On the Efficiency of Local Decoding Procedures
for Error-Correcting Codes

Jonathan Katz*

ABSTRACT

We consider error-correcting codes where a bit of the mes-
sage can be probabilistically recovered by looking at a lim-
ited number of bits (or blocks of bits) of a (possibly) cor-
rupted encoding. Such codes can be derived from multivari-
ate polynomial encodings, and have several applications in
complexity theory, such as worst-case to average-case reduc-
tions, probabilistically checkable proofs, and private infor-
mation retrieval.

Such codes could have practical applications if they had
at the same time constant information rate, the ability to
correct a linear number of errors, and very efficient (ide-
ally, constant-time) reconstruction procedures. In particular
they would give fault-tolerant data storage with unlimited
scalability.

We show a negative result on the existence of such codes;
namely, that linear encoding length is incompatible with a
decoding procedure making a constant number of queries
(which is necessary if one is to have constant reconstruction
time). In particular, if a bit of a message of length n can be
retrieved by looking at g blocks of length [, and the recon-
struction procedure is robust to a fraction § of errors, then
the encoding is made of m = Q(poly(1/q, 4, €)(n/1)?/4=1)
blocks of length I.

This is the first lower bound for this class of codes. Our
bound is far from the known (exponential) upper bound
when ¢ is a constant. Closing this gap remains a challenge.

1. INTRODUCTION

Error-correcting codes are typically used to reliably transmit
information over noisy channels. An equally useful applica-
tion of error-correcting codes is to reliably store information
on a medium whose content may be partially corrupted over
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time (or whose reading device is subject to errors). For ex-
ample, the data stored in music CDs and in CD-ROMs is
encoded using Reed-Solomon codes. In applications to data
storage (and also in applications to data transmission) a
message is typically divided into small blocks, and then each
block is encoded separately. This allows efficient retrieval of
the information, since one need decode only the portion of
data one is interested in; on the other hand, it limits reli-
ability, since even if the data in one block (out of possibly
millions of others) is corrupted, then some information is
irreparably lost. One would have much higher robustness
if the entire information were encoded as a single codeword
in an error-correcting code. One could then corrupt even a
large fraction of the entire encoding and still not lose any
information. The downside is that even using codes that
are decodable in linear time, one still has to read the entire
encoding in order to retrieve even a single bit of its original
content. More radically, one can think of encoding an entire
library as a single codeword (this example is used in [12]),
and then splitting the encoding into several disks. Then
the whole content of the library would be resilient to catas-
trophic losses. Once again, if reconstructing a small piece
of the original data involves processing the entire encoding,
this is not an implementable proposal.

Locally decodable codes.

During the course of investigations on the applications of
error-correcting codes to complexity theory and cryptogra-
phy, it has been proved that certain codes admit sub-linear
time randomized decoding procedures. In particular, one
can reconstruct a single bit of the original data by reading
only a small number of randomly chosen locations in the
encoding. Codes based on multivariate polynomials have
this property, and this property, along with the reconstruc-
tion procedure, has been described in the language of self-
correcting computations and random self-reducibility (see
e.g. [6; 13; 9; 8; 10]). A more explicit observation that
multivariate polynomials yield error-correcting codes with
efficient reconstruction can be found in works on proba-
bilistically checkable proofs; in particular, an explicit state-
ment can be found in [4]. Recent work on worst-case to
average-case reductions with applications to pseudorandom-
ness [5] (see also [16] for explicit statements in terms of error-
correction), as well as work on private information retrieval
[7] also focuses, more or less explicitly, on codes having effi-
cient reconstruction procedures.



Efficiency.

There are two main parameters measuring the performance
of an error-correcting code. For a code C : {0,1}" —
{0,1}™ mapping an n-bit input into an m-bit encoding, the
information rate is defined as n/m, and is the “amortized”
amount of information stored in every bit of the encoding.
One would like this parameter to be as large possible—
ideally, lower bounded by a fixed constant for every n. The
other parameter is the fraction of the m bits of the encoding
that can be corrupted while still allowing correct reconstruc-
tion. One would like this parameter to be as large as possi-
ble as well—ideally, lower bounded by a fixed constant. In
the context of efficient randomized reconstruction, two ad-
ditional efficiency parameters are the running time of the
reconstruction procedure (for reconstructing one bit) and
the error probability. The ideal error-correcting code would
have constant rate, resilience to a linear number of errors
in the encoding, and a reconstruction procedure having a
(small) constant error probability and running in constant
time. Such a code would implement fault-tolerant data stor-
age with optimal scalability. By doubling the size of the stor-
age support one could store twice as much data, and be able
to correct twice as many errors, while random access time
to the original data (as well as the probability of incorrect
decoding, even in the presence of errors) would remain the
same. In this paper we show that such a code cannot exist.
Note that, in contrast, there are error correcting codes hav-
ing constant rate, correcting a linear number of errors, and
having a reconstruction procedure that reconstructs all the
original data in linear time, which has constant amortized
time per bit of the original message.

Our Results.

The precise statement of our result is as follows. Suppose
there is an encoding of n bits of information into m blocks
each of length [, and that there is a reconstruction procedure
that can decode a single bit of a message with probability
1/2 + € when given random access to an input that is within
distance dm from a correct encoding; also assume that the
reconstruction procedure reads at most ¢ bits of its input
(g > 2). Then m = Q((n/l)¥?Y) where the constant
in the Q notation depends on €, § and ¢q. For the special
case ¢ = 1, we show that n is bounded by a constant of
size O(le” M §~1) (which is independent of m). Note that
in proving these lower bounds we do not assume that the
reconstruction procedure is efficiently computable, but only
assume that it reads a bounded number of (blocks of) bits
from its input.

Our result shows that constant-time reconstruction proce-
dures are impossible for codes having constant rate. In fact,
every reconstruction procedure for a code having constant
rate must read (logn/loglogn) bits of the encoding.

Comparison with previous results.

This is the first lower bound proved for this class of error-
correcting codes, and the first time that an effictency re-
striction in the reconstruction procedure (although a very
strong one, and information-theoretic in nature) implies a
limitation to the information rate of a code.

Our bounds are far from known achievable upper bounds. In
particular, for [ = 1, constant ¢, and sufficiently small (but
constant) ¢ and €, the best known codes allowing reconstruc-

tion by reading ¢ bits use encodings of length 20!/ (™) 1

Encodings using multivariate low-degree polynomials con-
catenated with standard error-correcting codes give codes
with m = n'T°® and the reconstruction procedure reads
poly log n bits and runs in poly logn time [4]. It remains an
open question whether one can achieve polynomial length in
the encoding while having a reconstruction procedure with
constant query complexity, or linear length with a polylog-
arithmic number of queries.

There are better positive results for codes having local check-
ing procedures. An efficient checker for a code is a random-
ized procedure that looks at a small number of entries of
a given string, and accepts with probability 1 if the given
string is a valid codeword, and accepts with probability, say,
less than 3/4 if the given string is far from every codeword.
Results about “low-degree tests” as developed for PCP con-
structions [3; 2; 15] imply the existence of codes having an
encoding of polynomial length and a checking procedure
that only reads a constant number of entries. We do not
know how to prove negative results on the trade-off between
query complexity and encoding length for locally checkable
codes, and we point it out as an interesting open question.

Techniques.

The known constructions of locally checkable codes, be they
linear-algebraic [7] or based on low-degree polynomials [6],
have the property that each individual query is uniformly
distributed over the bits of the input string. One can show
that, for certain ranges of the parameters, this already guar-
antees error-correction, since if the fraction ¢ of errors is
small compared to 1/q (where ¢ is the number of queries),
then a union bound tells us that there is a high probability
(at least 1 — dq) of reading g non-corrupted entries. The
analysis in [10] allows treatment of values of ¢ that are big-
ger than 1/q, but the reconstruction procedure still has the
property of making uniformly distributed queries.

One can conceive of codes having a reconstruction procedure
that queries with very high probability a certain particular
entry; in fact, one can modify any construction so that it
makes a certain query with probability 1 (and then ignores
it). Our first result is that this is more-or-less the only sit-
uation that can occur. If a reconstruction procedure makes
certain queries with probability much higher than under the
uniform distribution, then it can work more-or-less equally
well without making those queries. Intuitively, the reason is
that no matter how an adversary corrupts a fraction § of the
entries of a codeword, the reconstruction is still guaranteed
to work. If some entries are queried with very high proba-
bility (say, more than ¢/dm) and the procedure is making
decisive use of them, then the adversary has an easy time
corrupting those entries and affecting the performance of
the decoding procedure. We call a reconstruction procedure
smooth if the distribution of queries is such that no entry
of the encoding is ever queried by the reconstruction pro-
cedure with probability much higher than in the uniform
distribution (see Section 2 below for a precise quantitative
definition). We prove that every code having a good recon-
struction procedure also has a smooth decoding procedure.

!No published construction gives quite this bound, but a
variation of [1] due to Goldreich [11] does. Multivariate
polynomial encodings, concatenated with a binary error cor-
recting code, do give, without further elaborations, locally-

decodable codes of length gn? /),



This reduction is important because our lower bound uses
smoothness in an essential way.

In order to prove our lower bound, we show that for ev-
ery smooth encoding C : {0,1}" — ({0,1}')™ that has a
g-query reconstruction procedure, it is possible to find a
subset of O(m(4~1/?) entries of the encoding such that C,
restricted to such entries, still encodes a linear amount of
information about its input. An information-theoretic argu-
ment then implies that Im(4~Y/¢ = Q(n), which is our main
result. This approach was introduced in [14] to prove a lower
bound for private information retrieval. Implementing this
idea for smooth encodings requires some new technical work.
The main intermediate step in our analysis can be described
as follows. Let C: {0,1}" — ({0,1})™ be a smooth encod-
ing that has a g-query reconstruction procedure. For every
index 7 in {1,...,n} and g-tuple (j1,...,7jq) of indices in
{1,...,m}, we say that (j1,...,Jq) is good for 7 if the encod-
ing C(x), restricted to the entries (j1,. .., jq), allows predic-
tion of the value of x; with probability noticeably bounded
away from 1/2 (the probability being taken over a random
choice of z in {0,1}"). We show that for every 7, there are
Q(m) disjoint g-tuples that are good for i. Let S be a ran-
dom subset of {1,...,m} of size ©(m4~1/7). We show that
on average (over the choice of S) there are Q(n) indices ¢ in
{1,...,n} such that there is a g-tuple in S which is good for
i. In particular, there is a set S™ with this property. If we
restrict C(z) to the entries in S*, we see that we maintain
Q(n) bits of information about z.

Organization of the paper.

In Section 2 we give definitions of locally decodable codes
and of codes admitting smooth decodings, and we prove a
reduction between the two notions. Our negative results are
proved in Section 3. Section 4 discusses extensions of our
results as well as some open questions.

2. PRELIMINARIES AND DEFINITIONS

Throughout this paper we use the following notation: [m] =
{1,2,...,m}, the metric d(-, -) always refers to the Hamming
distance between two codewords, and the function H(:) is
the standard entropy function.

We now present the formal definition of a locally decodable
code. The reader will notice that the definitions introduced
in this section allow for both adaptive and non-adaptive
probabilistic decoding procedures. ;From here on, however,
we restrict ourselves to the non-adaptive case unless explic-
itly stated otherwise.

Definition 1 For fixed J, ¢, and integer ¢ we say that C :
{0,1}™ — X™ is a (g, 9, €)-locally decodable code if there ex-
ists a probabilistic algorithm A such that:

e For every z € {0,1}", for every y € X™ with
d(y,C(z)) < dm, and for every ¢ € [n], we have:

PrA(y,i) = o] 2 1/2 + ¢,

where the probability is taken over the internal coin
tosses of A.

e In every invocation, A reads at most ¢ indices of y (in
fact, without loss of generality, we can assume that A
reads exactly ¢ indices of y).

An algorithm A satisfying the above requirements is called
a (g, 0, €)-local decoding algorithm for C. [

All known constructions of local decoding algorithms [6; 10;
7; 16] have the additional feature that indices of the code-
word are probed uniformly at random. While one can con-
struct arbitrary examples in which this is no longer true
(for example, an algorithm which always reads a particu-
lar index and ignores the value), it seems natural that those
indices which are read very often cannot give much informa-
tion about the original data. Indeed, in this case, corruption
of the bits which are read very often would ruin the success
probability of the decoding algorithm. This idea motivates
our definition of smooth codes.

Definition 2 For fixed c, €, and integer ¢ we say that C :
{0,1}" —» X™ is a (g, ¢, €)-smooth code if there exists a prob-
abilistic algorithm A such that:

e For every z € {0,1}" and for every i € [n], we have:

Pr[A(C(z),i) =] > 1/2 + €

e For every ¢ € [n] and j € [m], we have:

Pr[A(:,7) reads index j] < ¢/m.
e In every invocation, A reads at most g indices of y.

(The probabilities are taken over the internal coin tosses of
A.) An algorithm A satisfying the above requirements is
called a (g, ¢, €)-smooth decoding algorithm for C. [

Note that unlike a locally decodable code, the decoding pro-
cedure for a smooth code is required to work only for valid
codewords of C; it is not required to work for all strings
within some radius of valid codewords. Instead, we only re-
quire that A not read any particular index “too often” (in
a way made formal by the definition). This is what gives
rise to the name smooth: the distribution of indices which
are read is “smooth” as opposed to being peaked at some
particular index or set of indices. Note also that in the case
of smooth codes we do not require that A read ezactly q
indices of y. In fact, it may be advantageous for an algo-
rithm to sometimes read fewer than ¢ indices to maintain
the smoothness requirement.

As mentioned previously, all known examples of locally de-
codable codes are smooth (in fact, in known constructions
the queries are uniformly distributed; i.e., the codes are
(¢, q,€)-smooth). The following theorem shows that this is
always the case.

THEOREM 1. Let C : {0,1}" — X™ be a (g, 9, ¢€)-locally
decodable code. Then C is also a (g,q/9, €)-smooth code.

Proor. Let algorithm A be a (g,d,¢€)-local decoding al-
gorithm for C. For all ¢ € [n], let S; be the set of indices
j € [m] such that Pr[A(-, ) reads index j] > q/dm. Since A
reads at most g indices in every invocation, it is clear that,
for all 7, the number of indices in S; can be at most Jm.
Define algorithm A’ as follows: A’(-,7) runs A(-,4) in a black-
box manner by reading indices from the codeword, as re-
quested by A, and returning their values to A. The only
exception is that if A requests to read an index in S;, A’
does not read that index, but instead simply returns 0 to A.
We now have:

Pr [A'(C(a:),i) = a:z] =Pr [A(C'(a:),i) = a:z] , (1)



where:
v fo if j € S;
Clx); = { C(z); otherwise

Since the size of S; is at most dmn, we have d(C(x),C'(z)) <
dm. Because A is a (g,0,¢)-local decoding algorithm, the
probability on the right side of (1) is at least 1/2 +e¢. A’ is
therefore a (g, q/d, €)-smooth decoding algorithm for C, and
the theorem follows. [

3. MAIN RESULTS

We now turn to proving lower bounds on the length of locally
decodable codes.

We begin with a theorem in Section 3.1 which relates certain
information-theoretic concepts to lower bounds for encoding
length. We will appeal to this result often in the sections
which follow. In Section 3.2 we consider local decoding al-
gorithms which read only one index of the codeword (i.e.,
g = 1). In this case, we work directly with the definition
of C as a locally decodable code and show that such codes
cannot exist when the length of the input string is too large
(see below for an exact statement of results). In Section 3.3
we turn to the case of ¢ > 1. Here, we find it more conve-
nient to view C as a smooth code. We show a super-linear
lower bound for the length of an encoding in this case.

It is interesting to note that an application of the approach
from Section 3.3 to the case ¢ = 1 also gives an absolute
upper bound on the length of the input string. However,
the bound is not as tight as that given in Section 3.2 using
a different approach.

3.1 Information Theory

Our bounds on locally decodable codes are all obtained via
information-theoretic arguments. Therefore, although the
following result is a straightforward application of informa-
tion theory, we single it out because we will refer to it often
in the remainder of the paper.

THEOREM 2. Let C: {0,1}" — R be a function. Assume
there is an algorithm A such that:

Vi € [n], Pry [A(C(2),) = x;] > 1/2 +e.

(Where the notation Pr, [ | indicates that the probability is
taken over the random coins of A as well as over all strings
z.) Thenlog|R| > (1 —H(1/2 +¢€))n.

Proor. Let I(z;C(z)) be the mutual information be-
tween x and C(z). Then:

I(;C(x)) < H(C(x)) < log R,

But we also have:

I(z;C(z)) = H(z)—H(z|C(z))
> H(z)— Y H(il|C(x))
> (1—H(1;2+e))n-

Combining these results gives the stated theorem. []

3.2 Impossibility Result forg =1

We begin with a particularly strong result for the case ¢ = 1:
fix ¢, 6, and encoding alphabet X. Then there is a constant
upper bound on the length of the data which can be en-
coded by a (1,4, ¢)-locally decodable code. The result is

independent of the code length—even when the codeword
is exponentially longer than the input, such codes cannot
be constructed.  The intuition is as follows: given such
a code, there must be some index of the codewords which
contains information about a constant fraction of the bits
of the original data. But application of Theorem 2 shows
that this cannot occur when the input is too long. Stated
another way, the Theorem shows that there exist no families
of (1,6, ¢)-locally decodable codes.

THEOREM 3. Let C : {0,1}" — X™ be a (1,9, ¢)-locally
decodable code. Then:

log |2|
S S ASHO2 T )

PROOF. For i € [n], j € [m], say that j is e-good for ¢ if:
Pr, [A(C(z),i) = ;i | A(-,i) reads j] > 1/2 + €.

Fix ¢ € [n]. By definition of a locally decodable code, we
have:

Z Pr,[A(C(x),i) = x| A(-, i) reads j] Pr[A(-, ) reads 7]

= Pr,[A(C(z),i) = z]
> 1/2+e.

But then there must exist some index j; such that:
Pr, [A(C(x),i) = zi | A(-,i) reads ji1] > 1/2 + €.

In other words, ji is good for i.

Denote by Aj, j,,... € ™ a “perturbation” vector which
is zero in all positions except ji,j2,..., where it takes on
value(s) randomly chosen from X. Vector C(z) @ Aj, ...
(where @ denotes addition in the appropriate field) is then
identical to C(z) on every index except for ji, jo, ..., where
it takes on all value(s) with equal probability. Since locally
decodable codes are tolerant of errors in fewer than dm po-
sitions, we have:

D Pr[A(C(2)®A, i) = @i | A(,i) reads j] Pr[A(-,i) reads j]

>1/2+4¢

where the probability is now taken over all coin tosses of
A, all strings z, and all (random) vectors Aj,. Again, this
implies that there exists some index j» such that:

Pr. [A(C(z) @ Aj,,i) = x| A(-,7) reads j2] > 1/2 + €.

Note that we must have ja # j1; this is so because the value
at index ji of the codeword given as input to A is random
and independent of the underlying data word z. Since the
algorithm A does not know what is located in positions of
the codeword other than the one it reads, we have:

Pr, [A(C(x),i) = zi | A(-,i) reads j2] > 1/2 + €.

Or, in other words, j» is good for 3.
Repeating this argument, we see that:

ZPT;;[A(C(:L')@A]'IJZ7 i) = x; | A(+, %) reads j] Pr[A(:,¢) reads j]

>1/2+e.



Therefore, there exists an index js such that:

Pr, [A(C(z) © Aj, jn, 1) = i | A(+,9) reads js]
>1/2+¢,

so that j3 is good for ¢ with js # ji, jo.

Since the code is tolerant of errors in up to dm positions,
continuing in this manner shows that there is a set J; of dm
distinct indices, such that j € J; implies j is good for ¢. But
remember that this was for a fixed, arbitrary value ¢. Thus,
for all i € [n] we have a set Jj, |Ji| > dm such that j € J;
implies j is good for 3.

By the pigeonhole principle, there must exist some j* € [m]
which is good for dn indices 41,...,i5n € [n]. Theorem 2
then shows that we must have log || > (1 — H(1/2 +¢€))dn.
This gives the stated result. []

3.3 Lower Bounds forq > 1

In this section we prove lower bounds for locally decodable
codes with ¢ > 1. As mentioned previously, we find it con-
venient to work with, and to prove lower bounds for, the
class of smooth codes. Recalling the earlier relationship be-
tween smooth codes and locally decodable codes as outlined
in Theorem 1, we use this result to obtain our desired lower
bound.

We seek to replicate the idea underlying the proof of Theo-
rem 3. There, we sought a single index j* which was good for
a constant fraction of the indices of the data; that is, which
gave information about a constant fraction of the input bits.
Now we seek a subset S™ of the indices of the codeword such
that knowledge of the values of all the indices in S* gives in-
formation about a constant fraction of the input bits. Once
we find such a subset, we apply Theorem 2 to obtain a lower
bound on the length of the input.

Let C : {0,1}" — X™ be a (g,c,¢)-smooth code and let
algorithm A be a (g, ¢, €)-smooth decoding algorithm for C.
Let s C [m]. We say that a given invocation of A reads s if
the set of indices which A reads in that invocation is exactly
equal to the set s. Since A is restricted to read at most ¢
indices in any invocation, we must have |s| < ¢ for any s
which is read by A in some invocation. Analogous to the
definition above, we say that s is e-good for i (where |s| < q)
if:

Pr[A(C(z),i) = x; | Areads s] > 1/2 +e.

For all i € [n], define the hypergraph H; as follows: H; con-
tains m vertices labeled by elements of [m]. The hyperedges
of H;, denoted E;, are defined by:

E; = {e C [m]|eis §-good for z}

We say A reads from E; (for brevity, A reads E;) if A reads
e and e € E;. Recall some standard terminology for hyper-
graphs: a matching in a hypergraph H with hyperedges E is
defined as a set M C FE of hyperedges such that the intersec-
tion of any pair of (distinct) hyperedges in M is empty. A
verter cover for a hypergraph H is a set V of vertices such
that every hyperedge in the set of hyperedges E contains
at least one element of V. A standard result is that in a
hypergraph whose hyperedges contain at most g vertices, if
the size of the minimum vertex cover is at least |V, then
there is a matching of size at least |V'|/gq. With this in mind
we now state the following lemma:

LEMMA 4. Let C be a (q,c,€)-smooth code and {H;};—,
be the associated set of hypergraphs as described above. For
all i, H; has a matching M; of size at least em/cq.

ProoOF. Using the definition of a smooth code, we have:

1/2+¢
< Pr[A(C(z),i) = z;|A(,¢) reads E;] Pr[A(-,7) reads Ej]

+ Pr.[A(C(z),i) = z;|A(:, i) reads Ef]Pr[A(-,%) reads Ef]

< Pr[A(-, i) reads E;)
+ (1/2 +€/2)(1 — Pr[A(+,7) reads Ej)),

where the second term of the inequality comes from the def-
inition of the set of hyperedges E;. This, in turn, implies
that Pr[A(-,4) reads from E;] > e.

We associate with each hyperedge e € E; the number P,
which is defined as the probability that A(-,7) reads e. Using
this notation, we have ZeeEi P. > ¢. Furthermore, since
the code C is (g, c,€)-smooth, for every j € [m] we have
ZSEE”],EE P. <c/m.

Let V be a vertex cover for H;. Since for all e € E; we have
e NV # O (by definition of a vertex cover), it follows from

the previous statements that ZeeE‘-leﬂV;&(Z) P. > ¢. Then:

e < ZPeSZ Z P. < |Vl]¢/m,

e€E;|leNV#D JEV ecE;|j€e

which implies that the minimum vertex cover for H; has size
at least em/c. This means that H; has a matching of size
at least em/cq. [

Before stating our main result, we first state a technical
lemma. Recall that M; is a matching in H;. The following
lemma provides a bound on the number of vertices which
must be chosen at random from H; in order to have a con-
stant probability of covering at least one hyperedge in M;.
More precisely, form a (multi)set S by choosing |S| elements
of the vertices of H; at random, with replacement. Say that
S hits M; if there exists a subset s C S such that s € M;.

LeMMA 5. Let H be a hypergraph on m vertices whose hy-

peredges all contain q or fewer vertices. Let H have a match-
g—1

ing M of size ym (v < 1/q). There exists t = 9(7_%7717)
such that for a collection S of size |S| =t of randomly se-
lected vertices of H :

Pr[S hits M] > 3/4.

ProOF. The worst case occurs when H is g-uniform; that
is, each hyperedge in H (and hence in M) has exactly g
vertices. This is because we can form a new matching M’
by adding vertices to all those hyperedges in M containing
fewer than ¢ vertices (this can be done while maintaining a
matching because we have v < 1/¢q). The required proba-
bility is therefore lower bounded by the probability in the
setting where H is g-uniform.

Let S = {vi,...,v:} be a collection of randomly chosen
vertices of H. Let a be a g-element subset of [¢]. Define the
random variable Y, as:

Ya:{ 1 if {vay,...,va,} €M

0 otherwise ’



and furthermore define the random variable Y as the sum
of the Y, over all g-element subsets of [t]. According to this
formulation, the quantity of interest can be expressed as:

Pr[S hits M] = Pr[Y #0].

We bound this probability by bounding the expectation and
variance of Y. Since elements of S are chosen with replace-
ment, all Y, have the same distribution; thus:

)= (1) ey = (1) L -

ma/q! ma

Consider the auxiliary random variables Z, = Y, — E[Yq].
The variance of Y can be calculated as:

Var[Y] = EK;Z@>2]
= ;E[Z;f]-l—

The first term of (2) can be bounded as follows:

> ElzZa]. ()

a,a’|a#a’

E[Z7] = Vary,] = E[Y7]-E’[Yd]
< E[Y7]

As for the second term of (2), note that if aNa’ = @, then Z,
and Z,: are independent, so that E[Z,Z,/]| = E[Z.]E[Z./] =
0. On the other hand, if the intersection of a and a' is
nonempty, since M is a matching we cannot have both
{Var,- -, Vag }s {Uarl - ,va/q} € M, and therefore E[Y,Y,/] =
0. Thus:
E[Z.Z,] = E[Y.Y,]—-E[Y,]E[Y.]
< E[Y,Y,]-0=0.

Putting everything together, we see that:

m(g)a

Var[Y] <
ma
Using Chebyshev’s inequality gives:
Prly =0] < Pr[|y —E[Y]| > E[Y]]
< Var[Y]/E?[Y]
mq

ym()a”

A

g—1

which is bounded above by 1/4 for t = @(77%mT). o

Using the previously developed lemmas, we are now able to
state and prove our main result:

THEOREM 6. Let C : {0,1}" — £™ be a (g, 9, ¢€)-locally
decodable code. Then:

i ()

PROOF. Theorem 1 shows that C is (g,q/d,€)-smooth.
Lemma 4 and the discussion which precedes it show that,
for each ¢ € [n], there exists a set M; of disjoint g-or-fewer-
tuples of [m] such that:

e For all e € M;,
Pry[A(C(z),i) = z;| Areadse] > 1/2 4+ ¢/2.

o The size of M; is at least eém/q2.

Recall that we consider each set M; as a matching in a hyper-
graph with m vertices. Lemma 5 shows the existence of some

set 5™ of size t = e((EJ/QQ)_%qul) such that for 3n/4 in-
dices 41, ...,i3,/4 € [n], S” hits each of Mi,,..., Mi,, ,.
Restated, this means that reading from codeword C(z) these
t elements (which are elements of X) gives information about
3n/4 bits of the original data. Theorem 2 then shows that
tlog|X| > w, and this gives the result stated in
the Theorem. [

4. EXTENSIONS AND OPEN QUESTIONS

We briefly point out some extensions and further applica-
tions of our results.

Adaptive versus non-adaptive queries.

One open question concerns lower bounds for locally decod-
able/smooth codes when the decoding procedure is allowed
to make adaptive queries (for the case ¢ > 2). We see no fun-
damental reason why the lower bounds given above should
not hold, but the given proof fails in the consideration of the
adaptive case. We note, however, that any adaptive (g, d, €)-
local decoding algorithm A can be converted into a non-
adaptive (%%711,6, €)-decoding algorithm A’ for the same
code: simply have A’ toss the same coins as A, and then
have A’ make all possible queries depending on the |Z|?¢7*
possible values of the first ¢ — 1 queries. Similarly, an adap-
tive (q,0,€)-local decoding algorithm A can be converted
into a non-adaptive (g, d, ¢/|2|?"")-local decoding algorithm
A’ by having A" “guess” the values of the codeword in the
first ¢ — 1 indices queried and submitting a set of queries
based upon this guess. If A’ guesses correctly, the decod-
ing procedure works with probability 1/2 + ¢; otherwise, A’
outputs a random bit which is correct with probability 1/2.
Better reductions, which would imply better lower bounds,
should be possible.

Smooth encodings versus locally-decodable en-

codings.

As the counterpart to Theorem 1, we note that the converse
to the theorem also holds. That is, any (q, ¢, €)-smooth de-
coding algorithm can be used as a (g, §, e—cd)-local decoding
algorithm (since the probability of reading from only non-
corrupted entries is at least (1 — ¢d)). Again, perhaps a
better reduction is possible.

Smooth encodings and PIR.

It is interesting to note that the arguments presented in Sec-
tion 3.3 above indicate that any (g, ¢, €)-smooth decoding al-
gorithm A (with ¢ > ¢) can be converted into a (g, g, €*/2c)-
smooth decoding algorithm A’ where the queries made by A’
have uniform distribution. The construction uses the match-
ings M; shown to exist by Lemma 4; additional hyperedges
are formed with the remaining vertices (while maintaining a
matching) in an arbitrary fashion to form M;. A'(-,4) sim-
ply picks a hyperedge at random from M]; with probability
€/c the hyperedge is good for i and the success probability



is greater than 1/2 + ¢/2. Otherwise, A’ outputs a random
bit and has success probability 1/2. When a (g, g, €)-smooth
encoding C : {0,1}" — X™ has a decoding procedure where
each query is asked according to the uniform distribution,
the encoding gives an information-theoretic PIR scheme (see
[7]) with g servers, query size log m, and answer size log |X|,
such that the user has probability 1/2 + € of correctly re-
trieving the bit he is interested in. There is also a reverse
connection. A PIR scheme with g servers, query size t, an-
swer size [, and probability of correct retrieval 1/2 + € can
be turned into a system where each query is uniformly dis-
tributed, the query size is ¢ + log O(1/¢), and the probabil-
ity of correct retrieval is 1/2 + €/2. This in turn gives a
(¢, 4, €/2)-smooth encoding C : {0,1}" — ({0,1})™ where
m = O(q2%/¢). These connections show that the problem
of finding lower bounds for information-theoretic PIR is es-
sentially equivalent to the problem of finding lower bounds
for locally decodable codes. An important difference is that
in locally decodable codes one is interested in the case of
encodings over small alphabets, while in PIR the efficiency
measure is given by log m + log |Z| (and so one is interested
in the case where m = |X|).
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