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Abstract

We study the approximability of the Maximum Satisfiability Problem (MaXx SAT) and
of the boolean k-ary Constraint Satisfaction Problem (Max kCSP) restricted to satisfiable
instances. For both problems we improve on the performance ratios of known algorithms for
the unrestricted case.

Our approximation for satisfiable MAX 3CSP instances is better than any possible approx-
imation for the unrestricted version of the problem (unless P = NP). This result implies that
the requirement of perfect completeness weakens the acceptance power of non-adaptive PCP
verifiers that read 3 bits.

We also present the first non-trivial results about PCP classes defined in terms of free bits
that collapse to P.

1 Introduction

In the MAX SAT problem we are given a boolean formula in conjunctive normal form (CNF) and
we are asked to find an assignment of values to the variables that satisfies the maximum number
of clauses. More generally, we can assume that each clause has a non-negative weight and that we
want to maximize the total weight of satisfied clauses.

Max SAT is a standard NP-hard problem and a considerable research effort has been devoted
in the last two decades to the development of approximation algorithms for it. An r-approximate
algorithm for MAX SAT (where 0 < r < 1) is a polynomial-time algorithm that given a formula
finds an assignment that satisfies clauses of total weight at least r times the optimum.

Max SAT is also the prototypical element of a large family of optimization problems in which we
are given a set of weighted constraints over (not necessarily boolean) variables, and we want to find
an assignment of values to such variables that maximizes the total weight of satisfied constraints.
Problems of this kind, called constraint satisfaction problems, are of central interest in Artificial
Intelligence. Their approximability properties are of interest in Theory of Computing since they
can express the class MAX SNP [PY91, KMSV99] and the computation of PCP verifiers [ALMT98,
Tre96]; complete classifications of their approximability properties, for the case of boolean variables,
appear in [Cre95, KSW97]. We call MaX kCSP the boolean constraint satisfaction problem where
every constraint involves at most k variables.

In this paper we consider the following restriction of the problem of r-approximating MAx
SAT and Max kCSP: given a satisfiable instance of MAX SAT (resp. Max kCSP), find in
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Table 1: Evolution of the approximation factors for MAX SAT and MaxX 3SAT. The factors
depicted with a * do not appear explicitly in the referenced papers [GW95, FG95].

polynomial time an assignment that satisfies at least a fraction r of the total weight of clauses
(resp. constraints). The issue of approximating constraint satisfaction problems restricted to
satisfiable instances has been considered by Petrank [Pet94], and called approximation problem at
gap location one. Petrank observed that MAX SAT remains MAX SNP-complete when restricted
to satisfiable instances, and proved that the same is true for other problems, such as MAX 3-
COLORABLE SUBGRAPH and MAX 3-DIMENSIONAL MATCHING. More recently, Khanna, Sudan and
Williamson [KSW97] proved that for any MAX SNP-complete constraint satisfaction problem for
which deciding satisfiability is NP-hard, the restriction to satisfiable instances remains MAX SNP-
complete.

In partial contrast with the results of Petrank and of Khanna et al. we prove that restricting
Max SAT and MAX kCSP to satisfiable instances makes the problems somewhat easier, since
we can exploit satisfiability to develop new algorithms with improved approximation guarantees.
Our algorithms can also be used to show that certain classes defined in terms of probabilistically
checkable proofs with bounded query bit or free bit complexity are contained in P.

We now discuss our results in more detail.

The Maximum Satisfiability Problem. The MAX SAT problem appears in a paper of John-
son [Joh74] which is the first paper where the term “approximation algorithm” was introduced.
Johnson proved that his algorithm was 1/2-approximate. It has been recently showed that John-
son’s algorithm is indeed 2/3-approximate [CFZ97]. In the last five years, several improved approx-
imation algorithms for MAX SAT and its restricted versions MAX 2SAT and Max 3SAT have
been developed; we summarize such previous results in Table 1. There is a corresponding history
of continuous improvements in the non-approximability; we do not mention it here (the interested
reader can find it in [BGS98]), and we only recall that the best known hardness is 7/8 + ¢ due to
Hastad [Has97], and it still holds when restricting to satisfiable instances with exactly three literals
per clause.

OUR RESULTS. We present a polynomial-time algorithm that, given a satisfiable MAx SAT in-
stance, satisfies a fraction .8 of the total weight of clauses, and an algorithm that, given a satisfiable
MAaxX 3SAT instance, satisfies a fraction .826 of the total weight of clauses.
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Table 2: Evolution of the approximation factors for MAX 3CSP with and without the satisfiability
promise.

SOURCE OF OUR IMPROVEMENT. In both cases, we show how to reduce the given instance to
an instance without unit clauses. The reduction sequentially applies a series of substitutions of
values to variables. The .826 approximation for MAX 3SAT then follows by adapting the analysis
of [TSSW96] to the case of no unit clauses. The .8 approximation for MAX SAT involves the use
of known algorithms, with a couple of small changes.

Maximum 3-ary Constraint Satisfaction Problem (and 3-query PCP). The PCP Theo-
rem states that membership proofs for any NP language can be probabilistically checked by a veri-
fier that uses logarithmic randomness, has perfect completeness, soundness' 1/2 and non-adaptively
reads a constant number of bits from the proof. Since its appearance, there was interest in under-
standing the tightest possible formulation of the PCP Theorem, especially in terms of how low the
number of query bits could be made.

It is easy to see that, with two queries, it is impossible to get perfect completeness, while with
3 it is possible (see e.g. [BGS98]). The challenging question arises of determining which is the
best soundness achievable with three bits and perfect completeness. The state of the art for this
question is that NP can be checked with soundness .75 + ¢ [Has97], while this is impossible with
soundness .367 [TSSW96|, unless P = NP. Furthermore, it is possible to check NP with three
queries, soundness .5 + ¢ and completeness 1 — ¢ for any € > 0 [Has97]. The latter result implies
that MAax 3SAT is hard to approximate within 7/8 4+ ¢, but not when restricted to satisfiable
instances. A different and more complicated proof was needed to prove the 7/8 + ¢ hardness result
also for satisfiable instances [Has97]. It was an open question whether soundness .5+ ¢ is achievable
with three queries and perfect completeness.

OUR RESULT. We show that for PCP verifiers of NP languages with three non-adaptive queries and
perfect completeness, the soundness is bounded away from .5, and has to be at least .514 (unless
P = NP).

SOURCE OF OUR IMPROVEMENT. We give a .514-approximate algorithm for satisfiable instances
of MAX 3CSP. A preprocessing step reduces the instance to an instance where any constraint has
at least 3 satisfying assignments and each satisfying assignment is consistent with the set of linear
constraints. We then apply two algorithms and take the best solution. In one algorithm, we reduce
all the constraints to 2SAT using gadgets, extending an idea of [TSSW96]. In the other algorithm
we take a random solution for the set of linear constraints.

'Roughly speaking, a verifier has perfect completeness if it accepts a correct proof with probability 1, while the
soundness is the probability of accepting a wrong proof (see Definition 7).



Maximum k-ary Constraint Satisfaction Problem. The approximability of the Max kCSP
problem is an algorithmic rephrasing of the accepting power of PCP verifiers that non-adaptively
read k bits of the proof. The restriction to satisfiable instances of MAX kCSP corresponds to the
restriction to non-adaptive PCP verifiers with perfect completeness. The requirement of perfect
completeness and non-adaptiveness appeared in the first definitions of PCP and in several subse-
quent papers [AS98, ALM ™98, BGLR93, BS94]. Recently, adaptiveness (with perfect completeness)
was used in [BGS98], and a verifier without perfect completeness (but non-adaptive) appears in
[Has97]. The latter result was of particular interest, because it formerly appeared that “current
techniques” could only yield PCP constructions with perfect completeness. The study of which
PCP classes lie in P was initiated in [BGS98|. The best known approximation for Max kCSP, for
general k, is 2! [Tre96].

OUR RESULTS. We improve the approximation to (k 4 1)27* for satisfiable instances.

SOURCE OF OUR IMPROVEMENT. We use again substitutions (but of a more general kind) as a
preprocessing step. The substitutions reduce the problem to an instance where any k-ary constraint
has at least k + 1 satisfying assignments, and any such assignment is consistent with the set of
linear constraints. We then take a random feasible solution for the set of linear constraints, and
this satisfies each constraint with probability at least (k 4 1)27*.

Free bits. Besides the number of query bits, there is another very important parameter of the
verifier that is studied in the field of probabilistic proof-checking: the number of free bits. It is a
relazation of the notion of query bit: if a verifier queries ¢ bits on the proof, than it uses at most f
free bits, but a verifier using f free bits can read arbitrarily many bits. The interest in this parameter
(implicit in [FK94] and explicitly introduced in [BS94]) lies in the fact that the “efficiency” of the
reduction from PCP to MAX CLIQUE [FGL96] depends only on the number of free bits of the
verifier (indeed, it depends only on the amortized number of free bits [BGS98], but we will not
exploit the latter notion here). Since the same reduction is used to derive the best known hardness
result for MIN VERTEX COVER, further improvements in the hardness of approximating MIN
VERTEX COVER could be obtained by improved PCP constructions with low free bits complexity.
Roughly speaking, a verifier uses f free bits if, after making its queries to the proof, there at most
2/ possible answers that make him accept (this is why f cannot be larger than the number of query
bits.) This definition has been used almost always, including in Hastad’s papers on Max CLIQUE
(where he used the free bit-efficient complete test.) One exception is [BGS98|, where an adaptive
version of the definition of free bits is used. We also mention that the free bit parameter has almost
always been used for verifiers with perfect completeness (Bellare et al. [BGS98] also show that one
can always reduce the free bit complexity by reducing the completeness.) However, the currently
best hardness result for MIN VERTEX COVER is due to Hastad [Has97] and uses a verifier with low
free bit complexity and completeness 1 — ¢, for any € > 0.

Even in the simple case of the non-adaptive definition and of perfect completeness there were
basically no result about PCP classes with low free bit complexity collapsing to P. The only result
was that, with perfect completeness, it is impossible to characterize NP with only 1 free bit, while
log 3 free bits are sufficient [BGS98|. It has been conjectured that with log 3 free bits and perfect
completeness it is possible to achieve any soundness.

OUR RESULT. Under the weak (non-adaptive) definition of free bits, we prove that a verifier with
perfect completeness, that uses f free bits, and whose soundness is less than 2/ / 2271 can only
capture P.

SOURCE OF OUR IMPROVEMENT. We adapt the previously described reductions and algorithms.



Independent and Subsequent Results. In an independent and simultaneous research, Karloff
and Zwick [KZ97] found a new semidefinite relaxation of the MAX 3SAT problem, and a new way
of analysing the randomized rounding of solutions of the relaxation. As a consequence of their
new technique, they were able to present a (7/8 — ¢)-approximate algorithm for MAx 3SAT, for
any € > 0. Such an algorithm is the best possible, since we recall that (7/8 + ¢)-approximating
Max 3SAT is NP-hard [Has97]. More recently, Zwick [Zwi98] applied the techniques of [KZ97]
to the study of Max 3CSP, and came up with a 1/2-approximate algorihtm, which is again the
best possible. Using ideas from the present paper, Zwick [Zwi98] also improved our approximation
of satisfiable instances of MAXx 3CSP, developing a 5/8-approximate algorithm for this restricted
problem. Guruswami et al. [GLST98] applied Zwick’s ideas to MAX 4CSP, and obtained a .33-
approximate algorithm for this problem (which improves and generalize our .3125-approximation
for satisfiable instances). Our results for satisfiable instances of MAx kCSP are still (as of February
1999) the best known for k > 5.

Organization of the Paper. Basic definitions on constraint satisfaction problems, PCP, and
gadgets are given in Section 2. We prove a simple combinatorial result in Section 3. We present the
MAX SAT approximation algorithms in Section 4 and the MAxX kCSP approximation algorithms
(as well as the implications with PCP classes) in Sections 5 and 6. The free bit parameter is
discussed in Section 7.

2 Preliminaries

For an integer n, we denote by [n] the set {1,...,n}. We see elements of {0,1}" as vectors in the
vector space GF'(2)". We denote with the same symbol & both the boolean xor between elements
of {0,1} and the bitwise xor between elements of {0,1}". We use boldface letters to denote elements
of {0,1}"; we also denote by 0 = (0,...,0) (resp. 1 = (1,...,1)) the element of {0,1}" all whose
entries are 0 (resp. 1), where n will depend on the context. Linear equations will always be linear
equations on GF(2).

2.1 Constraint Satisfaction

We begin with a definition of constraint satisfaction problem, that unifies the definitions of all the
problems we are interested in.

Definition 1 A (k-ary) constraint function is a boolean function f: {0,1}* — {0,1}.

When it is applied to variables 1, ...,z (see the following definitions) the function f is thought
of as imposing the constraint f(z1,...,z;) = 1.

Definition 2 A constraint family F is a finite collection of constraint functions. The arity of F
is the maximum number of arqguments of the functions in F. A constraint C' over a variable set

T1,... Ty is a pair C = (f,(i1,..., i) where f : {0,1}¢ — {0,1} is a constraint function and
i; € [n] for j € [k]. The constraint C is said to be satisfied by an assignment a = ay,...,an to
def

1, ..., &y if Clar,...,an) = f(aiy,...,a;,) =1. We say that constraint C is from F if f € F.

We will also write a constraint (f, (i1,...,)) as (f(@i,...,xi,) = 1).



Definition 3 (Satisfying table) A satisfying table for a constraint function f: {0,1}* — {0,1}
with s satisfying assignments is a s X k boolean matrixz whose rows are the satisfying assignments

of f.

Sometimes, we will blur the important distinction between a boolean function and a constraint,
e.g. we will talk about the satisfying table of a constraint.

The satisfying table is not unique since the matrix representation imposes an order to the
assignments. Even if it would be more natural to represent the satisfying assignments as a set of
vectors rather than a matrix, the latter representation is more suitable for combinatorial arguments,
especially because we can see it as a set of k vectors of length s (see Section 3).

Definition 4 (Constraint families) A literal is either a variable or the negation of a variable.
We define the following constraint families:

kCSP: the set of all h-ary functions, h < k.
kCSP?: the set of all k-ary functions with i satisfying assignments.
ESAT: the set of all functions expressible as the or of at most k literals.

SAT: the set of all functions expressible as the or of literals.

We also sometimes see the constants 0 and 1 as zero-ary functions.

We say that a constraint function f(x1,...,xzy) is linear if either f(x1,...,z;) = 1@ ... Dxg
or f(x1,...,x2) = 1®x1® ... Pxg. (Note that linear functions are also, more appropriately, called
affine in other papers, e.g. in [KSW97].)

Definition 5 (Constraint satisfaction problems) For a function family F, MAX F is the op-
timization problem whose instances consist of m weighted constraints from F, on n variables, and
whose objective is to find an assignment to the variables which maximizes the total weight of satisfied
constraints.

Note that Definitions 4 and 5 give rise to the problems MAX SAT, MAx 3SAT, and MAX kCSP,
that are defined in the standard way. A constraint from SAT is also called a clause.

Observe that MAX F is equivalent to MAX FU{0, 1}, since adding constraints that are always
false does not change a problem, while adding constraints that are always true can only make
the problem easier to approximate. For this reason, we will always assume that O-constraints and
1-constraints can occur in any MAX F problem.

Given an instance ¢ of a constraint satisfaction problem, we denote by LIN () the set of linear
constraints of .

GL1-MAX F? is the restriction of MAX F to instances where all the constraints are simultane-
ously satisfiable.

We say that a maximization problem is r-approximable r < 1 if there exists a polynomial-time
algorithm that, for any instance, finds a solution whose cost is at least r times the optimum (such
a solution is said to be r-approximate).

2GL1 stands for “Gap Location 17, which is the terminology of Petrank [Pet94].



2.2 Gadgets
We also need the definition of gadgets.

Definition 6 (Gadget [BGS98]) For a € R, a function f : {0,1}¥ — {0,1}, and a constraint
family F: an a-gadget reducing f to F is a finite collection of constraints C; from F over primary

variables x1,...,7} and auxiliary variables yi,...,y,, and associated real weights w; > 0, with
the property that, for boolean assignments a to x1,...,xr and b to y1,...,Yyn, the following are
satisfied:
(Va: f(a)=1) (vb): Y w;Cj(a,b) < a, (1)
J
(Va: f(a)=1) (Ib) : ijCj(a, b) = a, (2)
J
(Va: f(a)=0) (vb): Y w;Cj(a,b) < a—1 (3)
J

Gadgets can be used in approximation algorithms in the following way [TSSW96]. Assume we
have a satisfiable instance of a constraint satisfaction problem, with constraints of total weight m,
and there is a-gadget reducing each such constraint to 2SAT. Then we can build a 2SAT instance
1 whose optimum is am and such that any solution of cost ¢ for 1 has cost at least ¢ — (a« — 1)m
for the old instance.

In a more general setting, assume that, for ¢ = 1,...,k, we have type-i constraints of total
weight w;, and that there exists an «;-gadget reducing type-i constraints to 2SAT. Assume also
that the whole CSP instance be satisfiable. Then the optimum of the instance is ), w;; applying
all the gadgets we have a 2SAT instance ¥ whose optimum is ), a;w;.

Applying a (-approximate algorithm to i, we obtain a solution for the original instance whose
cost is at least

Zﬂaiwi =Y (ai—Dw; =Y (8= (1= B) (i — D)w; .

7 7

In the following, we will refer to such kind of reductions as the TSSW technique (see Section 2.5.2
below). The FGW [GW95, FG95] algorithm for MAX 2SAT is .931-approximate.

2.3 Probabilistically Checkable Proofs
We now talk about PCP classes and their relation with the approximability of MaAax kCSP.

Definition 7 (Restricted verifier) A verifier V' for a language L is a probabilistic polynomial-
time Turing machine that during its computations has oracle access to a string called proof. We
denote by ACC[V™ (x| the probability over its random tosses that V' accepts x when accessing proof
m. We also denote by ACC[V (x] the mazimum of ACC[V™(z] over all proofs . We say that

e I has query complexity q (where q is an integer) if for any input x, any proof w, and any
outcome of its random bits, V reads at most q bits from m;

e V has soundness s if, for any x ¢ L, ACC[V (z] < s;

e V has completeness c if, for any x € L, ACCI[V (x| > c¢. V has perfect completeness if it has
completeness 1.



Definition 8 (PCP classes) L € PCP_[log,q] if L admits a verifier V with completeness c,
soundness s, query complexity q, and that uses O(logn) random bits, where n is the size of the
input. We say that L € naPCP, [log,q] if V', in addition, queries the q bits non-adaptively.

Theorem 9 ([ALM™198]) If aL1-Max kCSP is r-approzimable, then naPCPq 4[log, k] C P for
any s <r.

Note that the relation between PCP classes and MAX kCSP problems holds also in the case of
non-perfect completeness and for adaptive verifiers.

Theorem 10 ([Tre96]) If MaX kCSP is r-approzimable, then PCP. [log, k] C P for any c/s < r.
We define free bits as a property of boolean functions. There are two possible definitions.

Definition 11 A function f : {0,1}9 — {0,1} uses f non-adaptive free bits if it has at most 2/
satisfying assignments. It uses f adaptive free bits if it can be expressed by a DNF with at most
27 terms such that any two terms are inconsistent.

It is easy to see that if a function uses f non-adaptive free bits that it also uses at most f adaptive
free bits. On the other hand, there are functions using 1 adaptive free bit and requiring arbitrarily
many non-adaptive free bits.

Definition 12 A PCP verifier uses [ adaptive (resp. non-adaptive) free bits if for any input, and
any fized random string, its acceptance or rejectance (which is a bollean function of the proof) can be
expressed as a boolean function that uses f adaptive (resp. non-adaptive) free bits. FPCP, s[log, f]
1s the class of languages admitting a PCP wverifier with logarithmic randomness, completeness c,
soundness s, that uses f adaptive free bits. The class naFPCP_ [log, f] is defines analogously by
using the non-adaptive free bit parameter.

Regarding recent constructions of verifiers optimized for the free bit parameter, the verifiers that use
the Complete Test [Has96b] are non-adaptive, while the verifier that uses the Extended Monomial
Basis Test [BGS98] is adaptive.

The notion of free bit was originally introduced to prove hardness results for MaX CLIQUE.
An amortized version of the free bit parameter has been defined in [BS94]. We will not deal with
this amortized version in this paper, since an essentially tight result has been established: Hastad
[Has96a] has shown that it is possible to characterize NP using ¢ > 0 amortized free bits, for any
fixed € > 0.

For the non-amortized version of this parameter, it is still an open question to find the best
possible characterizations of NP. Improved PCP constructions with low free bit complexity are
also motivated by the following application to the MIN VERTEX COVER problem. (Recall that an
r-approximate algorithm for vertex Cover, for r > 1, is an algorithm that computes a cover whose
number of nodes is at most 7 times the size of the optimum cover.)

Theorem 13 ([BGS98]) If NP C FPCP_  [log, f], then, for any e > 0, it is NP-hard to approxi-

mate MIN VERTEX COVER within
CcC—S

1 _
+2f—c

€

The best result in this respect, due to Hastad, is that NP = FPCP1_, 5 [log, 2] for any € > 0. This
implies that Vertex Cover is hard to approximate within 7/6 — ¢ for any € > 0.



2.4 Substitutions

Let ¢ be a set of weighted constraints from JF over variables z1,...,z,. Let x; = ao@@je[n], (i} 455
with a; € {0,1} for j € {0,...,n} — {i} be a linear equation. Let C = (f(z;,,..., ;) = 1) be
a constraint of ¢. Then the application of the substitution o = [z; « ag & D ,cpy—{} @j75] to C
(denoted by Co) is defined as follows.

1. If x; does not occur in C, then C is left unchanged by the substitution. More formally, if
i & {i1,... i} then Clz; — ag ® Djcim—1i} ajxj] =C.

2. If z; occurs in C, then the occurrence of x; is substituted by the expression ag @Gaje[n], (i} @55
More formally, if i = i}, for some h € [k], then

C[atlw—aOEB @ ajxj]E(f(xil,...,xihfl,ao@ @ aj:vj,:vihﬂ,...,;vik):l)
j€[n]—{i} Jj€M]—{i}

We note that in the second case, the set of variables occurring in the constraint becomes
{ir, ...} —{i}U{j € [n] —{i} : q; = 1}.

The width of a substitution is the number of non-zero coefficients a; for j > 1. Thus, a width-
zero substitution is of the form x < 0 or x «+— 1, and always decreases the arity of the constraint it
is applied to. A width-one substitution is of the form z < y or x «+ —y, and it either leaves the
arity of the constraint unchanged, or it decreases the arity.

We note that if we apply a widht-one or a widht-two substitution to a SAT (resp. 3SAT)
constraint, then we obtain another SAT (resp. 3SAT) constraint®. Additionally, if we apply to a
kCSP constraint C' a substitution o such that all the variables occurring in the left-hand side of
the equation of o already occur in C, then Co is a (k — 1)CSP constraint.

For an instance ¢ of a constraint satisfaction problem and substitution o, we denote by o the
instance obtained by applying the substitution ¢ to all the constraints of .

2.5 Approximation Algorithms and Techniques for MAX SAT

For the rest of this section we fix a satisfiable instance ¢ of MAX SAT, that has clauses of total
weight m. For any ¢ > 1, m; is the total weight of clauses with exactly ¢ literals. We examine
different algorithms, and different ways to extend/mix them. Under the assumption that the
formula be satisfiable, the cost of the solutions provided by all the algorithms below will always be
lower bounded by some linear combination of the m;’s.

2.5.1 Algorithms

Johnson's algorithm [Joh74]. It finds a solution that satisfies clauses of total weight at least
1
3

FGW Algorithm [GW95, FG95]. Given an instance of MAX 2SAT, it satisfies at least a fraction
6 = .931 of the cost of an optimum solution.

3We can indeed obtain the 0-constraint or the l-constraint, but we noted that we can assume 3SAT and SAT
contain such constraint without loss in generality.



2SAT algorithm. If a 2SAT instance is satisfiable, it is possible to find a satisfying assignment in
polynomial time.

Linear systems mod 2. If a system of linear equations over variables x1, ..., x, is satisfiable, we can
find in polynomial time an explicit description for the set of its solution, that is, a vector
u= (u,...,u,) € {0,1}" that is a feasible solution, and vectors y',...,y* such that the set
of feasible solutions is precisely

{usay'e - @ay” tar,...,ar € {0,1}} .

2.5.2 Techniques

GW Technique [GW95]. It allows to extend a [(-approximate algorithm for MAXx 2SAT (e.g. the
FGW algorithm) to the MAaX SAT problem. Here we present a simplified analysis of the GW
technique that is sufficient to deal with satisfiable instances of MAaxX SAT.

Any clause of length k£ > 3 and weight w is substituted by the (g) clauses of length 2 obtained

by taking in all the possible ways two literals out of k. Each new clause receives weight w/ (g)
We then apply a S-approximate algorithm to the resulting instance of MAX 2SAT.

The number of clauses in the original formula that are satisfied in this way is at least

B(ml + mg) + Z %[%nk .
k

TSSW Technique [TSSW96]. This technique has been already described in Section 2.2. As an ap-
plication to MAX SAT, we note that if, for some k, we have an «y-gadget reducing kSAT to
2SAT, then we can substitute (8 — (1 — 3)(ay — 1)) in place of 24 in the analysis of the GW
technique.

CT Technique [CT97]. This technique is parameterized with an integer k and a real 0 < p < 1. If
we have an algorithm for GL1-MAX kSAT which satisfies clauses of length i of total weight
pim;, 1 < i < k, then the CT technique allows to design an algorithm for GL.1-Max SAT
that satisfies clauses of total weight

k

S —pt—p) Hpmi+ Y 11 -p))m.

i=1 i>k+1

3 An Application of the Linear Algebra Method

The linear algebra method in combinatorics [BF92] is a collection of techniques that allow to
prove combinatorial results by making use of the following well-known fact: if we have a set of
n-dimensional vectors that are linearly independent, then the size of the set is at most n. In this
section we will provide some definitions and prove easy bounds using linear algebra. Despite the
triviality of the results, they will have powerful applications in Sections 5 and 6.

Definition 14 For a vector u # 0, we say that a collection X1, ...,X;, of elements of {0,1}" is
(k,u)-dependent if there are values ag,...,am € {0,1} such that 1 < |[{i=1,...,m:a; =1}| <k
and a1X1® ... BapmX;, = apu. A collection is u-dependent if it is (k,u)-dependent for some k. A
collection is ((k,u)-)independent if it is not ((k,u)-)dependent.

10



More intuitively, the vectors x1,...,X,, are (k,u)-independent if any xor of at most k of them is
different from 0 and from u.

Lemma 15 For any u # 0, if x1,...,%, € {0,1}" are (2,u)-independent, then m < 2"~1 — 1.
The bound is tight.

PrOOF: All the 2m + 2 vectors 0,Xy, ..., X;, u, (UdX1),..., (udx,,) are distinct. Therefore 2m +
2 < 2™, To prove the tightness of the bound, let u = 1 and consider the set of 21 — 1 vectors of
{0,1}™ — {0} whose first entry is zero. Clearly, these vectors form a (2,1)-independent collection.
O

Lemma 16 For anyu # 0, if X1,...,Xy € {0,1}" are u-independent, then m < n—1. The bound
18 tight.

Proor: The m + 1 vectors u,xy,...,X,, are distinct and linearly independent in the ordinary
sense. Therefore m + 1 < n. To prove the tightness, let u = 1 and consider a linearly independent
set of n — 1 vectors of {0,1}" whose first entries are zero. Such a set must exist, since the set of
elements of {0,1}" whose first entry is zero form a linear subspace of {0,1}" of dimension n — 1.
It is easy to see that such a set is a 1-independent collection. O

In the following sections we will use the special case where u = 1. Let f be a k-ary constraint
function with s satisfying assignments, and M be a satisfying table for f. If the columns of M are
(2,1)-independent, then k < 2571 —1, that is s > 1+ [log(k + 1)], which implies s = 2 if k = 1 and
s > 3 if k > 2. If the columns of M are 1-independent, then we can draw the stronger statement
s>k+1.

4 The Max SAT Algorithms

Lemma 17 If GL1-MAX SAT (resp. GL1-MAX 3SAT) restricted to instances without unit clauses
is r-approximable, then it is r-approximable for arbitrary instances.

PrOOF: We describe an algorithm that given a satisfiable instance ¢ of MAX SAT over variables
x1,...,%,, finds a new satisfiable instance ¢’ over a subset of variables X’ C {z1,...,2,} = X
and a set S of width-1 linear equations, such that any assignment to X’ can be extended to an
assignment to X using the equations of S. The important properties of ¢’ are that ¢’ has no unit
clause, and an r-approximate solution for ¢’, when extended with S, becomes an r-approximate
solution for ¢.

The algorithm is described in Figure 1.

Claim 18 NoUnary runs in polynomial time.

PROOF: Each substitution requires at most linear time. Furthermore, each substitution reduces
the number of variables of ¢. It follows that there can be at most a linear number of substitutions
and thus the algorithm runs at most in quadratic time. (A more careful analysis would show that
in fact a linear time implementation is possible. We choose not to do so since this would not
improve the performance of the overall algorithm, that is dominated by the running time of the
FGW algorithm.) O

Let now ¢ be some satisfiable instance of MAX SAT over variable set X, and let NoUnary(yp) =
(¢',S). The following two claims are easily proved by induction on the number of substitutions
performed by the algorithm.
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algorithm NoUnary
input: ¢;
begin
S = ()
while ¢ has unit clauses do begin
for each positive unit clause (z) € ¢ do begin
S:=Su{(z=1)}
@ = plr —1]
end;
for each negative unit clause (—z) € ¢ do begin

S:=SuU{(z=0)}

p = plw — 0]
end;
end;
return (¢, 5);

end.

Figure 1: The MAX SAT reduction.

Claim 19 ' is satisfiable. Indeed, any satisfying assignment for ¢ is a satisfying assignment for
¢ and is consistent with S.

Claim 20 Let a’ be an assignment to X', and a be the extension of a’ to X using S. Then the
total weight of clauses of ¢’ that are satisfied by &’ equals the total weight of clauses of ¢ that are
satisfied by a.

Claim 21 If ¢ is an instance of MAX 3SAT then ¢’ is an instance of MAX 3SAT.

PROOF: A substitution can never make a clause longer.

The lemma now follows.

Lemma 22 There exists a polynomial-time .826-approximate algorithm for GL1-MAX 3SAT with-
out unit clauses.

PRrROOF: We use the TSSW technique applied to the FGW algorithm and Johnson’s algorithm. We
assume we have an a-gadget reducing 3SAT to 2SAT, and we use a [-approximate algorithm for
Max 2SAT. Let ¢ be an instance of MAX 3SAT with no unit cluase. Let m be the total weight of
clauses of ¢, ms be total weight of binary clauses and m3 be the total weight of ternary clauses. If
we denote by A(p) the total weight of clauses satisfied by the above outlined algorithm we obtain
the following relation:

Alg) = max{ma + fma, fma -+ (5~ (1= B)a— Dmy
= max{%m + %mg,ﬁm —(1-78)(a— 1))m3}

12



8(1 - f)(a—1) 3 1 1
- <1 +8(1— A)a— 1)) (1m+ §m3> - <1+8(1 Yo 1)) (Bm = (1= F)la = 1)ma)
1
= Trs0_pa_1 o - Ale -1 +m3(1 = fla—1)+fm—ms(l - f)a—1)
L B+6(1 = B)(a—1)
1+8(Oz—1)(1—ﬁ)

where first equality follows from the substitution ms = m — ms, and the next step uses a convex
combination in place of max. For 6 = .931 and a = 3.5 the last term evaluates to .82605, O

For the MAX SAT analysis we resort to a methodology of analysis introduced in [AE98]. We
have to study the performance of an approximation algorithm that consists of running several
approximation algorithms and then take the best solution. If the performance of each individual
approximation algorithm is a linear function of some parameters of the instance (e.g. the total
weight of i-ary clauses), then finding the worst case for the best algorithm can be formulated as a
linear program. We could have applied the same methodology in the proof of Lemma 22, but we
liked it better to present a traditional analysis because it gives a closed formula that depends only
on the quality of the approximation and of the gadget.

Lemma 23 There exists a polynomial-time .8-approximate algorithm for GL1-MAX SAT without
unit clauses.

PRrROOF: We use

J: Johnson’s algorithm;

FGW: the FGW algorithm, extended to length-3 and lenght-4 clauses with the TSSW method, and
to longer clauses with the GW method. We use a 3.5-gadget for length-3 clauses and a new
6-gadget for length-4 clauses (see Lemma 52 below);

CT,: the 2SAT algorithm extended to longer clauses with the CT methodology. We use all the
possible values of p, 0 < p < .5 with a sufficiently small increment (e.g. § = .001.)

For an instance ¢ of MAX SAT with no unit cluase, let m; be the total weight of the clauses with
exactly 7 literals, and let A(yp) be the total weight of the clauses satisfied by our algorithm. Then,

A zmas {3 (1-5)mo

2
931my + .7585ms + 586ma + 3 ~mi,

max {p(l —p)ma + Z(l -(1- p)i)mz}

p€{0,6,26,...,.5}

It is easy to cast the search for a worst case as a linear program [AE98]. The only seeming difficulty
is that we would need infinitely many variables mso, ms, ... Indeed, we can choose a large enough
upper bound N (e.g. N = 100), and then we use variables ma, ..., my to represent the total weight
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of clauses with 2,..., N literals, and a variable my, to represent the total weight of clauses with
more than NV literals. The contribution of clauses with more than IV literals to the FGW algorithm
is ignored; the contribution to the other algorithms is lower bounded with the contribution that
there would be if they were all with N + 1 literals. An optimal solution to the following linear
program is thus a lower bound to the performance ration of the combined algorithm.

min ratio
Subject to

ratio > Zﬁil (1 - %) m; + (1 — 2]\,%) Moo
ratio > .931mg + .7585ms + .586my + SV, 2my,

(2

ratio > p(1 —p)ma + XN (1 =1 =p))mi+ (1 — (1 —p)N*)my p=1id fori=0,...

N
ZiZI m; +moo =1
mg, Moo Z 0

For 6 = .001 and N = 100 the linear program above has an optimal solution ratio = .8000939. The
same solution can be obtained using only one value of p, namely p = .082 (the value .082 has been
found with numerical experiments.) O

Theorem 24 There exists a .8-approximate algorithm for GL1-MAX SAT and a .826-approximate
algorithm for GL1-MAX 3SAT.

5 The MaAx 3CSP Algorithm

Definition 25 We say that an instance ¢ of MAX kCSP is simplified if the following conditions
hold for any constraint C = (f, (i1,...,ix)) of v:

1. the columns of a satisfying table of C' are (2,1)-independent;

2. either C is linear or all its satisfying assignments are consistent with LIN (p). More formally,
if f is not linear, then for any values ay, ..., a; € {0,1} such that f(ay ...,ax) = 1, the system
LIN(p) U{(zi, = a1),...,(zi, = ag)} is satisfiable.

Lemma 26 If GL1-MAX 3CSP is r-approximable when restricted to simplified instances, then
GL1-MAX 3CSP is r-approximable.

PROOF: Given a general instance ¢ of GL1-MAX 3CSP, we reduce it to a simplified instance ¢'.
The reduction is described in Figure 2.
The proof now continues with the same structure of the proof of Lemma 17.

Claim 27 For any instance ¢, Simplify(yp) terminates in polynomial time.

PRrOOF: Each step either reduces the size of the satisfying table of a constraint or reduces the
number of variables occurring in . Thus, the number of possible steps is bounded by the lenght
of the description of . Each step can be implemented in polynomial time. O

Let now ¢ be a satisfiable instance of MAX 3CSP over variable set X, and let Simplify(p) =
(¢',S). Let X’ be the variable set of ¢/.

Claim 28 ' is satisfiable. Indeed, any satisfying assignment for ¢ is a satisfying assignment for
¢ and is consistent with S.

14
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algorithm Simplify;
begin
S = 0;
while ¢ is not simplified do begin
for each constraint C' = (f(x;,,...,2;,) = 1) with a (2, 1)-dependent satisfying table
do begin
Comment: C enforces a linear relation (x;; = ao®anz;, );
¢ = plr;; — ao®apwi,];
S = SU{(zi; = aoDanwy,)};
end;
for each constraint C' one whose satisfying assignment is inconsistent with LIN ()
remove such assignment from the satisfying table of C;
end;
return (¢, S);
end

Figure 2: Algorithm reducing an instance of GL1-MAX 3CSP to a simplified instance.

PROOF: By induction on the number of substitutions performed by the algorithm. O

Claim 29 Let a’ be an assignment to X', and a be the extension of a’ to X using S. Then the
total weight of clauses of ¢’ that are satisfied by &’ equals the total weight of clauses of ¢ that are
satisfied by a.

Lemma 30 GL1-MAX 3CSP restricted to simplified instances is .5145-approximable.

PRrROOF: From Lemma 15, ¢ has no unit constraint (besides the always true constraint), the 2-
ary constraints can only be from 2SAT, the 3-ary constraints must have at least three satisfying
assignments. Let mo be the total weight of 2SAT constraints, m®), m®, m® m© m be the
total weight of 3-ary constraints that have, respectively, 3, 4, 5, 6, and 7 satisfying assignments.
We also let m(*L) be the total weight of 3-ary linear constraints and m(*©@) = m®) — (L),

We use two algorithms and take the best solution.

In the first algorithm, we simply consider a random feasible solution for LIN(y). On the
average, the total weight Aranp of satisfied constraints is at least

ARanD > Z ma + g m) +% m(0) k) +g m® + g m©) +g m(7)
Derandomization is possible using the method of conditional expectation.

The other algorithm uses the TSSW method and the FGW algorithm. We have to find gadgets
reducing the various possible 3-ary constraints to 2SAT constraints. The new constructions (and
the old ones that we use) are listed in Table 3. More details are available in Section 8. Using the
FGW algorithm with the TSSW method and the gadgets of Table 3, we have an algorithm that
satisfies constraints of total weight

15



Source Target « Due to
Constraint | Constraint

3SAT 2SAT 3.5 [TSSW96]

4SAT 2SAT 6 This paper

3CSp? 2SAT 5.5 This paper

3CSp? 2SAT 5.5 This paper
not linear

3CSP? 2SAT 11 [BGS9S]

linear

3CSP? 2S5AT 8.25 || This paper

3CSPS 2SAT 5.5 This paper

Table 3: Gadgets used.

Acgap = 931 mo +.6205 m® + 241 mUD) 4+ 6205 m“O) + 43075 m® + .6205 m(© + 7585 m(?)
If we take the best solution, then we satisfy constraints of total weight

max{AranD, Agap} > 4315AraNnD + 0.5685AcAp > .5145m
where m = mg + m®) + mA) 4 MmO L ;G Lm0 £y, O
Theorem 31 There exists a polynomial-time .5145-approximate algorithm for GL1-Max 3CSP.
Theorem 32 naPCP; 54[log,3] C P.

Recall that Hastad [Has97] proved that naPCP
NP for any ¢ > 0

[log,3] = NP and that naPCPL%H[log, 3] =

1
l1-g,5+¢

6 The MAX ECSP Algorithm

The general pattern of the results of this paper is that we take an instance of a constraint satisfaction
problem and, using approximation preserving reductions, we transform it into an instance where
each constraint has a “reasonably large” set of satisfying assignment. For the new instance, the
approach of taking a random solution will then work well enough.

In order to bound from below the number of satisfying assignments of the constraints in the
new instance, we use algebraic properties of the satisfying table. For the MAaX SAT algorithm we
just use the fact that the new instance has no unit clause. For MAX 3CSP we go one step further,
and we use the fact that the constraints of the new instance have a (2,1)-independent satisfying
table. For MAX kCSP we will enforce full 1-independency among the row of the satisfying table.

It turns out that it is easier to define an approximation algorithm for a generalization of MAX
ECSP.

16



Definition 33 (Max kCSP+LIN) For any positive integer k, the MAX kCSP+LIN problem is
defined as follows: an instance is a pair (p,S), where ¢ is an instance of MAX kCSP and S is
a system of linear equations. A feasible solution is an assignment of 0/1 values to the variables
occurring in @ and S, such that all the equations of S are satisfied. The measure of a solution is
the total weight of satisfied constraints in .

Thus, the difference between MAX kCSP+LIN and Max kCSP is that in the former problem we
also have a set of mandatory linear constraints that must be satisfied by any feasible solution. MAX
kCSP can be seen as the special case of MAX kCSP+LIN where the set S is empty.

Definition 34 We say that an instance (¢, S) of MAX kCSP+LIN is over-simplified if, for any
constraint C' of @, the following properties hold:

1. the columns of the satisfying table of C' are 1-independent;

2. any assignment to the variables occurring in C that satisfies C is consistent with S.

Note that the first property implies that in an over-simplified instance (¢, S) no constraint in ¢
can be linear.

Lemma 35 If cL1-Max kCSP+LIN is r-approzimable when restricted to over-simplified in-
stances, then GL1-MAX kCSP+LIN is r-approximable.

PROOF: Let (¢, S) be an instance of GL1I-MAX kCSP+LIN. Let (¢/,S’) = OverSimp(p, S). It is
easy to see that OverSimp has a polynomial-time implementation. The following claims prove the
lemma.

Claim 36 (', S") is an instance of GL1-MaAX kCSP.

PrOOF: Algorithm OverSimp never replaces a constraint with a constraint of bigger arity. Thus
¢’ is an instance of MAX KCSP. By induction on the number of substitutions performed by the
algorithm, we can prove that any satisfying assignment for (p,S) is also a satisfying assignment

for (¢',S") O

Claim 37 If an assignment a’ is feasible and r-approzimate for (¢',S") then it is feasible and
r-approzimate for (@, S).

PROOF: By induction on the number of steps.

Lemma 38 GL1-MAX kCSP+LIN is (k + 1)/2%-approzimable when restricted to simplified in-
stances.

PROOF: Let (¢,S) be a simplified instance of MAX kCSP+LIN. If h < k is the arity of a constraint
C in a ¢, then, by Lemma 16 C has at least h+ 1 satisfying assignments, and a random assignment
satisfies it with probability at least (h + 1)/2" > (k + 1)/2F. If we take a random feasible solution
for S, it satisfies all constraints of S and, on the average, a fraction at least (k + 1)/2% of the
total weight of the constraints of ¢. Derandomization is possible with the method of conditional
expectation. O
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algorithm OverSimp
input: ¢, S;
begin
while (g, S) is not over-simplified do begin
for each C € @ that is linear do begin
pi=p—{C}
S:=SuU{C};
end;
for each C = (f(xi,,...,2;,) = 1) € ¢ with a 1-dependent satisfying table
do begin
Comment: C enforces a linear relation z;, = ap® @h# anpTi,;
C = Clzi; +— ao® Bpz; aniy|;
S:=SU {:UZ-]. = ag®d @h;ﬁj aiﬂ%ﬁ}?
end;
for each C € ¢ one whose satisfying assignments is inconsistent with S do
remove such assignment from the satisfying table of C';
end;
return (¢, 5);
end

Figure 3: The algorithm that reduces a pair (¢, S) to an over-simplified pair (', S’).

Theorem 39 There exists a polynomial-time (k + 1)/2*-approzimate algorithm for GL1-MAX
kCSP.

Theorem 40 For any q > 3, for any s < (¢ + 1)/29, naPCP; ,[log, ¢] C P.

Observe that the bound of Lemma 39 above is 1/2 for Max 3CSP.

7 Free Bits

We now state some results (the first ones with f > 1) about naFPCP classes that collapse to P.
Theorem 41 The following statements hold:

1. naFPCP, [log, f] C naPCP; ,[log, 22’1 — 1].

2. naFPCP ([log, f] C P for all s > (210)/22f_1 and f >log3.

PROOF: Let L € naFPCP; ,[log, f]. Let V' be the verifier witnessing this fact. Given z, we can find
in polynomial time an instance ¢, of a constraint satisfaction problem with the following property:

e Each constraint uses f non-adaptive free bits, that is, has at most 2/ satisfying assignments.

e If x € L then ¢, is satisfiable, otherwise at most a fraction s of the constraints is satisfiable.

18



Indeed, ¢, has a constraint Cr for any random string R of V with input . The weight of C' is the
probability of the random string being selected. A boolean variable is associated to each position
of the proof, and the constraint C'r is satisfied precisely by the assignments corresponding with
proofs that would be accepted by V' with input z and random string R.

We run algorithm Simplify with input ¢,. We obtain an instance ¢, and a set of equations S
that enjoy the following properties:

1. No constraint C' of 1), has more than 2/ satisfying assignments (Simplify never makes the
satisfying table of a constraint larger);

2. Any constraint in 1, has a (2,1)-independent satisfying table;
3. If ¢, is satisfiable then 1, is satisfiable;

4. An assignment satisfying a fraction s of the constraints of 1, can be extended, using S, to
an assignment satisfying at least a fraction s of the constraints of ;.

From the first two properties, it follows that no constraint in v, has arity larger than 22/ -1 _ 1,
From the other properties we have:

e If x € L then 1, is satisfiable.

o If x & L then at most a fraction s of the constraints of v, is satisfiable.

We now describe a verifier for L that uses logarithmic randomness, has perfect completeness,
soundness s and queries 22'=1 _ 1 bits. Given x, the verifier computes 1, and assumes that the
proof contains a satisfying assignment for 1,. The verifier picks a random constraint of 1, reads
from the proof the value of the variables occurring in the constraint, and accepts if and only if
the constraint is satisfied. Clearly, the verifier reads at most 22/=1 _ 1 bits. If 2 € L then Yy i
satisfiable and so there exists a proof that makes the verifier accept with probability one. Observe
that the probability of acceptance of the verifier is equal to the fraction of constraints that are
satisfied by the proof; if x € L, then no proof can make the verifier accept with probability larger
than s.

This establish the first part of the theorem.

To establish the second part, we use algorithm OverSimp. Let OverSimp(y¢.) = (¢¥.,S’). We
have the following properties:

1. No constraint C of 1), has more than 2/ satisfying assignments (OverSimp never makes the
satisfying table of a constraint larger);

2. Any constraint in 1, has a 1-independent satisfying table;
3. If ¢, is satisfiable then 1, is satisfiable;

4. An assignment satisfying a fraction s of the constraints of v/, and all equations of S’ also
satisfies at least a fraction s of the constraints of (.

From the first two properties, it follows that no constraint in t, has arity larger than 2f — 1. If
s<2f)/ 22/~1 then we are able to satisfy more than a fraction s of the constraints of ¢, whenever
x € L. This implies that we have a polynomial-time algorithm for L. O
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Observe that, in particular, we have
naFPCPy 3/,_[log,log3] C P Ve >0
and
naFPCPy /5 [log,2] CP Ve >0.

The first inclusion means that using a Proof System with perfect completeness, non-adaptiveness,
and log 3 free bits, the stronger hardness result that can be shown for Vertex Cover is 13/12 —¢ for
any ¢ (weaker than Hastad’s result that uses almost-perfect completeness [Has97]). Using 2 free
bits, the stronger result is 7/6 — e, which equals Hastad’s result. With log5 free bits or more, we
can only do worse. The moral of this result is that the only way to improve the 7/6 — ¢ hardness
result for Vertex Cover is to use non-perfect completeness and /or adaptiveness.

An interesting open question is to find impossibility result for non-adaptive verifiers. Indeed, we
suspect that, with a bounded number of adaptive free bits and perfect completeness, it is impossible
to achieve an arbitrary good soundness. In particular, it may be the case that FPCP s[log, f] C P

f
when s < 22%"

8 Gadget Construction

8.1 Methodology

All the new gadgets used in this paper are computer-constructed using the methodology of
[TSSW96]. We refer the reader to the paper for details about the method (a full version is available
from the authors. See also the presentation in [Tre97].) In short, [TSSW96] show that the problem
of finding the best possible gadget reducing a function to 2SAT (in general, the target can be any
hereditary family, that is, any family that is closed under substitutions) can be reduced to a linear
program.

This method has been implemented by Greg Sorkin. His implementation consists in an APL2
program that given the description of the source family and of the target family generates the ap-
propriate linear program and then solves it using OSL (the IBM Optimization Subroutine Library, a
commercial package for mathematical programming.) Almost all the gadgets reported in [TSSW96]
have been found with Sorkin’s program. In order to deal with the computing environment of the
University of Geneva we had to develop a different implementation. Our implementation is much
more rudimentary but only requires public domain resources.

In our implementation, the LP is generated by a C program. The program is specialized to the
case where the target family is 2SAT and the source function is 3-ary. The function that we want
to reduce to 2SAT is specified in a header file. To find gadgets reducing different functions to 25AT
it is thus necessary to edit the header and then recompile the program. To find the gadget reducing
4SAt to 2SAT we also had to slightly alter the program itself. Another special case arose for gadgets
reducing functions in 3CSP* to 2SAT. There were 34 cases to be considered (see Lemma 48), so we
modified the program in order to have it generate itself all the cases, solve all of them, and then
report the 34 solutions.

Finally, we remark that a straightforward application of the technique of [TSSW96] would lead
to exceedingly too big linear programs in some cases. For example, in order to find the best gadget
reducing 4SAT to 2SAT we would have to solve a linear program with 25 constraints. To deal
with such cases, we used a method already employed in [TSSW96] that reduces the size of the
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linear program at the cost of possibly producing non-optimal gadgets. Alternatively, it is possible
to reduce the size of the linear programs at the cost of possibly producing unfeasible gadgets of
super-optimal cost. When the two approaches produce gadgets of the same cost, then we have a
guarantee of optimality. The reader is again referred to [TSSW96] for more details.

The generated LP is solved using a public domain LP solver, |p_solve version 2, writ-
ten by Michel Berkelaar (with some additions by Jeroen Dirks), available at the URL
ftp://ftp.zib.de/pub/mathprog/Ip-berkelaar/Ip-solve/ Once the LP is solved, the solution is reported
in ITEX. The descriptions of the gadgets appearing in Section 8.2, except the gadget reducing
4SAT to 2SAT, are unedited outputs of our program.

We used a SUN SPARCstation4 running Solaris, with 64Mb of memory. Our program and the
Ip_solve libraries have been compiled with GNU’s gcc. The larger linear programs that we solved
had ~ 200 variables and ~ 1000 constraints. It took roughly two minutes to solve them. All other
LPs had only 100 to 200 constraints and less than 100 variables, and they were solved in a few
seconds.

8.2 Constructions

Lemma 42 For any f € 2CSP that is not identically 0 nor identically 1, there is a 2-gadget
reducing f to 25AT.

Lemma 43 If f € 3CSP has a (2,1)-dependent satisfying table, then there is a 2-gadget reducing
f to 2SAT.

Definition 44 For two functions f,g : {0,1}* — {0,1}, we say that f is derivable from g if
f(x1, .. ok) = glapys - - -5 Lrp) where m is a permutation of {1,...,k} and l; either z; or ;.

For example, if f(z1,x2,23) = g(x3,1 — 21,22), then f is derivable from g.

Lemma 45 If f is derivable from g and there is an a-gadget reducing g to 2SAT, then there is
also an a-gadget reducing f to 2SAT.

Lemma 46 For any f € 3CSP3, there is a 5.5-gadget reducing f to 2SAT, and it is optimal.

PROOF: By Lemma 43 it is sufficient to only consider functions with a (2, 1)-independent satisfying
table. By Lemma 45, we can consider only functions such that each column of the satisfying table
has more zeros than ones (all other functions can be then obtained using complementation). We
can also assume that columns are in lexicographic oreder. It is thus sufficient to only consider the
function 1-in-3 with the following satisfying table:

r1 T2 T2
0O 0 1
0 1 0
1 0 O

There is a 5.5-gadget reducing 1-in-3 to 2SAT. The gadget has the following clauses:

weight 0.5:  (z9 V x3), (x1 V z2), (x1V x3)
weight 1.5 : (mx1 V —xs), (—xVoxg), (—xo Vooxs)
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Columns chosen cost of the gadget
{1,4,6},{1,4,7},{1,5,6}, 2
{1,5,7},{2,4,5},{2,4,7},
{2,5,6},{2,6,7},{3,4,5},
{3,4,6}{3,5,7},{3,6,7}

{4,5,6},{4,5,7},{4,6,7}, 3
{5,6, 7}
{]"2?4}7 {1?2’5}7 {17276}7 4‘5

{1,2,7},{1,3,4},{1,3,5},
{1,3,6},{1,3,7},{2,3,4},
(2,35} {2,3,6}, {2,3,7}

{1,4,5},{1,6,7},{2,4,6}, 5.5
{2,5,7},{3,4,7},{3,5,6}

Table 4: Gadgets reducing non-linear functions in 3CSP* to 2SAT.

Lemma 47 ([BGS98],[TSSW96|) For any 3-ary linear function f, there is an 11-gadget reduc-
ing f to 2SAT, and it is optimal.

Lemma 48 For any f € 3CSP* that is not linear, there is a 5.5-gadget reducing f to 2SAT. It is
optimal for some of these functions.

PROOF: As usual, we restrict ourselves to functions with a (2,1)-independent satisfying table. It
is easy to see that we can also restrict to functions f such that f(0,0,0) = 1. (Any other function
is derivable from a function that is satisfied by (0,0,0).) To sum up, we have to consider all the
functions whose satisfying table is obtained by taking three out of the seven columns of the following
matrix, except the function obtained by taking the first three columns (it is linear!).

000 O0O0O 0O O
0001111
0110011
1010101

There are (g) — 1 = 34 cases to be considered. For space reasons we do not report all the gadgets.
In Table 4 we report the costs of the optimal gadgets for all the cases. The description of the 34
gadgets are available on request from the author.

O

Lemma 49 For any f € 3CSP?, there is a 8.25-gadget reducing f to 2SAT. This is optimal for
some of these functions.

Proor: Up to permutation of variables and complementation, there are only three possible con-
straints. We show below their satisfying tables
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0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0O 0 1
0 1 0 0 1 0 0o 1 0
1 0 0 1 0 O 1 0 1
1 1 1 0o 1 1 1 1 0
We have a 8.25-gadget reducing the first one to 25AT:
weight 0.25 : (mx3V —xs), (r1V-xs), (-1 Vas),
(—\.’L'l V .%‘4), (333 V .%‘5)
weight 0.5 : (x3V —x7), (-x2Vay), (—xz2Vaxg),
(—\.’L'g V —|HZ5), (—\.’L'l V —hrﬁ), (332 V .%‘7),
(mx3 V —xg), (—x1V —wy)
weight 0.75:  (z3V —z4), (—xsVzy)
weight 1 : (xo V —xy4)
weight 1.25: (21 V —x4)
a 2-gadget for the second:
weight 1:  (—xy V -oxg), (—xp V -as)
and a 3.5-gadget for the third:
weight 0.5: (22 V 23), (x1V —xs), (x1V wa),
(—\.’L'l V .’L‘g), (—|a:1 V 333)
weight 1.5 : (mxo V —x3)
The 8.25-gadget is optimal [SS97]. O

Lemma 50 For any f € 3CSP® with a 2-independent satisfying table, there is a 5.5-gadget reducing
f to 2SAT. This is optimal for some of the functions.

PROOF: In this case there are again three basic cases. Indeed, we can assume with no loss of
generality that the function is false in 000, then the other non-satisfying assignment can have three
ones, and be 111, or two ones, and be 011 without loss of generality, or one one and be 001 without

loss of generality.

Tr1 T2 I3 r1 T2 X3 Tr1 T2 I3
0 0 1 0 0 1 0 1 O
0 1 0 0 1 0 0 1 1
0 1 1 1 0 O 1 0 O
1 0 0 1 0 1 1 0 1
1 0 1 1 1 O 1 1 O
1 1 0 1 1 1 1 1 1
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The first constraint is also known as 3-set-splitting. There is a 2.5-gadget reducing it to 2SAT.

weight 0.5:  (—xq V —me), (—x1V —x3), (21Vas),
(.’L‘l Vv 332), (.’L‘g V 333), (‘032 V —|333)

The second constraint gives rise to a constraint satisfaction problem such that, given a satisfiable
instance, it is NP-hard to satisfy more than a fraction 3/4 + ¢ of the constraint [Has97]. We have
a 5.b-gadget for this constraint.

weight 0.5 : (x1 Vxg), (—x1V-xs), (—-x3V-xg),
(mx1 Vxg), (—w3V-axg), (r3VI9),
(.’L‘g V 338), (.’L‘l V —|a:g)

weight 1 : (mxo Vag), (x2V —xs)

Our gadget, combined with the non-approximability result of [Has97] gives an alternative proof of
the fact that MAX 2SAT is hard to approximate within 21/22 + . The third constraint is just
1 V 9. This 5.5-gadget is optimal. O

Lemma 51 ([TSSW96]) For any f € 3CSP” = 3SAT, there is a 3.5-gadget reducing f to 2SAT,
and it is optimal.

Lemma 52 For any f € 4SAT, there is a 6-gadget reducing f to 2SAT.

PROOF: The 6-gadget reducing (x1 V xo V x3 V x4) to 2SAT is

(3’:3 V 92) ) (_“’133 \ _‘x4) ) (_“’133 \ _'yl) )

(w2 V=y2) , (YsV —y2), (x1V-y1), (2aVyo)

Where 31 and yy are auxiliary variables. All the constraints in the gadget have weight one. O
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