss of generality, we an assume that A

reads exatly q indies of y).

An algorithm A satisfying the above requirements is alled

a (q; Æ; �)-loal deoding algorithm for C.

All known onstrutions of loal deoding algorithms [6; 10;

7; 16℄ have the additional feature that indies of the ode-

word are probed uniformly at random. While one an on-

strut arbitrary examples in whih this is no longer true

(for example, an algorithm whih always reads a partiu-

lar index and ignores the value), it seems natural that those

indies whih are read very often annot give muh informa-

tion about the original data. Indeed, in this ase, orruption

of the bits whih are read very often would ruin the suess

probability of the deoding algorithm. This idea motivates

our de�nition of smooth odes.

De�nition 2 For �xed ; �, and integer q we say that C :

f0; 1g

n

! �

m

is a (q; ; �)-smooth ode if there exists a prob-

abilisti algorithm A suh that:

� For every x 2 f0; 1g

n

and for every i 2 [n℄, we have:

Pr [A(C(x); i) = x

i

℄ � 1=2 + �:

� For every i 2 [n℄ and j 2 [m℄, we have:

Pr [A(�; i) reads index j℄ � =m:

� In every invoation, A reads at most q indies of y.

(The probabilities are taken over the internal oin tosses of

A.) An algorithm A satisfying the above requirements is

alled a (q; ; �)-smooth deoding algorithm for C.

Note that unlike a loally deodable ode, the deoding pro-

edure for a smooth ode is required to work only for valid

odewords of C; it is not required to work for all strings

within some radius of valid odewords. Instead, we only re-

quire that A not read any partiular index \too often" (in

a way made formal by the de�nition). This is what gives

rise to the name smooth: the distribution of indies whih

are read is \smooth" as opposed to being peaked at some

partiular index or set of indies. Note also that in the ase

of smooth odes we do not require that A read exatly q

indies of y. In fat, it may be advantageous for an algo-

rithm to sometimes read fewer than q indies to maintain

the smoothness requirement.

As mentioned previously, all known examples of loally de-

odable odes are smooth (in fat, in known onstrutions

the queries are uniformly distributed; i.e., the odes are

(q; q; �)-smooth). The following theorem shows that this is

always the ase.

Theorem 1. Let C : f0; 1g

n

! �

m

be a (q; Æ; �)-loally

deodable ode. Then C is also a (q; q=Æ; �)-smooth ode.

Proof. Let algorithm A be a (q; Æ; �)-loal deoding al-

gorithm for C. For all i 2 [n℄, let S

i

be the set of indies

j 2 [m℄ suh that Pr [A(�; i) reads index j℄ > q=Æm. Sine A

reads at most q indies in every invoation, it is lear that,

for all i, the number of indies in S

i

an be at most Æm.

De�ne algorithm A

0

as follows: A

0

(�; i) runsA(�; i) in a blak-

box manner by reading indies from the odeword, as re-

quested by A, and returning their values to A. The only

exeption is that if A requests to read an index in S

i

, A

0

does not read that index, but instead simply returns 0 to A.

We now have:

Pr

�

A

0

(C(x); i) = x

i

�

= Pr

�

A(C

0

(x); i) = x

i

�

; (1)



where:

C

0

(x)

j

=

�

0 if j 2 S

i

C(x)

j

otherwise

:

Sine the size of S

i

is at most Æm, we have d(C(x);C

0

(x)) �

Æm. Beause A is a (q; Æ; �)-loal deoding algorithm, the

probability on the right side of (1) is at least 1=2 + �. A

0

is

therefore a (q; q=Æ; �)-smooth deoding algorithm for C, and

the theorem follows.

3. MAIN RESULTS
We now turn to proving lower bounds on the length of loally

deodable odes.

We begin with a theorem in Setion 3.1 whih relates ertain

information-theoreti onepts to lower bounds for enoding

length. We will appeal to this result often in the setions

whih follow. In Setion 3.2 we onsider loal deoding al-

gorithms whih read only one index of the odeword (i.e.,

q = 1). In this ase, we work diretly with the de�nition

of C as a loally deodable ode and show that suh odes

annot exist when the length of the input string is too large

(see below for an exat statement of results). In Setion 3.3

we turn to the ase of q > 1. Here, we �nd it more onve-

nient to view C as a smooth ode. We show a super-linear

lower bound for the length of an enoding in this ase.

It is interesting to note that an appliation of the approah

from Setion 3.3 to the ase q = 1 also gives an absolute

upper bound on the length of the input string. However,

the bound is not as tight as that given in Setion 3.2 using

a di�erent approah.

3.1 Information Theory
Our bounds on loally deodable odes are all obtained via

information-theoreti arguments. Therefore, although the

following result is a straightforward appliation of informa-

tion theory, we single it out beause we will refer to it often

in the remainder of the paper.

Theorem 2. Let C : f0; 1g

n

! R be a funtion. Assume

there is an algorithm A suh that:

8i 2 [n℄;Pr

x

[A(C(x); i) = x

i

℄ � 1=2 + �:

(Where the notation Pr

x

[ ℄ indiates that the probability is

taken over the random oins of A as well as over all strings

x.) Then log jRj � (1�H(1=2 + �))n:

Proof. Let I(x;C(x)) be the mutual information be-

tween x and C(x). Then:

I(x;C(x)) � H(C(x)) � log jRj:

But we also have:

I(x;C(x)) = H(x)�H(xjC(x))

� H(x)�

X

i

H(x

i

jC(x))

� (1�H(1=2 + �))n:

Combining these results gives the stated theorem.

3.2 Impossibility Result for q = 1

We begin with a partiularly strong result for the ase q = 1:

�x �, Æ, and enoding alphabet �. Then there is a onstant

upper bound on the length of the data whih an be en-

oded by a (1; Æ; �)-loally deodable ode. The result is

independent of the ode length|even when the odeword

is exponentially longer than the input, suh odes annot

be onstruted. The intuition is as follows: given suh

a ode, there must be some index of the odewords whih

ontains information about a onstant fration of the bits

of the original data. But appliation of Theorem 2 shows

that this annot our when the input is too long. Stated

another way, the Theorem shows that there exist no families

of (1; Æ; �)-loally deodable odes.

Theorem 3. Let C : f0; 1g

n

! �

m

be a (1; Æ; �)-loally

deodable ode. Then:

n �

log j�j

Æ(1�H(1=2 + �))

:

Proof. For i 2 [n℄, j 2 [m℄, say that j is �-good for i if:

Pr

x

[A(C(x); i) = x

i

jA(�; i) reads j℄ � 1=2 + �:

Fix i 2 [n℄. By de�nition of a loally deodable ode, we

have:

X

j2[m℄

Pr

x

[A(C(x); i) = x

i

jA(�; i) reads j℄ Pr [A(�; i) reads j℄

= Pr

x

[A(C(x); i) = x

i

℄

� 1=2 + �:

But then there must exist some index j

1

suh that:

Pr

x

[A(C(x); i) = x

i

jA(�; i) reads j

1

℄ � 1=2 + �:

In other words, j

1

is good for i.

Denote by �

j

1

;j

2

;:::

2 �

m

a \perturbation" vetor whih

is zero in all positions exept j

1

; j

2

; : : :, where it takes on

value(s) randomly hosen from �. Vetor C(x) ��

j

1

;j

2

;:::

(where � denotes addition in the appropriate �eld) is then

idential to C(x) on every index exept for j

1

; j

2

; : : :, where

it takes on all value(s) with equal probability. Sine loally

deodable odes are tolerant of errors in fewer than Æm po-

sitions, we have:

X

j2[m℄

Pr

x

[A(C(x)��

j

1

; i) = x

i

jA(�; i) reads j℄ Pr [A(�; i) reads j℄

� 1=2 + �;

where the probability is now taken over all oin tosses of

A, all strings x, and all (random) vetors �

j

1

. Again, this

implies that there exists some index j

2

suh that:

Pr

x

[A(C(x)��

j

1

; i) = x

i

jA(�; i) reads j

2

℄ � 1=2 + �:

Note that we must have j

2

6= j

1

; this is so beause the value

at index j

1

of the odeword given as input to A is random

and independent of the underlying data word x. Sine the

algorithm A does not know what is loated in positions of

the odeword other than the one it reads, we have:

Pr

x

[A(C(x); i) = x

i

jA(�; i) reads j

2

℄ � 1=2 + �:

Or, in other words, j

2

is good for i.

Repeating this argument, we see that:

X

j2[m℄

Pr

x

[A(C(x)��

j

1

;j

2

; i) = x

i

jA(�; i) reads j℄ Pr [A(�; i) reads j℄

� 1=2 + �:



Therefore, there exists an index j

3

suh that:

Pr

x

[A(C(x)��

j

1

;j

2

; i) = x

i

jA(�; i) reads j

3

℄

� 1=2 + �;

so that j

3

is good for i with j

3

6= j

1

; j

2

.

Sine the ode is tolerant of errors in up to Æm positions,

ontinuing in this manner shows that there is a set J

i

of Æm

distint indies, suh that j 2 J

i

implies j is good for i. But

remember that this was for a �xed, arbitrary value i. Thus,

for all i 2 [n℄ we have a set J

i

; jJ

i

j � Æm suh that j 2 J

i

implies j is good for i.

By the pigeonhole priniple, there must exist some j

�

2 [m℄

whih is good for Æn indies i

1

; : : : ; i

Æn

2 [n℄. Theorem 2

then shows that we must have log j�j � (1�H(1=2 + �))Æn.

This gives the stated result.

3.3 Lower Bounds forq > 1

In this setion we prove lower bounds for loally deodable

odes with q > 1. As mentioned previously, we �nd it on-

venient to work with, and to prove lower bounds for, the

lass of smooth odes. Realling the earlier relationship be-

tween smooth odes and loally deodable odes as outlined

in Theorem 1, we use this result to obtain our desired lower

bound.

We seek to repliate the idea underlying the proof of Theo-

rem 3. There, we sought a single index j

�

whih was good for

a onstant fration of the indies of the data; that is, whih

gave information about a onstant fration of the input bits.

Now we seek a subset S

�

of the indies of the odeword suh

that knowledge of the values of all the indies in S

�

gives in-

formation about a onstant fration of the input bits. One

we �nd suh a subset, we apply Theorem 2 to obtain a lower

bound on the length of the input.

Let C : f0; 1g

n

! �

m

be a (q; ; �)-smooth ode and let

algorithm A be a (q; ; �)-smooth deoding algorithm for C.

Let s � [m℄. We say that a given invoation of A reads s if

the set of indies whih A reads in that invoation is exatly

equal to the set s. Sine A is restrited to read at most q

indies in any invoation, we must have jsj � q for any s

whih is read by A in some invoation. Analogous to the

de�nition above, we say that s is �-good for i (where jsj � q)

if:

Pr [A(C(x); i) = x

i

jA reads s℄ � 1=2 + �:

For all i 2 [n℄, de�ne the hypergraph H

i

as follows: H

i

on-

tains m verties labeled by elements of [m℄. The hyperedges

of H

i

, denoted E

i

, are de�ned by:

E

i

=

�

e � [m℄ j e is

�

2

-good for i

	

:

We say A reads from E

i

(for brevity, A reads E

i

) if A reads

e and e 2 E

i

. Reall some standard terminology for hyper-

graphs: a mathing in a hypergraph H with hyperedges E is

de�ned as a setM � E of hyperedges suh that the interse-

tion of any pair of (distint) hyperedges in M is empty. A

vertex over for a hypergraph H is a set V of verties suh

that every hyperedge in the set of hyperedges E ontains

at least one element of V . A standard result is that in a

hypergraph whose hyperedges ontain at most q verties, if

the size of the minimum vertex over is at least jV j, then

there is a mathing of size at least jV j=q. With this in mind

we now state the following lemma:

Lemma 4. Let C be a (q; ; �)-smooth ode and fH

i

g

n

i=1

be the assoiated set of hypergraphs as desribed above. For

all i, H

i

has a mathing M

i

of size at least �m=q.

Proof. Using the de�nition of a smooth ode, we have:

1=2 + �

� Pr

x

[A(C(x); i) = x

i

jA(�; i) reads E

i

℄ Pr [A(�; i) reads E

i

℄

+ Pr

x

[A(C(x); i) = x

i

jA(�; i) reads E



i

℄ Pr [A(�; i) reads E



i

℄

< Pr [A(�; i) reads E

i

℄

+ (1=2 + �=2)(1 � Pr [A(�; i) reads E

i

℄);

where the seond term of the inequality omes from the def-

inition of the set of hyperedges E

i

. This, in turn, implies

that Pr [A(�; i) reads from E

i

℄ > �.

We assoiate with eah hyperedge e 2 E

i

the number P

e

whih is de�ned as the probability that A(�; i) reads e. Using

this notation, we have

P

e2E

i

P

e

> �. Furthermore, sine

the ode C is (q; ; �)-smooth, for every j 2 [m℄ we have

P

e2E

i

jj2e

P

e

� =m.

Let V be a vertex over for H

i

. Sine for all e 2 E

i

we have

e \ V 6= ; (by de�nition of a vertex over), it follows from

the previous statements that

P

e2E

i

je\V 6=;

P

e

> �. Then:

� <

X

e2E

i

je\V 6=;

P

e

�

X

j2V

X

e2E

i

jj2e

P

e

� jV j=m;

whih implies that the minimum vertex over for H

i

has size

at least �m=. This means that H

i

has a mathing of size

at least �m=q.

Before stating our main result, we �rst state a tehnial

lemma. Reall that M

i

is a mathing in H

i

. The following

lemma provides a bound on the number of verties whih

must be hosen at random from H

i

in order to have a on-

stant probability of overing at least one hyperedge in M

i

.

More preisely, form a (multi)set S by hoosing jSj elements

of the verties of H

i

at random, with replaement. Say that

S hits M

i

if there exists a subset s � S suh that s 2M

i

.

Lemma 5. Let H be a hypergraph on m verties whose hy-

peredges all ontain q or fewer verties. Let H have a math-

ing M of size m ( < 1=q). There exists t = �(

�

1

q

m

q�1

q

)

suh that for a olletion S of size jSj = t of randomly se-

leted verties of H:

Pr [S hits M ℄ > 3=4:

Proof. The worst ase ours when H is q-uniform; that

is, eah hyperedge in H (and hene in M) has exatly q

verties. This is beause we an form a new mathing M

0

by adding verties to all those hyperedges in M ontaining

fewer than q verties (this an be done while maintaining a

mathing beause we have  < 1=q). The required proba-

bility is therefore lower bounded by the probability in the

setting where H is q-uniform.

Let S = fv

1

; : : : ; v

t

g be a olletion of randomly hosen

verties of H. Let a be a q-element subset of [t℄. De�ne the

random variable Y

a

as:

Y

a

=

�

1 if fv

a

1

; : : : ; v

a

q

g 2M

0 otherwise

;



and furthermore de�ne the random variable Y as the sum

of the Y

a

over all q-element subsets of [t℄. Aording to this

formulation, the quantity of interest an be expressed as:

Pr [S hits M ℄ = Pr [Y 6= 0℄ :

We bound this probability by bounding the expetation and

variane of Y . Sine elements of S are hosen with replae-

ment, all Y

a

have the same distribution; thus:

E[Y ℄ =

�

t

q

�

� E[Y

a

℄ =

�

t

q

�

jM j

m

q

=q!

=

m

�

t

q

�

q!

m

q

:

Consider the auxiliary random variables Z

a

= Y

a

� E[Y

a

℄.

The variane of Y an be alulated as:

Var[Y ℄ = E

" 

X

a

Z

a

!

2

#

=

X

a

E

�

Z

2

a

�

+

X

a;a

0

ja 6=a

0

E [Z

a

Z

a

0

℄ : (2)

The �rst term of (2) an be bounded as follows:

E

�

Z

2

a

�

= Var[Y

a

℄ = E

�

Y

2

a

�

� E

2

[Y

a

℄

< E

�

Y

2

a

�

= E[Y

a

℄ =

jM jq!

m

q

=

mq!

m

q

:

As for the seond term of (2), note that if a\a

0

= ;, then Z

a

and Z

a

0

are independent, so that E[Z

a

Z

a

0

℄ = E[Z

a

℄E[Z

a

0

℄ =

0: On the other hand, if the intersetion of a and a

0

is

nonempty, sine M is a mathing we annot have both

fv

a

1

; : : : ; v

a

q

g; fv

a

0

1

; : : : ; v

a

0

q

g 2M , and therefore E[Y

a

Y

a

0

℄ =

0. Thus:

E[Z

a

Z

a

0

℄ = E[Y

a

Y

a

0

℄ � E[Y

a

℄E[Y

a

0

℄

< E[Y

a

Y

a

0

℄ � 0 = 0:

Putting everything together, we see that:

Var[Y ℄ <

m

�

t

q

�

q!

m

q

:

Using Chebyshev's inequality gives:

Pr [Y = 0℄ � Pr [jY � E[Y ℄j � E[Y ℄℄

� Var[Y ℄=E

2

[Y ℄

<

m

q

m

�

t

q

�

q!

;

whih is bounded above by 1=4 for t = �(

�

1

q

m

q�1

q

).

Using the previously developed lemmas, we are now able to

state and prove our main result:

Theorem 6. Let C : f0; 1g

n

! �

m

be a (q; Æ; �)-loally

deodable ode. Then:

m � (�Æ=q

2

)

1

q�1

�

3n(1�H(1=2 + �))

4 log j�j

�

q

q�1

:

Proof. Theorem 1 shows that C is (q; q=Æ; �)-smooth.

Lemma 4 and the disussion whih preedes it show that,

for eah i 2 [n℄, there exists a set M

i

of disjoint q-or-fewer-

tuples of [m℄ suh that:

� For all e 2M

i

,

Pr

x

[A(C(x); i) = x

i

jA reads e℄ � 1=2 + �=2:

� The size of M

i

is at least �Æm=q

2

.

Reall that we onsider eah setM

i

as a mathing in a hyper-

graph withm verties. Lemma 5 shows the existene of some

set S

�

of size t = �((�Æ=q

2

)

�

1

q

m

q�1

q

) suh that for 3n=4 in-

dies i

1

; : : : ; i

3n=4

2 [n℄, S

�

hits eah of M

i

1

; : : : ;M

i

3n=4

.

Restated, this means that reading from odewordC(x) these

t elements (whih are elements of �) gives information about

3n=4 bits of the original data. Theorem 2 then shows that

t log j�j �

3n(1�H(1=2+�))

4

, and this gives the result stated in

the Theorem.

4. EXTENSIONS AND OPEN QUESTIONS
We briey point out some extensions and further applia-

tions of our results.

Adaptive versus non-adaptive queries.
One open question onerns lower bounds for loally deod-

able/smooth odes when the deoding proedure is allowed

to make adaptive queries (for the ase q � 2). We see no fun-

damental reason why the lower bounds given above should

not hold, but the given proof fails in the onsideration of the

adaptive ase. We note, however, that any adaptive (q; Æ; �)-

loal deoding algorithm A an be onverted into a non-

adaptive (

j�j

q

�1

j�j�1

; Æ; �)-deoding algorithm A

0

for the same

ode: simply have A

0

toss the same oins as A, and then

have A

0

make all possible queries depending on the j�j

q�1

possible values of the �rst q� 1 queries. Similarly, an adap-

tive (q; Æ; �)-loal deoding algorithm A an be onverted

into a non-adaptive (q; Æ; �=j�j

q�1

)-loal deoding algorithm

A

0

by having A

0

\guess" the values of the odeword in the

�rst q � 1 indies queried and submitting a set of queries

based upon this guess. If A

0

guesses orretly, the deod-

ing proedure works with probability 1=2 + �; otherwise, A

0

outputs a random bit whih is orret with probability 1/2.

Better redutions, whih would imply better lower bounds,

should be possible.

Smooth encodings versus locally-decodable en-
codings.
As the ounterpart to Theorem 1, we note that the onverse

to the theorem also holds. That is, any (q; ; �)-smooth de-

oding algorithm an be used as a (q; Æ; ��Æ)-loal deoding

algorithm (sine the probability of reading from only non-

orrupted entries is at least (1 � Æ)). Again, perhaps a

better redution is possible.

Smooth encodings and PIR.
It is interesting to note that the arguments presented in Se-

tion 3.3 above indiate that any (q; ; �)-smooth deoding al-

gorithm A (with  > q) an be onverted into a (q; q; �

2

=2)-

smooth deoding algorithm A

0

where the queries made by A

0

have uniform distribution. The onstrution uses the math-

ings M

i

shown to exist by Lemma 4; additional hyperedges

are formed with the remaining verties (while maintaining a

mathing) in an arbitrary fashion to form M

0

i

. A

0

(�; i) sim-

ply piks a hyperedge at random from M

0

i

; with probability

�= the hyperedge is good for i and the suess probability



is greater than 1=2 + �=2. Otherwise, A

0

outputs a random

bit and has suess probability 1/2. When a (q; q; �)-smooth

enoding C : f0; 1g

n

! �

m

has a deoding proedure where

eah query is asked aording to the uniform distribution,

the enoding gives an information-theoreti PIR sheme (see

[7℄) with q servers, query size logm, and answer size log j�j,

suh that the user has probability 1=2 + � of orretly re-

trieving the bit he is interested in. There is also a reverse

onnetion. A PIR sheme with q servers, query size t, an-

swer size l, and probability of orret retrieval 1=2 + � an

be turned into a system where eah query is uniformly dis-

tributed, the query size is t+ logO(1=�), and the probabil-

ity of orret retrieval is 1=2 + �=2. This in turn gives a

(q; q; �=2)-smooth enoding C : f0; 1g

n

! (f0; 1g

l

)

m

where

m = O(q2

t

=�). These onnetions show that the problem

of �nding lower bounds for information-theoreti PIR is es-

sentially equivalent to the problem of �nding lower bounds

for loally deodable odes. An important di�erene is that

in loally deodable odes one is interested in the ase of

enodings over small alphabets, while in PIR the eÆieny

measure is given by logm+ log j�j (and so one is interested

in the ase where m � j�j).
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