
Improved Non-approximability Results for

Vertex Cover with Density Constraints

Andrea E.F. Clementi

?

and Luca Trevisan

??

Dipartimento di Scienze dell'Informazione. Universit�a di Roma \La Sapienza". Via

Salaria 113, 00198 Roma, Italy. Email: fclementi,trevisang@dsi.uniroma1.it

Abstract. We provide new non-approximability results for the restric-

tions of the Min Vertex Cover problem to bounded-degree, sparse

and dense graphs. We show that, for a su�ciently large B, the recent

16/15 lower bound proved by Bellare et al. [3] extends with negligible

loss to graphs with bounded degree B. Then, we consider sparse graphs

with no dense components (i.e. everywhere sparse graphs), and we show

a similar result but with a better trade-o� between non-approximability

and sparsity. Finally we observe that the Min Vertex Cover problem

remains APX-complete when restricted to dense graph and thus recent

techniques developed by Arora et al. [1] for several Max SNP problems

restricted to \dense" instances cannot be applied.

1 Introduction

Given the common belief that NP-hard optimization problems cannot be solved

exactly in polynomial time, much research has been devoted in the past twenty

years to derive e�cient approximation algorithms, i.e. algorithms that deliver

solutions whose value is guarantee to be within some multiplicative factor from

the optimum.

In order to evaluate the performance guarantees of such approximation al-

gorithms, it is important to understand how far we can go, i.e. to prove, for any

approximable problem, which is the best approximation achievable in polynomial

time.

Until 1991, only a very few non-approximability results were known, usually

with ad hoc techniques that did not generalize to other problems. In 1991, Feige

et al. [10] showed that results about Probabilistic Checking of Proofs (PCP in

short - this terminology has been introduced later by Arora and Safra [2]) for

NP languages imply non-approximability results for the Max Clique problem.

Roughly speaking, the key ingredient of a proof checking system is a proba-

bilistic polynomial-time oracle Turing machine (commonly called veri�er) which,
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given a language L and an instance x, e�ciently checks the correctness of any

\proof" � (i.e. the oracle) for the \Theorem" x 2 L. Feige et al. established a

rather surprising connection between the e�ciency of the veri�er for the lan-

guage Sat and the hardness of approximating the Max Clique problem. Such

a relation is sometimes called the FGLSS reduction after the names of its dis-

coverers.

Using this new approach, in a short while, a lot of increasingly strong non-

approximability results were given for several problems. The search for further

non-approximability results has recently developed into an amazingly broad �eld

of computational complexity. Several such results are surveyed in a compendium

mantained by Crescenzi and Kann [6]. We remark that two major sources of im-

provement have played a key role in virtually all the recent non-approximability

results.

On the one hand, there have been several improvements in the e�ciency of

veri�ers. The last achievement in this direction, due to Hastad [14], has been a

veri�er for Sat implying that Max Clique is not n

1=2��

-approximable for any

� > 0.

On the other hand, much recent work has been devoted to improve the re-

ductions from veri�ers to optimization problems and those between problems

themselves. Indeed, improved reductions yielded several recent breakthrough in

approximability theory. Recent non-approximability results obtained via e�cient

reductions include Feige's tight result for Min Set Cover [9] and Bellare et

al.'s results for Max Cut and Max Sat [3].

This paper follows the latter approach to investigate the approximability of

the Min Vertex Cover problem with density constraints.

TheMin Vertex Cover problem is a fundamental graph problem and was

proved to be NP-hard in the original Karp's paper [15]. It is known to be NP-

hard even when restricted to graphs with bounded degree [11], and this gives a

clear motivation in the study of its approximability in both the general and the

restricted case. In the general case, a very simple 2-approximate algorithm has

been known for twenty years [13], and no better approximation algorithm has

been found until now. Slightly better approximation guarantees are achievable

over bounded-degree graphs [18, 4]. On the negative side, the Min Vertex

Cover problem has been shown to be Max SNP-hard even when restricted

to graphs with bounded degree by Papadimitriou and Yannakakis [19]. Their

reduction is fromMax 3-Sat and uses explicit construction of expander graphs.

In [20] a somehow simpli�ed version of such reduction is presented, that gives

hardness results even for graphs of maximum degree 3 (see also [4]). Combining

this reduction, the non-approximability results by Bellare et al. [3] and the best

known explicit construction of expanders [17], one can show that Min Vertex

Cover is not 1.00036-approximable on bounded degree graphs.

Bellare et al. [3] give a 1.0688 lower bound for the general Min Vertex

Cover problem by using a di�erent technique, namely, they reduce directly

from the computation of a veri�er using a somehow \complementary" version of

the FLGSS reduction [10]. However, their method does not apply when classes



of graphs in which a �xed bound on the maximumdegree or some other density

constraints are considered.

Since better approximation algorithms are known to exist for the bounded

degree case, and since there is such a huge gap (i.e. 1.0688 vs 1.00036) between

the lower bound for the general case and the lower bound for the bounded-degree

case, one may be tempted to conjecture that indeed the bounded-degree version

is strictly easier to approximate.

Our results

We provide a new characterization of the graphs resulting from the reduction

from PCP veri�ers to Min Vertex Cover [3], and we show that such graphs

can be seen as the union of bipartite complete graphs. We then give a construc-

tion of a particular kind of expanders (denoted as switchers). This technical

result permits us to \sparsify" the bipartite complete graphs still preserving the

connectivity property required by the reduction. This allows us to show the fol-

lowing hardness result forMin Vertex Cover over bounded degree graphs by

directly reducing from PCP veri�ers: if P 6= NP then the Min Vertex Cover

problem is not (1:0688 � �)-approximable even when restricted to graphs with

maximum degree O(1=�

3

). Actually, our result is fairly more general. We show

that any lower bound forMin Vertex Cover proved using current techniques

can be extended with negligible loss to the bounded-degree case, and we pro-

vide a trade-o� between the degree of the graphs and the hardness result. It is

worth noting that the best current non-approximability result for Max 3-Sat

is about 1.038 [3], while we can prove the Min Vertex Cover problem to be

hard to 1.068-approximate over bounded-degree graphs. It should be then clear

that our result cannot be proved using a reduction from Max 3-Sat (such as

Papadimitriou and Yannakakis' reduction) and, consequently, it is necessary to

follow our approach of reducing directly from the veri�er computations.

A better tradeo� can be achieved when a class of sparse graphs, slightly

larger than that of bounded degree graphs, is considered. In particular, using

a better (but probabilistic) construction of \sparse" switchers, we improve the

above result for the class of everywhere sparse graphs i.e. graphs in which the

sparsity condition is satis�ed by any induced subgraph (a formal de�nition will be

given in Section 2): If the polynomial hierarchy does not collapse, then the Min

Vertex Cover problem is not (1:0688� �)-approximable even when restricted

to everywhere O(1=� log 1=�)-sparse graphs. We have to use the hypothesis that

the polynomial hierarchy does not collapse (actually, that NP 6� P/poly) because

we use a non-uniform reduction.

We also note that the reduction appeared in [3] can be slightly modi�ed

in order to show that the Min Vertex Cover problem is APX-complete even

when restricted to dense graphs, and in particular to graphs with large minimum

degree (thus, the \dense" restriction does not admit approximation schemes).

This contrasts with the fact that several other graph problems admit an approx-

imation scheme when restricted to dense instances [1].



Organization of the paper

The rest of the paper is organized as follows. In Section 2, we give some pre-

liminary de�nitions and some previous results. Section 3 is devoted to both the

probabilistic and the deterministic constructions of switchers. In Section 4, we

use these graphs to derive the hardness results for Min Vertex Cover with

density constraints. Finally, in Section 5, we discuss the consequences of our

results for the degree of approximation of other optimization problems. Due to

lack of space, all the proofs are either sketched or omitted. Full details can be

found in the extended version of this paper [8].

2 Preliminaries

Given a graph G(V;E), the Min Vertex Cover problem is to �nd a cover C

of G (i.e. a subset C � V such that C contains at least an endpoint of any edge

in E) whose size (i.e. jCj) is as small as possible. As usual, we will use n and

m to denote the size of V and the size of E, respectively. Furthermore, given a

vertex v 2 V , the degree of v will be denoted as d(v). We study the complexity

of approximating the Min Vertex Cover problem with respect to the density

of the input graphs. In particular, we will make use of the following de�nitions.

1) Bounded degree graphs. A B-bounded degree graph G(V;E) (B > 0) is a

graph such that, for any v 2 V , d(v) � B.

2) Everywhere sparse graphs. An everywhere k-sparse graph G(V;E) is a graph

such that for any subset W � V , the graph induced by W has a number of

edges which is not greater than kjW j.

Given an instance x of an optimization problem and a feasible solution y of

x, we let m(x; y) be the measure (or cost) of the solution

3

. We also denote by

opt(x) the measure of an optimum solution. The performance ratio of y with

respect to x is de�ned as

R(x; y) = max

�

m(x; y)

opt(x)

;

opt(x)

m(x; y)

�

:

Note that the performance ratio is always a number no smaller than one, and is

as close to one as the solution is close to the optimum.

De�nition1 Approximation algorithm. Let r > 1 be any real; a

polynomial-time algorithm is said to be r-approximate for an optimization prob-

lem � if, for any instance x of �, it returns a solution y feasible for x whose

performance ratio is not greater than r.

3

In the Min Vertex Cover problem, instances are graphs, solutions are covers, and

the measure of a solution is its cardinality.



De�nition2 Approximation scheme. An algorithm is said to be an approx-

imation scheme for an optimization problem �, if, for any instance x of � and

a rational r > 1, it returns a solution y feasible for x whose performance ra-

tio is not greater than r. Furthermore, for any �xed r, the running time of the

algorithm is polynomial in the size of x.

The class of optimization problems that admit an r-approximate algorithm

for some r > 1 is denoted by APX, while the class of optimization problems that

admit an approximation scheme is denoted by PTAS. It is possible to de�ne

PTAS-preserving reductions among APX problems and show natural complete-

ness results [7, 16]. In particular, the Min Vertex Cover problem is APX-

complete even when restricted to bounded-degree graphs [19, 16].

In which follows, we summarize the main de�nitions from the theory of prob-

abilistically checkable proofs and its connections with the Min Vertex Cover

problem. Our exposition follows [3].

A veri�er is an oracle probabilistic polynomial-time Turing machine V . Dur-

ing its computation, V tosses random coins, reads its input and has oracle access

to a string � called proof. In particular, let a be the sequence of oracle answers

received by V during the course of its computation on input x and random string

R. If V accepts in that particular circumstance, then we say that (x;R; a) is an

accepting con�guration for V . Let now x be an input and � be a proof. We

denote by ACC[V

�

(x)] the probability over its random tosses that V accepts x

using � as an oracle. We also denote by ACC[V (x)] the maximum of ACC[V

�

(x)]

over all proofs �.

We are interested in several parameters that determine the e�ciency of the

proof checking.

De�nition3 PCP parameters. Let x be a language, and let V be a veri�er

for L. Then we say that

{ V uses r(n) random bits (where r : Z

+

! Z

+

is an integer function) if for

any input x and for any proof �, V tosses at most r(jxj) random coins;

{ V has query complexity q (where q is an integer) if for any input x, any

random string R, and any proof �, V reads at most q bits from �;

{ V has free bit complexity f (where f is a real) if for any input x and any

random string R, there are at most 2

f

set of answers a such that (x;R; a) is

an accepting con�guration for V ;

{ V has soundness s (where s 2 [0; 1] is a real) if, for any x 62 L, ACC[V (x)] � s;

{ V has completeness c (where c 2 [0; 1] is a real) if, for any x 2 L,

ACC[V (x)] � c.

De�nition4 PCP with few free bits. Let L be a language, let 0 < s < c � 1

be any constants, let f > 0 be a real, q be a positive integer and r : Z

+

! Z

+

,

then we say that L 2 FPCP

c;s

[r; f; q] if a veri�er V exists for L that uses

O(r(n)) random bits, has query complexity q, free bit complexity f , soundness

s and completeness c.



The following theorem shows that the existence of e�cient veri�ers for any

NP problem implies a non-approximability result for Min Vertex Cover.

Theorem5 Non-approximability of Min Vertex Cover [10, 3]. Let us

assume that NP � FPCP

c;s

[log; f; q]. Then, for any � > 0, it is NP-hard to

�nd (1��+(c�s)=(2

f

�c))-approximate solutions for the Min Vertex Cover

problem.

Sketch of the proof. Let � be an instance of the Sat problem, and let us consider

the behavior of the veri�er claimed in the theorem with input � and a proof

�. Let r = 2

O(logn)

be the total (polynomial) number of possible random se-

quences accessed by the veri�er. For any of these sequences R, there are at most

2

f

di�erent accepting con�gurations (x;R; a). We say that two con�gurations

(x;R; a) and (x;R

0

; a

0

) are consistent if a proof � exists such that a (respectively,

a

0

) is the set of answers received during the computation V

�

(x;R) (respectively,

V

�

(x;R

0

)). We construct a graph G

�

with a node for each accepting con�gura-

tions (adding dummy con�gurations, we make sure that there are exactly 2

f

r

nodes). Then we put an edge between u and v if and only if u and v are not

consistent. It is possible to show (see [10]) that there is an independent set in

G

�

with at least k nodes if and only if there exists a proof for � that makes the

veri�er accept at least k times over r (i.e. with probability k=r). Observe that

a graph G

�

with n nodes has an independent set with k nodes if and only if it

has a vertex cover with n� k nodes. It follows that if � is satis�able then there

exists a vertex cover in G

�

with at most r(2

f

� c) nodes; otherwise any vertex

cover in G

�

will have at least r(2

f

� s) nodes. Thus, any approximation factor

better than (2

f

� s)=(2

f

� c) would be su�cient to decide the satis�ability of �.

2

In the following, the graphs G

�

arising from the above described construction

will be called FGLSS graphs.

The best current non-approximability result for Min Vertex Cover is

achieved by showing that NP � FPCP

1;0:794

[log; 2; q] for a certain constant q [3].

This implies that it is NP-hard to 1.0688-approximateMin Vertex Cover.

3 Switchers

As described in the Introduction, our technical goal is to replace complete bi-

partite graphs with sparse bipartite graphs which preserve a su�ciently good

\connectivity" property. In which follows we will de�ne this particular kind of

graphs and we will show its existence and how to generate them deterministically.

De�nition6 Switcher. Let � be a positive number. A bipartite graph G =

(V

1

; V

2

; E) is an (n

1

; n

2

; �)-switcher if the following holds:

1. jV

1

j = n

1

, jV

2

j = n

2

;

2. for any vertex cover C of G, either jV

1

� Cj � �jCj or jV

2

� Cj � �jCj.



Roughly speaking, a switcher is such that any of its vertex covers has to

choose almost all the nodes in at least one component. It is worth noting that

a bipartite complete graph over components of size n

1

and n

2

is an (n

1

; n

2

; 0)-

switcher. As will be shown later, bipartite complete graphs are used in the proof

of Theorem 5 because of their perfect switching properties. In the next section

we shall show that, essentially, constant-degree switchers su�ce.

Lemma7 Randomized construction of switchers. A constant c > 0 exists

such that for any � > 0, for any k > c(1=�) log(1=�) and for any n

1

; n

2

, a 2k-

everywhere sparse (n

1

; n

2

; �)-switcher with at most k(n

1

+ n

2

) edges exists.

We shall now consider a deterministic construction that makes use of Ra-

manujan expnaders [17]. This will be used to prove non-approximability results

for graphs with bounded degree under the assumption that P 6= NP.

Lemma8 Deterministic construction of switchers. A constant c > 0 ex-

ists such that, for any � > 0 and any n

1

, n

2

such that n

1

� n

2

, an (n

1

; n

2

; �)-

switcher with maximum degree B � c(n

1

+ n

2

)=n

2

�

2

exists and is constructable

in polynomial time.

4 Hardness results

Theorem9 Non-approximability of Min Vertex Cover-B . Let us as-

sume that NP � FPCP

c;s

[log; f; q]. Then, for any � > 0, a constant B =

O(q

4

=�

3

) exists such that it is NP-hard to (1� �+(c� s)=(2

f

� c))-approximate

the Min Vertex Cover problem on graphs with maximum degree B.

Sketch of the proof. Let � be an instance of Sat, and let us consider the FGLSS

graph G

�

= (V

�

; E

�

). This graph has the following characterization. Let l be

the length of the proof accessed by the veri�er; for any i = 1; : : : ; l, let �[i]

be the i-th bit of the proof �, and let U [i] (respectively, Z[i]) be the set of

nodes of the graph corresponding to accepting con�gurations in which �[i] = 1

(respectively, �[i] = 0). Finally, let u

(j)

i

(respectively, z

(j)

i

) be the j-th element

of U [i] (respectively, of Z[i]) in lexicographic order. Then, we can characterize

the edge set of G

�

as

E

�

=

l

[

i=1

f(u

(j)

i

; z

(k)

i

) : (j; k) 2 K

jU [i]j;jZ[i]j

g ;

where, for any n

1

and n

2

, K

n

1

;n

2

is the edge set of the bipartite complete graph

with vertex components f1; : : : ; n

1

g and f1; : : : ; n

2

g. Note that any node u of V

�

belongs to at most q sets U [i]; Z[i] and that E

�

is indeed the union of bipartite

complete graphs. In the following, intuitively, we shall substitute constant-degree

switchers in place of the bipartite graphs.

Let 
 be a constant to be �xed later such that 1=
 = �(q=�). Let I be the

set of bits i such that jZ[i]j � 
(jZ[i]j + jU [i]j). For any n

1

and for any n

2

, let



S

n

1

;n

2

be the set of edges of an (n

1

; n

2

; 
)-switcher (we assume that the vertex

sets are f1; : : : ; n

1

g and f1; : : : ; n

2

g). We de�ne a graph G

0

�

= (V

�

; E

0

�

) with the

same vertex set of G

�

and with edge set

E

0

�

=

[

i2I

f(u

(j)

i

; z

(k)

i

) : (j; k) 2 S

jU [i]j;jZ[i]j

g :

Using Lemma 8 and the assumption that 
 = �(�=q), it is possible to show that

the degree of G

0

�

is bounded by O(q

4

=�

3

).

Note that G

0

�

is an edge-subgraph of G

�

, thus any vertex cover for G

�

is also

a vertex cover for G

0

�

. It follows that if � is satis�able, then

opt(G

0

�

) � opt(G

�

) � r(2

f

� c) :

Conversely, by exploiting the switching properties of the sets S

n

1

;n

2

, we can

prove that from any vertex cover C

0

in G

0

�

we can recover a vertex cover C in

G

�

such that jCj � jC

0

j(1 + q
) + q
n. Then, if � is not satis�able,

opt(G

0

�

) �

1

1 + q


opt(G

�

)� 
2

f

qr � r(2

f

� s)

�

1

1 + q


� q


2

f

2

f

� s

�

:

By choosing 
 = �(q=�) small enough, the theorem follows. 2

Using the same technique applied in the proof of Theorem 9, we can prove the

following result. The main di�erence with respect to the proof of Theorem 9 is

that this time we use sparse switchers whose existence is guaranteed by Lemma 7.

Theorem10. Let us assume that NP � FPCP

c;s

[log; f; q]. Then, for any � >

0, a constant k = O((q

2

=�) log q=�) exists such that the Min Vertex Cover

problem restricted to everywhere k-sparse graphs is not (1� �+(c� s)=(2

f

� c))-

approximable unless NP � P/poly.

Our techniques also yield results regarding the approximability of the Min

Vertex Cover problem on graphs having a non-linear number of edges.

An interesting consequence of Theorem 9 is the fact that any lower bound

proved with the PCP technique for theMin Vertex Cover problem on general

graphs extends without any loss to graphs with maximum degree bounded by

any (thus even very slow) increasing function.

Corollary 11 (of Theorem 9). Let h : Z

+

! Z

+

be a computable function

such that lim

n

h(n) = 1, let NP � FPCP

c;s

[log; f; q]. Then for any � > 0 the

Min Vertex Cover problem restricted to graphs with maximum degree h(n) is

NP-hard to approximate within 1� �+ (c� s)=(2

f

� c).

The restriction to dense instances (i.e. graphs with 
(n

2

) edges) of optimiza-

tion graph problems often admits an e�cient approximation scheme [1] even if

the general problem is hard to approximate. We note, however, that this is not

the case of Min Vertex Cover.



Theorem12. The Min Vertex Cover problem restricted to dense graphs is

APX-complete. In particular, for any � > 0 there exists a constant r > 1 (de-

pending on �) such that it is NP-hard to r-approximate the Min Vertex Cover

problem restricted to graphs such that any node has degree at least �jV j.

5 Conclusions

In this paper, we have provided new hardness results on the approximation of

Min Vertex Cover when some density constraints on the input graphs are

considered. A further motivation in determining whether or not the presence of

a bound on the number of edges (or on the maximum degree) yields a more

\tractable" restriction of the general problem is due to the fact that the Min

Vertex Cover problem restricted to bounded maximum-degree graphs or to

sparse ones has been used as the starting problem in several reductions to other

important problems such as the restriction of the Min Steiner Tree prob-

lem to metric spaces [5]. This reduction implies a non-approximability result for

Min Steiner Tree that depends on the non-approximability ratio that one

can prove for vertex cover on sparse graphs and on the sparsity of such graphs

(and the additional condition that the sparse graphs are such that the minimum

cover is guaranteed to be a constant fraction of the number of nodes). We com-

puted the non-approximability result for Min Steiner Tree that arises from

[19, 5, 17, 3], and it is about 1 + 1=5600. More generally, there is a linear rela-

tion between the hardness ratio that one can prove for the Max 3-Sat problem

and the consequent hardness ratio implied for the Min Steiner Tree prob-

lem. On the other hand, our present results, combined with the best currently

available veri�er [3], give a worse hardness ratio for the Min Steiner Tree

problem, but the relation between the e�ciency of the veri�er and the hard-

ness for Min Steiner Tree is superlinear, and thus better veri�ers will imply

a larger improvement for the hardness implied by our reduction than for that

implied by Papadimitriou and Yannakakis' reduction. Observe also that our re-

sults are related to the free-bit complexity of the veri�er, and improvements on

this query complexity measure do not imply any improvement for Papadimitriou

and Yannakakis' reduction.
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