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Abstract. We study the approximability of the Maximum Satis�ability

Problem (Max SAT) and of the boolean k-ary Constraint Satisfaction

Problem (Max kCSP) restricted to satis�able instances. For both prob-

lems we improve on the performance ratios of known algorithms for the

unrestricted case.

Our approximation for satis�able MAX 3CSP instances is better than

any possible approximation for the unrestricted version of the problem

(unless P= NP). This result implies that the requirements of perfect

completeness and non-adaptiveness weaken the acceptance power of PCP

veri�ers.

We also present the �rst non-trivial results about PCP classes de�ned in

terms of free bits that collapse to P.

1 Introduction

In the Max SAT problem we are given a boolean formula in conjunctive normal

form (CNF) and we are asked to �nd an assignment of values to the variables

that satis�es the maximum number of clauses. More generally, we can assume

that each clause has a non-negative weight and that we want to maximize the

total weight of satis�ed clauses.

Max SAT is a standard NP-hard problem and a considerable research e�ort

has been devoted in the last two decades to the development of approximation

algorithms for it. An r-approximate algorithm forMax SAT (where 0 � r � 1)

is a polynomial-time algorithm that given a formula �nds an assignment that

satis�es clauses of total weight at least r times the optimum.

Max SAT is also the prototypical element of a large family of optimization

problems in which we are given a set of weighted constraints over (not necessarily

boolean) variables, and we want to �nd an assignment of values to such vari-

ables that maximizes the total weight of satis�ed constraints. Problems of this

kind, called constraint satisfaction problems, are of central interest in Arti�cial

Intelligence. Their approximability properties are of interest in Theory of Com-

puting since they can express the class MAX SNP [23, 19] and the computation

of PCP veri�ers [2, 25]; complete classi�cations of their approximability prop-

erties, for the case of boolean variables, appear in [9, 20]. We call Max kCSP
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the constraint satisfaction problem where every constraint involves at most k

variables.

In this paper we consider the following restriction of the problem of r-

approximatingMax SAT and Max kCSP: given a satis�able instance ofMax

SAT (resp. Max kCSP), �nd in polynomial time an assignment that satis�es

at a fraction r of the total weight of clauses (resp. constraints). The problem of

approximating constraint satisfaction problems restricted to satis�able instances

has been considered by Petrank [24], and called approximation problem at gap lo-

cation one. Petrank observed thatMax SAT remainsMAX SNP-complete when

restricted to satis�able instances, and proved that the same is true for other

problems, such as Max 3-Colorable Subgraph and Max 3-Dimensional

Matching. More recenlty, Khanna, Sudan and Williamson [20] proved that for

any MAX SNP-complete constraint satisfaction problem for which deciding sat-

is�ability is NP-hard, the restriction to satis�able instances remains MAX SNP-

complete.

In partial constrast with the results of Petrank and of Khanna et al. we

prove that restricting Max SAT andMax kCSP to satis�able instances makes

the problems somewhat easier, since we can exploit satis�ability to develop new

algorithms with improved approximation guarantees. Our result forMax 3CSP

is particularly strong, since we will present a :514-approximate algorithm for

satis�ableMax 3CSP, while :501-approximation is NP-hard for the unrestricted

Max 3CSP problem [17]. Thus, the satis�ability restriction is not su�cient to

turn a MAX SNP-complete problem into a PTAS problem, but can change the

approximation threshold.

2

Our result for GL1-Max 3CSP can also be reworded

in the PCP terminology, and yields the interesting fact that veri�ers with perfect

completeness are strictly weaker than veri�er with completeness 1� �.

In the rest of this section we describe in more details our results, partly

clarifying the obscure terminology of the previous paragraph.

The Maximum Satis�ability Problem. TheMax SAT problem appears in

a paper of Johnson [18] which is the �rst paper where the term \approxima-

tion algorithm" was introduced. Johnson proved that his algorithm was 1/2-

approximate. It has been recently showed that Johnson's algorithm is indeed

2/3-approximate [8]. In the last �ve years, several improved approximation al-

gorithms forMax SAT and its restricted versions Max 2SAT andMax 3SAT

have been developed; we summarize such previous results in Table 1. There is a

corresponding history of continuous improvements in the non-approximability;

we do not mention it here (the interested reader can �nd it in [5]), and we only

recall that the best known hardness is 7=8+� due to H�astad [17], and it still holds

when restricting to satis�able instances with exactly three literals per clause.
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The approximation threshold r

A

of an optimization problem A is de�ned as

r

A

= supfr : A admits an r-approximate algorithm g



Max SAT Max 3SAT Due to

:75 :75 [27]

:75 :75 [14]

:758 :765

�

[15] (using [14])

:762

�

:77

�

[11] (using [14, 15])

:765 :769 [22] (using [27, 14, 15])

:801 [26] (using [11])

:768 [1] (using [14, 15, 11, 22, 26])

:8 :826 This paper

for satis�able instances

Table 1. Evolution of the approximation factors for Max SAT and Max 3SAT. The

factors depicted with a � do not appear explicitely in the referenced papers [15, 11].

Our results. We present a polynomial-time algorithm that, given a satis�able

Max SAT instance, satis�es a fraction :8 of the total weight of clauses, and an

algorithm that, given a satis�able Max 3SAT instance, satis�es a fraction :826

of the total weight of clauses.

Source of our improvement. In both cases, we show how to reduce the given

instance to an instance without unit clauses. The reduction sequentially applies

a series of substitutions of values to variables. The :826 approximation for Max

3SAT then follows by adapting the analysis of [26] to the case of no unit clauses.

The :8 approximation forMax SAT involves the use of known algorithms, with

a couple of small changes.

Maximum k-ary Constraint Satisfaction Problem. The approximability

of the Max kCSP problem is an algorithmic rephrasing of the accepting power

of PCP veri�ers that non-adaptively read k bits of the proof. The restriction

to satis�able instances of Max kCSP corresponds to the restriction to non-

adaptive PCP veri�ers with perfect completeness.
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The requirement of perfect

completeness and non-adaptiveness appeared in the �rst de�tions of PCP and

in several improved proofs of it [3, 2, 6, 7]. Recently, adaptiveness (with per-

fect completeness) was used in [5], and a veri�er without perfect completeness

(but non-adaptive) appears in [17]. The latter result was of particular interest,

because it formerly appeared that \current techniques" could only yield PCP

constructions with perfect completeness. The study of which PCP classes lie in P

was initiated in [5]. The best known approximation for Max kCSP, for general

k, is 2

1�k

[25].

Our results. We improve the approximation to (k + 1)2

�k

for satis�able in-

stances.

3

A veri�er has perfect completeness if it accepts a correct proof with probability 1.



Source of our improvement. We use again substitutions (but of a more

general kind) as a preprocessing step. The substitutions reduce the problem to

an instance where any k-ary constraint has at least k+1 satisfying assignments,

and any such assignment is consistent with the set of linear constraints. We then

take a random feasible solution for the set of linear constraints, and this satis�es

each constraint with probability at least (k + 1)2

�k

.

Maximum 3-ary Constraints Satisfaction Problem (and 3-query PCP)

The PCP Theorem states that membership proofs for any NP language can be

probabilistically checked by a veri�er that uses logarithmic randomness, has per-

fect completeness, soundness

4

1=2 and non-adaptively reads a constant number

of bits from the proof. Since its appearence, there was interest in understanding

the tightest possible formulation of the PCP Theorem, especially in terms of

how low the number of query bits could be made.

It is easy to see that, with two queries, it is impossible to get perfect com-

pleteness, while with 3 it is possible (see e.g. [5]). The challening question arises

of determining which is the best soundness achievable with three bits and perfect

completeness. The state of the art for this question is that NP can be checked

with soundness :75 + � [17], while this is impossible with soundness :367 [26],

unless P = NP. Furthermore, it is possible to check NP with three queries,

soundness :5 + � and completeness 1 � � for any � > 0 [17]. The latter result

implies that Max 3SAT is hard to approximate within 7=8 + �, but not when

restricted to satis�able instances. A di�erent and more complicated proof was

needed to prove the 7=8 + � hardness result also for satis�able instances [17]. It

was an open question whether soundness :5 + � is achievable with three queries

and perfect completeness.

Satis�able instances Arbitrary instances Due to

:125 :125 [23]

:299 [5]

:25 [25]

:367 :367 [26]

:514 This paper

Table 2. Evolution of the approximation factors for Max 3CSP with and without the

satis�ability promise.

Our result. We show that for PCP veri�ers of NP languages with three non-

adaptive queries and perfect completeness, the soundness is bounded away from

.5, and has to be at least :514 (unless P = NP).

4

Roughly speaking, the soundness is the probability of accepting a wrong proof (see

De�nition 6).



Source of our improvement. We give a :514-approximate algorithm for sat-

is�able instances of Max 3CSP. A preprocessing step, which is a simpli�cation

of the one used for our Max kCSP result, reduces the instance to an instance

where any constraint has at least 3 satisfying assignments and each satisfying

assignment is consistent with the set of linear constraints. We then apply two

algorithms and take the best solution. In one algorithm, we reduce all the con-

straints to 2SAT using gadgets, extending an idea of [26]. In the other algorithm

we take a random solution for the set of linear constraints.

Free bits. Besides the number of query bits, there is another very important pa-

rameter of the veri�er that is studied in the �eld of probabilistic proof-checking:

the number of free bits. It is a relaxation of the notion of query bit: if a veri�er

queries q bits on the proof, than it uses at most f free bits, but a veri�er using f

free bits can red arbitrarily many bits. The interest in this parameter (implicit

in [13] and explicitly introduced in [7]) lies in the fact that the \e�ciency" of

the reduction from PCP to Max Clique [12] depends only on the number of

free bits of the veri�er (indeed, it depends only on the amortized number of

free bits, but we will not exploit the latter notion here). Since the same reduc-

tion is used to derive the best known hardness result for Min Vertex Cover,

further improvements in the hardness of approximating Min Vertex Cover

could be obtained by improved PCP constructions with low free bits complexity.

Roughly speaking, a veri�er uses f free bits if, after making its queries to the

proof, there at most 2

f

possible answers that make him accept (this is why f

cannot be larger than the number of query bits.) This de�nition has been used

almost always, including in H�astad's papers onMax Clique (where he used the

free bit-e�cient complete test.) One exception is [5], where an adaptive version

of the de�nition of free bits is used. We also mention that the free bit parameter

has almost always been used for veri�ers with perfect completeness (Bellare et

al. [5] also show that one can always reduce the free bit complexity by reducing

the completeness.) However, the currently best hardness result forMin Vertex

Cover is due to H�astad [17] and uses a veri�er with low free bit complexity and

completeness 1� �, for any � > 0.

Even in the simple case of the non-adaptive de�nition and of perfect com-

pleteness there were basically no result about PCP classes with low free bit

complexity collapsing to P. The only result was that, with perfect completeness,

it is impossible to characterize NP with only 1 free bit, while log 3 free bits

are su�cient [5]. It has been conjectured that with log3 free bits and perfect

completeness it is possible to achieve any soundness.

Our result. Under the weak (non-adaptive) de�nition of free bits, we prove

that a veri�er with perfect completeness, that uses f free bits, and whose sound-

ness is less than 2

f

=2

2

f

�1

can only capture P.

Source of our improvement. We adapt the previously described reductions

and algorithms.

Organization of the Paper. Basic de�nitions on constraint satisfaction prob-

lems, PCP, and gadgets are given in Section 2. We prove a simple combinatorial



result in Section 3. We present the Max SAT approximation algorithms in Sec-

tion 4 and the Max kCSP approximation algorithms (as well as the implica-

tions with PCP classes) in Sections 5 and 6. The free bit parameter is discussed

in Section 7. Several proofs are omitted or sketched in this extended abstract.

The reader is referred to the full version of this paper for more details.

2 De�nitions

For an integer n, we denote by [n] the set f1; : : : ; ng. We begin with a de�nition

of constraint satisfaction problem, that uni�es the de�nitions of all the problems

we are interested in.

De�nition1. A (k-ary) constraint function is a boolean function f : f0; 1g

k

!

f0; 1g.

When it is applied to variables x

1

; : : : ; x

k

(see the following de�nitions) the

function f is thought of as imposing the constraint f(x

1

; : : : ; x

k

) = 1.

De�nition2. A constraint family F is a �nite collection of constraint functions.

The arity of F is the maximum number of arguments of the functions in F . A

constraint C over a variable set x

1

; : : : ; x

n

is a pair C = (f; (i

1

; : : : ; i

k

)) where

f : f0; 1g

k

! f0; 1g is a constraint function and i

j

2 [n] for j 2 [k]. The

constraint C is said to be satis�ed by an assignment a = a

1

; : : : ; a

n

to x

1

; : : : ; x

n

if C(a

1

; : : : ; a

n

)

def

= f(a

i

1

; : : : ; a

i

k

) = 1. We say that constraint C is from F if

f 2 F .

We will sometimes write a constraint (f; (i

1

; : : : ; i

k

)) as (f(x

i

1

; : : : ; x

i

k

) = 1).

De�nition3 (Constraint famillies). A literal is either a variable or the nega-

tion of a variable. We de�ne the following constraint families:

kCSP: the set of all h-ary functions, h � k.

kCSP

i

: the set of all k-ary functions with i satisfying assignments.

kSAT: the set of all functions expressible as the or of at most k literals.

SAT: the set of all functions expressible as the or of literals.

A constraint function f(x

1

; : : : ; x

k

) is linear if either f(x

1

; : : : ; x

k

) = x

1

�: : :�x

k

or f(x

1

; : : : ; x

k

) = 1� x

1

� : : :� x

k

, where � is the xor operator.

De�nition4 (Constraint satisfaction problems). For a function family F ,

Max F is the optimization problem whose instances consist of m weighted con-

straints from F, on n variables, and whose objective is to �nd an assignment to

the variables which maximizes the total weight of satis�ed constraints.

Note that De�nitions 3 and 4 give rise to the problemsMax SAT,Max 3SAT,

and Max kCSP, that are de�ned in the standard way.



Given an instance ' of a constraint satisfaction problem, we denote by

LIN (') the set of linear constraints of '.

GL1-Max F

5

is the restriction of Max F to instances where all the con-

straints are simultaneously satis�able.

We say that a maximization problem is r-approximable r < 1 if there exists

a polynomial-time algorithm that, for any instance, �nds a solution whose cost

is at least r times the optimum (such a solution is said to be r-approximate).

We also need the de�nition of gadgets.

De�nition5 (Gadget [5]). For � 2 R, a function f : f0; 1g

k

! f0; 1g, and

a constraint family F : an �-gadget reducing f to F is a �nite collection of

constraints C

j

from F over primary variables x

1

; : : : ; x

k

and auxiliary vari-

ables y

1

; : : : ; y

n

, and associated real weights w

j

� 0, with the property that,

for boolean assignments a to x

1

; : : : ; x

k

and b to y

1

; : : : ; y

n

, the following are

satis�ed:

(8a : f(a) = 1) (8b) :

X

j

w

j

C

j

(a;b) � �; (1)

(8a : f(a) = 1) (9b) :

X

j

w

j

C

j

(a;b) = �; (2)

(8a : f(a) = 0) (8b) :

X

j

w

j

C

j

(a;b) � �� 1: (3)

Gadgets can be used in approximation algorithms in the following way [26].

Assume we have a satis�able instance of a constraint satisfaction problem, with

constraints of total weightm, and there is �-gadget reducing each such constraint

to 2SAT. Then we can build a 2SAT instance  whose optimum is �m and such

that any solution of cost c for  has cost at least c�(��1)m for the old instance.

In a more general setting, assume that, for i = 1; : : : ; k, we have type-i

constraints of total weight w

i

, and that there exists an �

i

-gadget reducing type-

i constraints to 2SAT. Assume also that the whole CSP instance be satis�able.

Then the optimum of the instance is

P

i

w

i

; applying all the gadgets we have a

2SAT instance  whose optimum is

P

i

�

i

w

i

.

Applying a �-approximate algorithm to  , we obtain a solution for the orig-

inal instance whose cost is at least

X

i

��

i

w

i

�

X

i

(�

i

� 1)w

i

=

X

i

(� � (1� �)(�

i

� 1))w

i

:

In the following, we will refer to such kind of reductions as the TSSW method.

The FGW [15, 11] algorithm for Max 2SAT is :931-approximate.

We conclude this section with the de�nition of PCP classes and their relation

with the approximability of Max kCSP.

5

GL1 stands for \Gap Location 1", which is the terminology of Petrank [24].



De�nition6 (Restricted veri�er). A veri�er V for a language L is a proba-

bilistic polynomial-time Turing machine that during its computations has oracle

access to a string called proof. We denote by ACC[V

�

(x)] the probability over

its random tosses that V accepts x when accessing proof �. We also denote by

ACC[V (x)] the maximum of ACC[V

�

(x)] over all proofs �. We say that

{ V has query complexity q (where q is an integer) if for any input x, any proof

�, and any outcome of its random bits, V reads at most q bits from �;

{ V has soundness s if, for any x 62 L, ACC[V (x)] � s;

{ V has completeness c if, for any x 2 L, ACC[V (x)] � c. V has perfect

completeness if it has completeness 1.

De�nition7 (PCP classes). L 2 PCP

c;s

[log; q] if L admits a veri�er V with

completeness c, soundness s, query complexity q, and that uses O(logn) random

bits, where n is the size of the input. We say that L 2 naPCP

c;s

[log; q] if V , in

addition, queries the q bits non-adaptively.

Theorem8 [2]. If GL1-Max kCSP is r-approximable, then naPCP

1;s

[log; k] �

P for any s < r.

3 Some Applications of the Linear Algebra Method

The linear algebra method in combinatorics [4] is a collection of techniques that

prove combinatorial results making use of the following well-known fact: if we

have a set of n-dimensional vectors that are linearly independent, then the size

of the set is at most n. In this section we will provide some de�nitions and prove

easy bounds using linear algebra. Despite the triviality of the results, they will

have powerful applications in Sections 5 and 6.

In the following, we consider vectors in f0; 1g

n

and denote by � the bitwise

exclusive-or operation between vectors.

De�nition9. A satisfying table for a constraint function f : f0; 1g

k

! f0; 1g

with s satisfying assignments is a s � k boolean matrix whose rows are the

satisfying assignments of f .

The satisfying table is not unique since the matrix representation imposes an

order to the assignments. Even if it would be more natural to represent the

satisfying assignments as a set of vectors rather than a matrix, the latter rep-

resentation is more suitable for combinatorial arguments, especially because we

can sometimes see it as a set of k vectors of length s.

De�nition10. A collection x

1

; : : : ;x

m

of elements of f0; 1g

n

is k-dependent if

there are values a

0

; : : : ; a

m

2 f0; 1g such that 1 � jfi = 1; : : : ;m : a

i

= 1gj � k

and a

1

x

1

� : : :� a

m

x

m

= a

0

1. A collection is dependent if it is k-dependent for

some k. A collection is (k-)independent if it is not (k-)dependent.



More intuitively, the vectors x

1

; : : : ;x

m

are k-independent if any xor of at most

k of them is di�erent from 0 and from 1.

Lemma11. If x

1

; : : : ;x

m

2 f0; 1g

n

are 2-independent, then m � 2

n�1

�1. The

bound is tight.

Proof. All the 2m+2 vectors 0;x

1

; : : : ;x

m

;1; (1�x

1

); : : : ; (1�x

m

) are distinct.

Therefore 2m+ 2 � 2

n

. We omit the proof of tightness. ut

Lemma12. If x

1

; : : : ;x

m

2 f0; 1g

n

are independent, then m � n�1. The bound

is tight.

Proof. The m+ 1 vectors 1;x

1

; : : : ;x

m

are distinct and linearly independent in

the ordinary sense. Therefore m+ 1 � n. We omit the proof of tightness. ut

Let now f be a k-ary constraint function with s satisfying assignments, and

M be a satisfying table for f . If the columns of M are 2-independent, then

k � 2

s�1

�1, that is s � 1+ dlog(k+1)e, which implies s = 2 if k = 1 and s � 3

if k � 2. If the columns of M are independent, then we can draw the stronger

statement s � k + 1.

4 The Max SAT Algorithms

Lemma13. If GL1-Max SAT (resp. GL1-Max 3SAT) restricted to instances

without unit clauses is r-approximable, then it is r-approximable for arbitrary

instances.

Proof (Sketch). Let ' be a generic instance of GL1-Max SAT. We will show

how to produce an instance  of GL1-Max SAT with no unit clauses such that

given an assignment satisfying a fraction r of the clauses of  we are able to �nd

an assignment satisfying a fraction at least r of the clauses of '. If ' has no unit

clauses then we are done. Otherwise we apply the following transformation:

1. For any unit clause (x) 2 ', we substitue 1 in any occurrence of x in '.

2. For any unit clause (�x) 2 ', we substitue 0 in any occurrence of x in '.

The transformation preserves satis�ability, does not contradict any clause, sat-

is�es a certain number s � 0 of clauses. An assignment that satis�es a fraction

r of the clauses in the new instance (i.e. r(m � s) clauses) can be extended to

an assignment to the old instance that satis�es r(m� s)+ s � rm clauses. After

the transformation, there can still be unit clauses (produced from the shrinking

of formerly longer clauses); in this case we recurse until we are left with a for-

mula without unit clause (the process must eventually terminate after a linear

number of transformations, since each transformation step reduces the size of

the input.) ut

Lemma14. There exists a polynomial-time :826-approximate algorithm for

GL1-Max 3SAT without unit clauses.



Proof (Sketch). We adapt the analysis of [26]. ut

Lemma15. There exists a polynomial-time :8-approximate algorithm for GL1-

Max SAT without unit clauses.

Proof (Sketch). We use: (i) Johnson's algorithm [18]; (ii) the FGW algorithm,

extended to length-3 and lenght-4 clauses with the TSSW method, and to longer

clauses with a method of [15]; (iii) we solve the 2SAT sub-instance and then we

apply a method of [10]. ut

The gadget for lenght-4 clauses is new, as well as the idea of combining the

reduction technique of [10] with a 2SAT algorithm.

Theorem16. There exists a :8-approximate algorithm for GL1-Max SAT and

a :826-approximate algorithm for GL1-Max 3SAT.

5 The Max kCSP Algorithm

Lemma17. There exists a polynomial-time algorithm that, given an instance of

Max kCSP ' and a set of linear constraints S, such that ('[ S) is satis�able,

produces an assignment that satis�es all the constraints of S and a fraction

(k + 1)=2

k

of the constraints of '.

Proof. We say that the instance ('; S) is simpli�ed if, for any constraint C of

', C is not linear, the columns of the satisfying table of C are independent, and

any satisfying assignment of C is consistent with S. Observe that if h � k is

the arity of a constraint C in a simpli�ed instance, then, by Lemma 12 C has

at least h + 1 satisfying assignments, and a random assignment satis�es it with

probability at least (h + 1)=2

h

� (k + 1)=2

k

. If the instance is simpli�ed, then

we take a random feasible solution for S; it satis�es all constraints of S and, on

the average, a fraction at least (k + 1)=2

k

of the total weight of the constraints

of '. Derandomization is possible with the method of conditional expectation. If

the instance is not simpli�ed then we repeatedly apply the following procedure

until we are left with a simpli�ed instance:

1. If 9C 2 ' that is linear, then ' := ' � fCg and S := S [ fCg;

2. If 9C � (f(x

i

1

; : : : ; x

i

k

) = 1) 2 ' the columns whose satisfying table are not

independent, then C enforces a linear relation x

i

j

= a

0

�

L

h 6=j

a

h

x

i

h

. Then

we replace C by (f(x

i

1

; : : : ; x

i

j�1

; a

0

�

L

h 6=j

a

h

x

i

h

; x

i

j+1

; : : : ; x

i

k

) = 1 and

we add the equation x

i

j

= a

0

�

L

h 6=j

a

h

x

i

h

to S.

3. If 9C 2 ' one whose satisfying assignment is inconsistent with S, then we

remove such satisfying assignment from the satisfying table of C.

Note that all the actions above reduce the size of ', so we can only perform a

linear number of actions. After an action is performed that transforms ('; S)

into ('

0

; S

0

), the following invariants are preserved:



1. There exists an assignment satisfying ('

0

[ S

0

).

2. A solution satisfying S

0

and a fraction r of the constraints of '

0

also satis�es

S and a fraction r of the constraints of '.

ut

Theorem18. There exists a polynomial-time (k+1)=2

k

-approximate algorithm

for GL1-Max kCSP.

Proof. Let ' be a satis�able instance of Max kCSP. Apply the algorithm of

Lemma 17 to the instance ('; ;). ut

Theorem19. For any q � 3, for any s < (q + 1)=2

q

, naPCP

1;s

[log; q] � P.

The bound of Lemma 18 above is 1=2 for Max 3CSP. We will do better

with semide�nite programming.

6 The Max 3CSP Algorithm

Lemma20. Assume that GL1-Max 3CSP is r-approximable in instances '

such that all constraints C of ' satisfy the following conditions

1. the columns of a satisfying table of C are 2-independent;

2. either C is linear or all its satisfying assignments are consistent with

LIN (').

Then GL1-Max 3CSP is r-approximable.

Proof (Sketch). Given a general instance ' of GL1-Max 3CSP, we reduce it

to an instance  satisfying properties 1 and 2. As usual, we run a series of

modi�cation steps until the required instance is generated. Each step is as follows

1. If a constraint C � (f(x

i

1

; : : : ; x

i

k

) = 1) has a 2-dependent satisfying table,

then there are indices j; h 2 [k] and values a

0

; a

h

2 f0; 1g such that x

i

j

=

a

0

� a

h

x

i

h

Then, we replace each occurrence of x

i

j

by a

0

� a

h

x

i

h

.

2. If a non-linear constraint C has an assignment that is inconsistent with

LIN ('), then we remove such assignment from the satisfying table of C.

ut

Lemma21. GL1-Max 3CSP restricted to the instances of Lemma 20 is :5145-

approximable.

Proof. From Lemma 11, ' has no unit constraint,the 2-ary constraints can only

be from 2SAT, the 3-ary constraints must have at least three satisfying assig-

ments. Let m

2

be the total weight of 2SAT constraints, m

(3)

, m

(4)

, m

(5)

, m

(6)

,

m

(7)

be the total weight of 3-ary constraints that have, respectively, 3, 4, 5,

6, and 7 satisfying assignments. We also let m

(4L)

be the total weight of 3-ary

linear constraints and m

(4O)

= m

(4)

�m

(4L)

.

We use to algorithms and take the best solution.



In the �rst algorithm, we simply consider a random feasible solution for

LIN ('). On the average, the total weight of satis�ed constraints is at least

3

4

m

2

+

3

8

m

(3)

+

4

8

m

(4O)

+ m

(4L)

+

5

8

m

(5)

+

6

8

m

(6)

+

7

8

m

(7)

(4)

Derandomization is possible using the method of conditional expectation.

The other algorithm uses the TSSW method and the FGW algorithm. We

have to �nd gadgets reducing the various possible 3-ary constraints to 2SAT

constraints. The new constructions (and the old ones that we use) are listed in

Table 3. All the gadgets are computer-constructed using the linear programming

method of [26] and are the best possible. Using the FGW algorithm with the

Source Target � Due to

Constraint Constraint

3SAT 2SAT 3:5 [26]

4SAT 2SAT 6 This paper

3CSP

3

2SAT 5:5 This paper

3CSP

4

2SAT 5:5 This paper

not linear

3CSP

4

2SAT 11 [5]

linear

3CSP

5

2SAT 8:25 This paper

3CSP

6

2SAT 5:5 This paper

Table 3. Gadgets used.

TSSW method and the gadgets of Table 3, we have an algorithm that satis�es

constraints of total weight at least

:931m

2

+:6205m

(3)

+:241m

(4L)

+:6205m

(4O)

+:43075m

(5)

+:6205m

(6)

+:7585m

(7)

(5)

If we take the maximum of Equation (4) and (5), we have that the total weight

of satis�ed constraints is at least :5145m, where m = m

2

+m

(3)

+m

(4L)

+m

(4O)

+

m

(5)

+m

(6)

+m

(7)

. ut

Theorem22. There exists a polynomial-time :5145-approximate algorithm for

GL1-Max 3CSP.

Theorem23. naPCP

1;:514

[log; 3] � P.



7 Free Bits

We de�ne free bits as a property of boolean functions. There are two possible

de�nitions.

De�nition24. A function f : f0; 1g

q

! f0; 1g uses f non-adaptive free bits if

it has at most 2

f

satisfying assignments. It uses f adaptive free bits if it can

be expressed by a DNF with at most 2

f

terms such that any two terms are

inconsistent. A PCP veri�er uses f adaptive (resp. non-adaptive) free bits if for

any input, and any �xed random string, its computation (which is a function of

the proof) can be expressed as a boolean function that uses f adaptive (resp.

non-adaptive) free bits. FPCP

c;s

[log; f ] is the class of languages admitting a PCP

veri�er with logarithmic randomness, completeness c, soundness s, that uses f

adaptive free bits. The class naFPCP

c;s

[log; f ] is de�nes analogously by using

the non-adaptive free bit parameter.

Regarding recent constructions of veri�ers optimized for the free bit parameter,

the veri�ers that use the Complete Test [16] are non-adaptive, while the veri�er

that uses the Extended Monomial Basis Test [5] is adaptive.

We now state some results (the �rst ones with f > 1) about naFPCP classes

that collapse to P.

Theorem25. The following statements hold:

1. naFPCP

1;s

[log; f ] � naPCP

1;s

[log; 2

2

f

�1

� 1].

2. naFPCP

1;s

[log; f ] � P for all s > (2

f

)=2

2

f

�1

and f � log 3.
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