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Abstract

For every ε > 0 and integers k and q (with k ≤ q ≤ k + k2/4), we present a PCP character-
ization of NP where the verifier queries q bits (of which only k are free bits), accepts a correct
proof with probability ≥ 1 − ε and accepts a “proof” of a wrong statement with probability
≤ 2−(q−k).

In particular, for every δ > 0 we have a PCP characterization of NP where the verifier has,
simultaneously, 1 + δ amortized query complexity and δ amortized free bit complexity. Both
results are tight, unless P = NP .

The optimal amortized query complexity of our verifier implies essentially tight non-
approximability results for constraint satisfaction problems. Specifically, we can show that
k-CSP, the problem of finding an assignment satisfying the maximum number of given con-
straints (where each constraint involves at most k variables) is NP-hard to approximate to

within a factor 2−k+O(
√

k). The problem can be approximated to within a factor 2−k+1, and
was known to be NP-hard to approximate to within a factor about 2−2k/3. We can also prove
some new separation results between different PCP model.

A PCP characterization of NP with optimal amortized free bit complexity implies that for
every δ > 0 it is hard to approximate the maximum clique problem to within a n1−δ factor.
Such a characterization had already been proved by H̊astad [H̊as96], in a celebrated recent
breakthrough. Our construction gives an alternative, simpler, proof of this result.

Our techniques also give a tight analysis of linearity testing algorithms with low amortized
query complexity. As in the case of PCP, we show that it is possible to have a linearity testing
algorithm that makes q queries and has error bounded from above by 2−q+O(

√
q). We also

prove a lower bound showing that, for a certain, fairly general, class of testing algorithms, our
analysis is tight even in the lower order term. That is, we show that the error of a q-query
testing algorithm in this class has to be at least 2−q+Ω(

√
q).
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1 Introduction

The PCP Theorem [AS98, ALM+98] gives a characterization of NP that is both useful and fascinat-
ing. It is fascinating for the surprisingly strong point that it makes about the power of randomness
in computations, and it is useful for its applications to the study of the approximability of optimiza-
tion problems, by a connection that was initiated by [FGL+91] and then stretched to an amazing
extent.

In the last seven years, research on probabilistically checkable proofs has focused on achieving
quantitative strengthening of the PCP Theorem, involving increasingly efficient verifiers [BGLR93,
FK94, BS94, BGS98, H̊as96, H̊as97, Tre98, ST98] (and also, in a somewhat different direction,
[RS97, AS97, DFK+99]). Such improvements of the PCP Theorem have been mostly driven by
the search for improved non-approximability results, and some of the efficiency measures used for
verifiers have been tailored to the goal of proving non-approximability results for specific problems
(see [Bel96] for a survey on efficiency parameters for PCP and their relation to non-approximability
results). In addition, the PCP model defines complexity classes of independent interest, and, at
least for the most natural efficiency parameters, it is a natural question to ask what is the strongest
version of the PCP Theorem, whether or not it yields improved non-approximability results.

The original version of the PCP Theorem states that proofs for any NP language can be encoded
in such a way that their validity can be verified by only reading a constant number of bits, and with
an error probability1 that is upper bounded by a constant. In particular, the verifier of [ALM+98]
had an error probability at most 1/2, and the number of queries was at most 10, 000 (a folklore
estimation not explicitly made in the paper). The general goal is to construct verifiers having small
error and small query complexity: while it is easy to trade off one parameter for the other, it is
hard to optimize them simultaneously (and there are inherent limitations). In particular, already
from [ALM+98] one can show that there is a PCP characterization of NP where the verifier makes
3 queries, and the error probability is bounded away from 1 (this is implicit in the [ALM+98]
reduction of PCP computations to 3SAT); on the other hand, it is possible to get verifiers having
an arbitrarily small error s > 0, and having query complexity O(log(1/s)). Furthermore, one can
show that, in a PCP characterization of NP, a verifier having error s must have query complexity
at least log(1/s) (unless P=NP) [BGS98, Tre96]. So the best we can hope for (in terms of trade-off
between error probability and number of queries) is to construct verifiers having error s and query
complexity q̄ log 1/s where q̄ > 1 is some constant that we would like to be as small as possible.
The parameter q̄ (the ratio between number of queries and logarithm of inverse error probability)
is called the amortized query complexity of the verifier.

Another important PCP parameter is the free bit complexity of the verifier. We say that a verifier
uses f free bits if there is a subset of f queries such that for any possible outcome to these queries
there is only one possible answer to the other queries that would make the verifier accept.2 The
amortized free bit complexity of a verifier that uses f free bits and that has error s is f/ log(1/s).
The amortized free bit parameter is important for its application to the approximability of the
Max Clique problem. In particular, if there is a PCP characterization of NP where the verifier
has amortized free bit complexity f̄ , then Clique is hard to approximate to within a factor roughly
n1/(1−f̄).

1A PCP verifier can make an error in two possible ways: it can reject a valid proof, or it can accept a “proof” of
an invalid statement. In this paper we will only consider PCP verifiers that accept a valid proof with probability at
least 1 − ε, where ε > 0 is a constant that can be made arbitrarily small independently of the other parameters of
interest. Therefore we will use the term “error probability” as a synonym of “soundness,” i.e. (an upper bound to)
the probability of accepting a proof of an incorrect statement.

2A more general definition is given in [BGS98].
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1.1 Previous Work

Previous results showed that there is a PCP characterization of NP with amortized query complexity
1.5 + δ for any δ > 0 [ST98]. In terms of free bit complexity, H̊astad showed that for every δ > 0
there is a construction with δ amortized free bits. The construction of [H̊as96] uses an unbounded
number of amortized query bits. On the other hand, it was known that a PCP verifier that makes q
queries and has an error probability less than 21−q can only recognize languages in P [BGS98, Tre96].
So, unless P = NP , PCP characterizations of NP must employ verifiers having amortized query
complexity bigger than 1.

The main open question left from the work of [ST98] is a construction with 1 + ε amortized
query bits. As will be discussed later, this has implications for constraint satisfaction problems and
for the relation between different PCP models. A somewhat different question was to get a simpler
proof of the result of H̊astad [H̊as96], whose analysis was very involved.

1.2 Linearity Testing

In [Tre98, ST98], PCP constructions are achieved by first analysing the related and somewhat
simpler linearity testing problem, and then adapting linearity testing algorithms, and their analysis,
to the PCP setting. In this paper we follow a similar route.

Recall that a function f : {0, 1}n → {0, 1} is linear if for every x, y ∈ {0, 1}n it holds f(x) ⊕
f(y) = f(x ⊕ y). Equivalently, f is linear if there exists a subset α ⊆ {1, . . . , n} such that f(x) =
⊕

i∈α xi. In the linearity testing problem we are given oracle access to a function f : {0, 1}n → {0, 1}
and we want to determine whether f is linear, or if f is very far from every linear function, where
the distance Dist(f, g) between two functions is the fraction of points where they disagree (for a
function f and a family F we also use the notation Dist(f,F) = ming∈F Dist(f, g).) Let us call
LIN the set of linear functions. We want a randomized test that always accepts linear functions
and that accepts with very small probability functions that are far from the set of linear functions.
More precisely, we are interested in having a small acceptance probability for the functions that
have a low correlation with being linear, that is functions f such that Dist(f,LIN) ≈ 1/2. We will
say that a testing algorithm has “error probability at most s,” if for every function f such that
1/2 − ε ≤ Dist(f,LIN) ≤ 1/2 + ε we have that the test accepts f with probability at most s + ε.
The amortized query complexity of a test having error s that makes q queries is defined as usual as
q/ log(1/s). This definition may look somewhat contrived, but testing algorithm having a certain
error probability under this definition have a strong analogy to PCP constructions with the same
soundness.

Trevisan [Tre98] described a family of linearity testing algorithms and was able to analyse some
of them. The best ones had amortized query complexity about 1.5. Sudan and Trevisan [ST98]
extended this analysis to the PCP setting.

1.3 Our Results

We denote by naPCPc,s[log, q] the class of problems that admit a proof system where the verifier
runs in polynomial time, uses a logarithmic number of random bits, reads non-adaptively at most
q bits of the proof and satisfies the following properties: a valid proof of a correct statement is
accepted with probability at least c and any “proof” of an incorrect statement is accepted with
probability at most s. In this paper we show the following.

Theorem 1 (Main) For every ε > 0 and integers k, q, with q ≤ k + k2/4, NP =
naPCP1−ε,s[log, q] where s = 2k−q. In addition, the free bit complexity of the verifier is k.
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In other terms, we give a construction that makes q queries, uses about 2
√

q free bits, and has
soundness about 22

√
q−q. The amortized query complexity of our verifier is thus about 1+2/

√
q, and

its amortized free bit complexity is 2/
√

q. While this does not perfectly match known impossibility
results (that only rule out a combination of q queries and soundness 21−q) we do prove a tight
1 + δ amortized query complexity, and we derive an alternative proof of the δ amortized free bit
complexity result by H̊astad. Our proof seems to be considerably simpler (at a both a technical
and a conceptual level) than H̊astad’s original one, although it uses related machinery.

We can also prove a very strong result in terms of linearity testing with low amortized query
complexity.

Theorem 2 For every k, q with q ≤ k +
(k
2

)

there is a testing algorithm A that makes q accesses to
a function f given as an oracle, and if f is linear, then A accepts with probability 1. If 1/2 − ε ≤
Dist(f,LIN) ≤ 1/2 + ε, then A accepts with probability at most 2k−q + ε.

Since our testing algorithm makes q queries and has a probability at most 2
√

2q−q of incorrectly
accepting a function f that is from linear, its amortized query complexity tends to 1 for large q.
Our result is proved using testing algorithms described in [Tre98], whose analysis was not possible
using the techniques of [Tre98].

The testing algorithms introduced in [Tre98] are associated to undirected graphs. To each graph
G = (V,E) there is an associated testing algorithm that makes q = |V |+ |E| queries and invokes |E|
instances of an atomic linearity test due to [BLR90]. Each atomic test has error probability 1/2,
and if they were invoked independently, the error probability of the composed test would be 2−|E|.
Indeed, the invocations of the atomic tests are not independent, however we prove that when the
tests are invoked on functions very far from being linear, the atomic tests have low correlation, and
the error probability of the composed test is 2−|E|. For a complete graph, the error probabilty is
2Θ(

√
q)−q. There is a natural way of generalizing the tests of [Tre98] so that each test is associated

to a hypergraph H = (V,E), and the test associated to H makes q = |V | + |E| queries and makes
|E| invocations to the [BLR90] atomic test. In analogy to what we prove in this paper, one would
be tempted to conjecture that such a test has error probability 2−|E| that, as a function of the
number of queries, is as low as 2O(q1/d)−q for a d-uniform hypergraph, and even 2O(log q)−q for the
complete hypergraph.

Instead, we are able to show that any hypergraph-based testing algorithm that makes q queries
must have an error probability at least 2Ω(

√
q)−q. It remains an open question whether there are

linearity testing algorithms (of different kind) having error probability 2o(
√

q)−q where q is the
number of queries. The only general lower bound is that a testing algorithm that makes q queries
must have error probability at least 2Ω(log q)−q.

1.4 Applications

We refer to [Tre98] and [ST98] for discussions on the application of PCP with low amortized query
complexity.

For an integer k ≥ 2, the Max kCSP problem is the variation of Max kSAT where we are
given a set of boolean expressions, each one involving at most k variables, and we want to find an
assignment of values to the variables such that the maximum number of expressions is satisfied.
This family of problems, as well as some special cases, is very well studied [KMSV99, Cre95, Tre96,
Tre97, TSSW96, KSW97, Zwi98a, Zwi98b]. Max kCSP is NP-hard to approximate to within a
factor of roughly 2−2k/3 [ST98]. The best known algorithm has an approximation ratio 2−(k−1)

[Tre96] (note that a random solution is 2−k-approximate.) In general, if NP = naPCPc,s[log, q],
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then Max qCSP is NP-hard to approximate to within a factor larger than s/c (see e.g. [Tre96]). The
following, almost tight, non-approximability result is then an immediate consequence of Theorem 1.

Corollary 1 For every k, the Max kCSP problem is NP-hard to approximate to within 2−k+O(
√

k).

To illustrate another consequence of our main result, consider the PCP model where each entry
of the proof is not a bit, but rather an element of the alphabet {0, 1}l. If a verifier makes k queries
in this model, it can be simulated by an ordinary PCP verifier that makes kl queries. Intuitively,
this reduction should not be tight, since making kl unrestricted queries seems to give more power
than being constrained to query k blocks of l-bits data. A negative result on the power of this
PCP classes was (in a slightly different language) given in [STX98]. Specifically, it was shown
that a verifier that reads k entries in a proof having entries of size l cannot have an error less
than 2−l(k−1). This means that if we define the query complexity as lk, and the amortized query
complexity similarly, a verifier that reads k block must have amortized query complexity at least
k/(k− 1). So, another consequence of Theorem 1 is that for every fixed k, and for sufficiently large
l, there is a separation between the power of a verifier that reads k entries of size l is less than the
power of a verifier that reads lk bits without restrictions. (Only a separation result for the case
k = 2 was known before [ST98].)

1.5 Techniques

In this paper we analyse linearity testing algorithms and PCP verifiers that were considered
in [Tre98, ST98], but whose analysis was beyond the techniques of those papers. The main contribu-
tion of [Tre98] was the definition of a family of tests/verifiers. In [ST98] a new composition theorem
was proved, showing how “inner verifiers” developed in analogy to the linearity testing algorithms
of [Tre98] could yield PCP constructions. Both [Tre98] and [ST98] make use of ideas appeared
in previous papers, most notably [H̊as96, H̊as97]. The reader can find additional references and
proper credits in [Tre98, ST98].

We first consider the point where the analysis of the linearity testing algorithms in [Tre98]
broke down. A similar difficulty arises in PCP constructions. In the remainder of this discussion,
we will assume that the boolean values {0, 1} are represented as {1,−1}. In particular, ⊕ becomes
multiplication, and a function f : {1,−1}n → {1,−1} is linear if and only if there is a subset
α ⊆ {1, . . . , n} such that f(x) =

∏

i∈α xi. We also associate to every function f : {1,−1}n → R (as
a special case, to every function f : {1,−1}n → {1,−1}), a sequence of 2n real values, a real value
denoted f̂α for any α ⊆ {1, . . . , n}. Such values are called the Fourier coefficients of f , and their
definition and properties are not important in the following discussion. In [Tre98] it was proved
that a key technical lemma in the analysis of linearity testing algorithms was to show that for every
graph of the form ([k], S) and for every function f : {1,−1}n → {1,−1},

E
x1,...,xk∈{1,−1}n





∏

(i,j)∈S

f(xi)f(xj)f(xi · xj)



 ≤ max
α

|f̂α| (1)

In [Tre98], Expression (1) was proved only for the special case where each connected component
of ([k], S) is either a path or a bipartite graph with the smallest component of the bipartition
having one or two vertices. The techniques of [Tre98], in the cases where they worked, also proved
Expression (1) for all functions f : {1,−1}n → R having E

x
f2(x) ≤ 1. However, for general graphs,

there are functions for which E
x

f2(x) ≤ 1, and for which Expression (1) does not hold. So the
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fact that the techniques of [Tre98] generalized to arbitrary real functions with E
x

f2(x) ≤ 1 was a

fundamental limitation.
In this paper we show a technical lemma that reduces the general case of Expression (1) to

the special case studied in [Tre98]. The reduction is a technically simple application of Cauchy-
Swartchz, and only works for functions f : {1,−1}n → {1,−1}.

Similarly, we are able to show that the analysis of PCP “inner” verifiers that eluded the tech-
niques of [ST98] can be reduced to the analysis of inner verifiers that were analysed in [ST98].
Once a tight analysis of inner verifiers is obtained, a “composition theorem” proved in [ST98] gives
a PCP characterization of NP.

1.6 Organization of the Paper

We prove a simple probabilistic lemma in Section 2. The lemma gives the reduction of the general
case of the analysis of linearity test and “inner verifiers” to the special cases studied in [Tre98, ST98].
Our results on linearity testing are presented in Section 3. Preliminary definitions on PCP are given
in Section 4, and our results on PCP are in Section 5. We present in Section 6 a lower bound on
the error probability of a generalized class of linearity testing algorithms.

2 A Probabilistic Lemma

Lemma 3 below is the main inequality we use in this paper. It is a consequence of the Cauchy-
Schwarz inequality.

Lemma 3 For every two integers k, l for every two functions F : {1,−1}k × {1,−1}l → R and
G : {1,−1}l → R, we have

E
x,y

[F (x, y)G(y)] ≤
√

E
x1,x2,y

[F (x1, y)F (x2, y)]
√

E
y
[G2(y)] (2)

Proof:

E
x,y

[F (x, y)G(y)] = E
y
[(E

x
[F (x, y)])G(y)]

≤
√

E
y
[(E

x
[F (x, y)])2]

√

E
y
[(G(y))2]

=
√

E
y
[E
x1

[F (x1, y)] · E
x2

[F (x2, y)]]
√

E
y
[(G(y)2]

=
√

E
x1,x2,y

[F (x1, y)F (x2, y)]
√

E
y
[G2(y)]

The second inequality is a consequence of the following (average) version of the Cauchy-Schwarz in-
equality: for any two random variables A,B over the same sample space, E[AB] ≤

√

E[A2]
√

E[B2].
2

In particular, if the range of G is contained in the interval [−1, 1], then G2(·) is always at most
one, and the expression can be furtherly simplified.

Corollary 2 For every two integers k, l for every two functions F : {1,−1}k × {1,−1}l → R and
G : {1,−1}l → [−1, 1], we have

E
x,y

[F (x, y)G(y)] ≤
√

E
x1,x2,y

[F (x1, y)F (x2, y)] (3)
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3 Linearity Test with Amortized Query Complexity 1 + ε

Let ([k], E) be an undirected graph on k vertices. Consider the test

LinTestGraph(G; f)
Choose uniformly at random x1, . . . , xk ∈ {1,−1}n

if f(xi)f(xj)f(xixj) = 1 for all (i, j) ∈ E
then accept
else reject

It has been shown in [Tre98] (and it is an easy calculation) that

Pr[LinTestGraph(G; f) accepts ] =
1

2|E|
∑

S⊆E

E
x1,...,xk





∏

(i,j)∈S

f(xi)f(xj)f(xixj)



 . (4)

where we use the convention that a product ranging over an empty set is 1.
It has also been shown in [Tre98] that for every k

E
z1,z2,x1,...,xk

∏

i∈[2], j∈[k]

f(zi)f(xj)f(zixj) ≤ max
α

f̂2
α

The main result of this section is the following lemma.

Lemma 4 Let f : {1,−1}n → {1,−1}, let k ≥ 2 be an arbitrary integer, and let ([k], S) be an
arbitrary graph. Then E

x1,...,xk

∏

(i,j)∈S f(xi)f(xj)f(xixj) ≤ maxα |f̂α|.

Proof: Let us assume without loss of generality that node (1,2) is an edge. We can define two
functions L : {1,−1}k×n → {1,−1} and R : {1,−1}(k−1)×n → {1,−1} as follows:

L(x1, x2, . . . , xk) =
∏

(1,j)∈S

f(x1)f(x1xj)f(xj)

and

R(x2, . . . , xk) =
∏

(i,j)∈S,i,j 6=1

f(xi)f(xixj)f(xj)

That is, the expression that we want to bound is the expectation of L(x1, . . . , xk)R(x2, . . . , xk).
We can invoke Corollary 2 and see that

E
x1,...,xk

∏

(i,j)∈S

f(xi)f(xj)f(xixj) = E
x1,...,xk

L(x1, . . . , xk)R(x2, . . . , xk)

≤
√

E
z1,z2,x2,...,xk

L(z1, x2, . . . , xk)L(z2, x2, . . . , xk)

where

E
z1,z2,x2,...,xk

L(z1, x2, . . . , xk)L(z2, x2, . . . , xk) = E
z1,z2,x2,...,xk

∏

(1,j)∈S

(f(z1)f(z1xj)f(xj))(f(z2)f(z2xj)f(xj))
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Now, if we call d the degree of vertex 1 in S, and we call y1, . . . , yd the variables xj corresponding
to a j adjacent to 1, the above expression becomes

= E
z1,z2,y1,...,yd

∏

i∈[2],j∈[d]

f(zi)f(ziyj)f(yj) ≤ max
α

f̂2
α

2

A tight analysis of graph-tests is now an immediate consequence of Lemma 4 and Expression 4

Theorem 5 Let f : {1,−1}n → {1,−1}, let k ≥ 2 be an arbitrary integer, and let G = ([k], E) be

an arbitrary graph. Then Pr[LinTestGraph(G; f) accepts ] ≤ 1
2|E| + 2|E|−1

2|E| maxα |f̂α|.

4 Background on PCP

In this section we give the definition of “inner” verifier and we state a result of [ST98] that reduces
the task of proving a PCP characterization of NP to the task of constructing an inner verifier with
appropriate parameter.

We begin by introducing some additional notation. For an integer n, we denote by Fn the set
of functions f : [n] → {1,−1}. The operator ◦ denotes composition of functions, i.e. if f ∈ Fn and
π : [m] → [n] then the function f ◦ π ∈ Fm is defined as (f ◦ π)(b) = f(π(b)) for any b ∈ [m].

The Long code is the set of linear functions whose support is a singleton, i.e. LONGn = {l{a} :
a ∈ [n]}. We say that l{a} is the Long code of a. Thus, the Long code is formed by n codewords of
length 2n.

Finally, we need a notion analogous to that of folding from [BGS98]. Observe that if A = l{a} is
a codeword of the Long code, then A(f) = f(a) = −(−f(a)) = −A(−f) for any f ; for any function
A : Fn → {1,−1} we will define a new function A′ that satisfies such a property. The definition of
A′ is as follows:

A′(f) =

{

A(f) If f(1) = 1
−A(−f) If f(1) = −1.

We stress that, for any f , A′(f) can be evaluated with one query to A, moreover A′ is equal to A
if A is a codeword of the Long code.

We can now give the formal definition of inner verifier, and the “composition theorem” that
shows that the existence of an inner verifier with appropriate parameters implies a PCP character-
ization of NP.

Definition 6 (k-Inner Verifier [ST98]) A k-inner verifier is a randomized oracle algorithm V
that is given a sequence of functions π1, . . . , πk where πj : {1,−1}m → {1,−1}n, and has oracle
access to a function A : Fn → {1,−1} and to a sequence of functions B1, . . . , Bk where Bj : Fm →
{1,−1}.

Definition 7 (Decoding Procedure) A decoding procedure is a randomized algorithm D such
that on input an integer parameter n and a function A : Fn → {1,−1} returns an element of [n].

Definition 8 (Good Inner Verifier) A k-inner verifier V is (c, s, q)-good with respect to a
decoding procedure D if for any π1, . . . , πk : [m] → [n], any A : Fn → {1,−1}, and any
B1, . . . , Bk : Fm → {1,−1}, the following properties hold.

• [Number of Queries] V makes at total number of at most q non-adaptive oracle queries.
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• [Completeness] if A is the Long code of a, and Bi is the long code of bi, and πi(bi) = a,
then Pr[V (A′, B′

1, . . . , B
′
k, π1, . . . , πk)accepts] ≥ c.

• [Soundness] For any constant δ > 0, there is a positive constant δ′ > 0 independent of m,
n, (but possibly dependent on δ) such that:
If Pr[V (A′, B′

1, . . . , B
′
k, π1, . . . , πk)accepts] ≥ s + δ.

Then Pr[ at least two values out of D(n,A′), π1(D(m,B′
1)), . . . , πk(D(m,B′

k)) are equal] ≥
δ′.

The Composition Theorem from [ST98] is as follows.3

Theorem 9 ([ST98]) If there exists a (c, s, q)-good k-inner verifier V with respect to a decoding
procedure D then for any ε > 0 NP = naPCPc,s+ε[log, q].

5 PCP with Amortized Query Complexity 1 + ε

5.1 Construction

We will denote by UFn the uniform distribution over functions in Fn. For any ε > 0, we define
the distribution SFε,n over Fn as follows: in order to sample a function e according to SFε,n, for
every a ∈ {1,−1}n we fix e(a) = 1 with probability 1− ε, and we fix e(a) = −1 with probability ε.

5.1.1 Verifier

For any ε > 0, integers h, k, and bipartite graph G = ([h], [k], E) our inner verifier InnerG,ε is de-
scribed in Figure 1. InnerG,ε is obtained by iterating a basic 3-query inner verifier by H̊astad [H̊as97].
The basic protocol would access two tables A and B, would pick a function f uniformly from the
domain of A, a function g uniformly from the domain of B, and a function e from the domain of B
but with the non-uniform distribution SFε,m; the verifier would accept iff A(f)B(g) = B((f ◦π)ge).
By recycling queries, we manage to execute |E| iterations of the basic protocol while using only
h + k + |E| queries instead of 3|E| queries.

When k = h, and |E| = [k]× [k], our verifier makes k2 iterations of the basic protocol by making
only 2k + k2 queries (instead of 3k2).

5.1.2 Decoding Procedure

The decoding procedure D is based on the fact that, by Parseval’s identity, the squares of the Fourier
coefficients Âα’s and B̂β’s sum to 1 and can hence be thought of as a probability distribution.

For a table A : {1,−1}n → {1,−1}, the decoding procedure is defined as follows:

• Pick a set α ⊆ [n] with probability Â2
α; pick a random element a ∈ α, return a. (Notice that

this is well defined only when Â∅ = 0, which is true for a folded A.)

3Theorem 9 was stated in this form in [ST98] and was a generalization of previous work by several people. We do
not have space to give proper references here, but a history of related results can be found in [ST98].
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InnerG,ε(A,B1, . . . , Bk, π1, . . . , πk)
Sample independently f1, . . . , fh from UFn,

g1, . . . , gk from UFm

and, for every (i, j) ∈ E, ei,j from SFε,m

if for all (i, j) ∈ E
A′(fi)B

′
j(gj) = B′

j((fi ◦ πj)gjei,j)

then accept
else reject

Figure 1: The inner verifier.

5.2 Analysis

Let us fix parameters h, k, graph G = ([h], [k], E), parameter ε > 0, and consider a possible input
(A,B1, . . . , Bk, π1, . . . , πk) for InnerG,ε. To simplify notation, we assume that A,B1, . . . , Bk are
already the virtual folded tables accessed by the verifier.
The acceptance probability of the inner verifier is given by the following proposition.

Proposition 10

Pr[InnerG,ε(A,B1, . . . , Bk, π1, . . . , πk) accepts ] =

1

2|E|
∑

S⊆E



 E
{fi}h

i=1,{gj}k
j=1,{ei,j}(i,j)∈E





∏

(i,j)∈S

A(fi)Bj(gj)Bj((fi ◦ πj)gjei,j)









Where fi are sampled according to UFn, gj according to UFm, and ei,j according to SFε,m.
We will introduce some auxiliary notation to simplify the expression. In particular, we define
t(f, g, j) = E

e
[A(f)Bj(g)Bj((f ◦ πj)ge)], where e is sampled according to the distribution SFε,m.

We also define, for any set S ⊆ E,

TS = E
f1,...,fh,g1,...,gk





∏

(i,j)∈S

E
ei,j

[A(fi)Bj(gj)Bj((fi ◦ πj)gjei,j)]



 = E
f1,...,fh,g1,...,gk





∏

(i,j)∈S

t(fi, gj , j)





Then we have

Pr[InnerG,ε(A,B1, . . . , Bk, π1, . . . , πk) accepts ] =
1

2|E|
∑

S⊆E

TS

Our goal is to show that whenever, for a non-empty S, TS is noticeably large, then the decoding
procedure has a noticeable probability of success. A result from [ST98] gives such an analysis for
the case where S is a subset of [2]× [d] for some d. In our analysis we will need the special case of
the analysis of [ST98] restricted to S = [2] × [d].

Lemma 11 ([ST98]) Let d ≥ 1 be fixed. For every δ, there is a δ′ = poly(δ) such that if T[2]×[d] ≥
δ then the decoding procedure succeeds with probability at least δ′.

Lemma 12 Let S ⊆ [h] × [k] be non-empty. Then for every δ, there is a δ′ = poly(δ) such that if
TS > δ then the decoding procedure succeeds with probability at least δ′.
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Proof: Up to renaming of the variables, we can assume that S contains a pair of the form (1, j),
and furthermore that all the pairs of the form (1, j) are precisely (1, 1), . . . , (1, d) where d ≥ 1.

Define

F (f1, . . . , fk, g1, . . . , gk) =
∏

(1,j)∈S

t(f1, gj , j) =
d
∏

j=1

t(f1, gj , j)

and
G(f2, . . . , fk, g1, . . . , gk) =

∏

(i,j)∈S,i6=1

t(fi, gj , j)

so that we have

TS = E
f1,...,fh,g1,...,gk

F (f1, . . . , fh, g1, . . . , gk)G(f2, . . . , fh, g1, . . . , gk)

using Corollary 2 we get that

TS ≤
√

E
f ′
1,f ′

2,f2,...,fk,g1,...,gk

F (f ′
1, f2, g1, . . . , gk)F (f ′

2, f2, g1, . . . , gk)

=
√

E
f ′
1,f ′

2,g1,...,gd

∏

i∈[2],j∈[d]

t(f ′
i , gj , j)

It follows that
δ < TS ≤

√

T[2]×[d]

and using Lemma 11 we can conclude that there exists a δ′ = poly(δ2) = poly(δ) such that the
decoding procedure succeeds with probability at least δ′.

2

We can now prove the main result of this section. Notice that Theorem 1 is a consequence of
Theorem 9 and of the following theorem (with an appropriate setting of parameters).

Theorem 13 InnerG,ε is a ((1 − ε)|E|, 2−|E|, h + k + |E|)-good k-inner verifier.

Proof: [Of Theorem 13] Clearly InnerG,ε makes h + k + |E| queries and accepts valid proofs with
probability is (1− ε)|E|. Furthermore if its acceptance probability is at least 2−|E| + δ, then there is
a non-empty S such that TS > δ, so that there is a δ′ (depending only on δ) such that the decoding
procedure succeeds with probability at least δ′. 2

6 Hypergraph Tests

It is natural to extend the family of tests, described in section 3, by associating a linearity test
LinTestHypergraph(H) with every hypergraph H = ([k], E) on k vertices, in the following way:

LinTestHypergraph(H; f)
Choose uniformly at random x1, . . . , xk ∈ {1,−1}n

if
∏

i∈T f(xi) · f(
∏

i∈S xi) = 1 for all T ∈ E
then accept
else reject

Our intent in this section is to show, that using hypergraph tests would not improve the lower
bound of 1 + Ω

(

1/
√

q
)

amortized complexity for q queries.
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We will do so, by describing an explicit function fn : {1,−1}n → {1,−1}, which has
small Fourier coefficients, and for any hypergraph H the acceptance probability of the test
LinTestHypergraph(H) on fn is large. In boolean notation, the function fn(x) = fn(x1...xn) will be
just (x1 ∧ x2) ⊕ (x3 ∧ x4) ⊕ ....

Definition 14 Set g : {1,−1}2 → {1,−1} by g = 1 on all inputs but (−1,−1), where g = −1.
(Note that g is just a transcription of a boolean boolean AND) to the 1,−1 notation.

The function fn : {1,−1}n → R is set to be fn(x1, . . . , xn) = g(x1, x2)g(x3, x4) · · · g(xn−1, xn)
if n is even and fn(x1...xn) = fn−1(x1, . . . , xn−1) if n is odd.

We point out, that max |f̂ | = max f̂ = 2−⌊n/2⌋. since max ĝ = 1
2 . In the rest of this section we

will prove the following result.

Proposition 15 For any hypergraph H and linearity test LinTestHypergraph(H), with free bit com-
plexity k and query complexity q, holds:

Pr[LinTestHypergraph(H; fn) accepts ] ≥ max{2k−q, 2−(k
2)} .

First, note that, similarly to (4),

Pr[LinTestHypergraph(H; f) accepts ] =
1

2|E|
∑

S⊆E

E
x1,...,xk

[

∏

T∈S

∏

i∈T

f(xi) · f
(

∏

i∈T

xi

)]

(5)

In order to simplify this expression, we need to introduce some notation. Let F = {{1}, ..., {k}} ∪
E := {F1...Fq}, be a family of all the vertices and the edges of H, viewed as subsets of {1, . . . , k}.
Let A be a k × q zero-one matrix whose q columns are given by F1...Fq , which we view as 0, 1
vectors of length k (in particular, the first k columns of A form the k× k identity matrix). Let uT ,
for T ∈ E be a zero-one vector of length q which is 1 if Fi is either T or a singleton, corresponding
to a vertex than T passes through; and 0 otherwise.
For R ⊆ 2[k], let E(f,R) := E

x1,...,xk

[
∏

R∈R f (
∏

l∈R xl)] .

Let U = Span (uT )T∈E be a d-dimensional subspace of Zq
2, then for a boolean f , (5) is just

∑

S⊆E

E
x1,...,xk







∏

i :
⊕

T∈S
uT (i)=1

f





∏

l∈Fi

xl










=

1

2d

∑

u=(u(1),...u(q))∈U

E
x1,...,xk





∏

i : u(i)=1

f





∏

l∈Fi

xl







 =

1

2d

∑

u=(u(1),...u(q))∈U

E(f, {Fi : u(i) = 1}). (6)

Our goal is to show that many of the terms E(f, {Fi : u(i) = 1}) are 1.

Definition 16 A family R ⊆ 2[k] is an “even cover”, iff any element i ∈ {1, . . . , k} and any pair
of elements i 6= j ∈ {1, . . . , k} are covered an even number of times by the sets R ∈ R.

Lemma 17 Let R ⊆ 2[k]. If R is an even cover, than E(fn,R) = 1. For any R, E(fn,R) ≥ 0.

Proof: Let R ⊆ 2[k]. Observe, that for any integer m and function f : {1,−1}m → R, the
average E(f,R) := E

x1,...,xk∈{1,−1}m
[
∏

R∈R f (
∏

l∈R xl)] is well-defined. The definition of fn as a

11



product of ⌊n/2⌋ disjoint copies of g implies E(fn,R) = (E(g,R))⌊n/2⌋. Therefore, it suffices to
prove the lemma for g.

We start with the first item, and claim that for any choice of x1, . . . , xk ∈ {−1, 1}2 holds
∏

R∈R g (
∏

l∈R xl) = 1.
For this purpose, instead of working with functions from {−1, 1}n to {−1, 1}, it will be conve-

nient to revert to boolean notation, and to deal with functions from {0, 1}n to {0, 1}.
Let xi = (ai, bi) ∈ Z2, for i = 1...k. Recalling the definition of g as the boolean product, we

want to show, that
∑

R∈R
(

∑

j∈R aj

)

· (∑l∈R bl) = 0 (in Z2), for any choice of a1...ak, b1...bk ∈ Z.

For i = 1...k, let Ni be the number of times that i is covered by the sets in R, and for i 6= j let
Mij be the number of times the pair i, j is covered by the sets in R. Opening up the brackets, we
see that

∑

R∈R





∑

j∈R

aj



 ·




∑

l∈R

bl



 =
t
∑

i=1

Ni ai · bi +
∑

1≤i6=j≤t

Mij ai · bj = 0,

since in our case all the numbers Ni and Mij are even.
We pass to the second item of the lemma. We have to show, that the boolean function

h(a1...ak, b1...bk) :=
∑

R∈R





∑

j∈R

aj



 ·




∑

l∈R

bl





has at least as many zeroes as it has ones on Zk
2 × Zk

2. Note, that for any fixed choice of a1...ak,
the function h becomes a linear functional on Zk

2 . The claim follows, since a linear functional is
zero with probability either 1 (if it is identically zero) or 1

2 . 2

Proof: First, we show the set W of vectors u ∈ U , such that the family R = {Fi : u(i) = 1} is
an even cover, to be a linear subspace of U . For this purpose, consider the following transformation

Φ from Zk
2 to Z

k(k+1)/2
2 : For v ∈ Zk

2, the vector Φ(v) will be indexed by pairs (i, i) and (i, j), for
1 ≤ i < j ≤ k, where Φ(v)ii = vi · vi = vi, and Φ(v)ij = vi · vj . The multiplication is in Z2.

The point is in the following simple fact: A family R ⊆ 2[k] is an even cover of {1,. . . ,k} iff
∑

R∈R Φ(R) = 0. The summation here is in Z
k(k+1)/2
2 .

Let Φ(A) be the (k(k + 1)/2)× q zero-one matrix with columns Φ(F1)...Φ(Fq), and let V ⊆ Zq
2

be the row space of Φ(A). We have:

W =

{

u ∈ U :
∑

i

u(i)Φ(Fi) = 0

}

= U ∩ V ⊥, (7)

where V ⊥ ⊆ Zq
2 denotes the linear subspace of vectors orthogonal to V .

Therefore, we have to solve the question of finding a lower bound for the size of the intersection
U ∩ V ⊥ of two subspaces.

Let X ⊆ Zq
2 be the subspace spanned by the first k rows of Φ(A). Note, that these are, by

the definition of Φ, precisely the rows of A itself, and, in particular, dim X = k. We claim
that U and V ⊥ are subspaces of X⊥. This is immediate for V ⊥, since X ⊆ V . As for U , recall
U = Span {uT }T∈E . Therefore, it is enough to show that for any T ∈ E holds uT ∈ X⊥, which
just restates the obvious fact that the sets {{i} : i ∈ T} and T itself, cover every vertex in {1...k}
an even number of times.

We recall two simple facts from linear algebra: (1) For any subspace X of Zq
2 holds dim(X) +

dim(X⊥) = q.
(2) For any two subspaces Y and Z of a space S holds dim (Y ∩Z) ≥ dim (Y )+ dim (Z)− dim (S).
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Therefore we have two lower bounds on dim (U ∩ V ⊥): Trivially,

dim (U ∩ V ⊥) ≥ 0,

on the other hand,

dim (U ∩ V ⊥) ≥ d + (q − k(k + 1)/2) − (q − k) = d − k(k − 1)/2.

2

Lemma 18 The number of vectors u ∈ U , such that the family R = {Fi : u(i) = 1} is an even

cover, is at least max{1, 2d−(k
2)}.

Lemma 19
d ≤ q − k.

Proof: In the notation of the proof of lemma 18, we have shown that U is a subspace of X⊥.
Therefore:

q − k = dim (X⊥) ≥ dim (U) = d.

2

Proposition 15 now follows from lemma 17, lemma 18, lemma 19 and (6).
We are now ready to state and prove the main result of this section.

Theorem 20 For any hypergraph H the amortized query complexity of LinTestHypergraph(H) is
at least 1 + Ω

(

1/
√

q
)

.

Proof: The theorem follows from proposition 15, by checking the two cases: q ≤ k(k + 1)/2, or
q > k(k + 1)/2. 2
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