
Parallel Approximation Algorithms

by Positive Linear Programming

�

Luca Trevisan

Universit�a di Roma La Sapienza

Dipartimento di Scienze dell'Informazione

Via Salaria 113, I-00198 Roma, Italy. Email: trevisan@dsi.uniroma1.it.

Url: http://www.dsi.uniroma1.it/�trevisan

September 30, 1996

Abstract

Several sequential approximation algorithms for combinatorial optimization problems are

based on the following paradigm: solve a linear or semide�nite programming relaxation, then

use randomized rounding to convert fractional solutions of the relaxation into integer solutions

for the original combinatorial problem. We demonstrate that such a paradigm can also yield

parallel approximation algorithms by showing how to convert certain linear programming re-

laxations into essentially equivalent positive linear programming [LN93] relaxations that can be

near-optimally solved in NC. Building on this technique, and �nding some new linear program-

ming relaxations, we develop improved parallel approximation algorithms for Max Sat, Max

Directed Cut, and Max kCSP. The Max Sat algorithm essentially matches the best ap-

proximation obtainable with sequential algorithms and has a fast sequential version. The Max

kCSP algorithm improves even over previous sequential algorithms. We also show a connection

between probabilistic proof checking and a restricted version of Max kCSP. This implies that

our approximation algorithm for Max kCSP can be used to prove inclusion in P for certain

PCP classes.

1 Introduction

Several approximation algorithms for combinatorial optimization problems are based on the fol-

lowing paradigm: �nd a mathematical programming (usually, linear or semide�nite programming)

relaxation of the problem, that can be solved in polynomial time, and then prove that any fea-

sible \fractional" solution for the relaxation can be rounded to yield a feasible solution for the

combinatorial problem whose measure is within a multiplicative factor r from the measure of the

original fractional solution. Thus, if we round an optimum solution for the relaxation we will get

an r-approximate

1

solution for the combinatorial problem. A well known early example of this

technique is Hochbaum's approximation algorithm for Min Weighted Vertex Cover [Hoc82],

�
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We say that a solution is r-approximate (r < 1) for an instance of a combinatorial problem if its measure is within

a multiplicative factor of r from the optimum. See e.g. [BC93] for formal de�nitions about optimization problems

and approximation algorithms.
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where a simple deterministic rounding scheme is used. However, randomized rounding schemes

(�rst introduced by Raghavan and Thompson [RT87]) are in general more e�cient and are usually

derandomizable. A very nice application of randomly rounding a linear programming (LP) relax-

ation is Goemans and Williamson's 3/4-approximate algorithm forMax Sat [GW94] that achieves

the same performance of a previous algorithm by Yannakakis [Yan94] but that is much easier to

describe and analyse. Outstanding approximation results have been obtained in the last two years

by randomly rounding semide�nite relaxations of combinatorial problems. Starting with the cele-

brated results by Goemans and Williamson [GW95], who showed that Max Cut and Max 2Sat

are :878-approximable with this technique, an increasing number of results have been obtained using

semide�nite programming, including better results forMax 2Sat [FG95] and new results for graph

coloring [KMS94], and the \betweeness" problem [CS95]. Shmoys' recent survey on approximation

algorithms [Shm95] contains other applications of linear and semide�nite programming.

Unfortunately, such powerful techniques do not seem to be useful to develop e�cient parallel

approximation algorithms, the main reason being that both linear and semide�nite programming

not only are P-hard problems, but it is even P-hard to approximate them [Ser91].

However, there exists a restricted version of linear programming (called Positive Linear Pro-

gramming, PLP for short) that can be near-optimally solved using an NC algorithm

2

by Luby and

Nisan [LN93]. Luby and Nisan observed that their algorithm could be used to approximate Min

Set Cover in NC within a factor (1 + o(1)) ln�, were � is the maximum cardinality of any set

in the family, but, to the best of our knowledge, PLP has never been used to give relaxations of

combinatorial problems in combination with random rounding schemes. Indeed, PLP is seemingly a

very restricted version of linear programming, capturing packing and covering problems but nearly

nothing else. Contrary to this intuition, we show that some good linear programming relaxations

can be \translated" in a PLP form, thus yielding NC approximation algorithms.

Reductions to PLP. As a preparatory technical step, we prove that given a linear program that

satis�es a certain set of properties, we can �nd near optimal solutions for it in NC by transforming

it into an essentially equivalent positive linear program and then using Luby and Nisan's algorithm.

The Max Sat problem. We then consider the Max Sat problem, and its linear programming

relaxation due to Goemans and Williamson [GW94]. In the Max Sat problem we are given a set

fC

1

; : : : ; C

m

g of disjunctive clauses over variables fx

1

; : : : ; x

n

g and non-negative weights w

1

; : : : ; w

m

for the clauses. We seek for an assigment of truth value to the variables fx

1

; : : : ; x

n

g that maximizes

the sum of the weights of the satis�ed clauses. We prove that Goemans and Williamson's LP

relaxation can be near-optimally solved in NC using our reduction to PLP. We also show how

to introduce a minor change in Goemans and Williamson's arguments and thus prove the 3/4-

approximation guarantee assuming only 5-wise independence. As a consequence, we have that the

Max Sat problem is (3=4 � o(1))-approximable in NC. Since PLP can be solved sequentially in

quasi-linear time, our translation also implies a (3=4�o(1))-approximate sequential algorithm that

runs in

~

O(m) time, where m is the number of clauses. Recall that the best approximation that is

currently achievable forMax Sat using sequential algorithms [GW94, GW95, FG95] is roughly :76,

and to obtain such approximation it is necessary to solve semide�nite programs; Yannakakis' 3=4-

approximate algorithm [Yan94] requires to solve max 
ow problems. Our algorithm achieves similar

approximation with a remarkably faster running time. The best previous NC approximation for this

problem was 1/2, due to Bongiovanni et al. [BCA91] and, independentely, to Hunt et al. [HMR

+

93]

2

Recall that, informally, an NC algorithm is an algorithm that runs on a parallel computer in poly-logarithmic

time using a polynomial number of processors (see e.g. [BC93] for formal de�nitions).
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using techniques of Luby [Lub86]. More generally, [BCA91, HMR

+

93] developed NC approximation

algorithms for all the problems in the Max SNP [PY91] class. In particular, their algorithm for

Max Sat requires a quadratic number of processors. More recently, Haglin [Hag92] presented an

NC 1/2-approximate algorithm for Max 2Sat that uses a linear number of processors, and Serna

and Xhafa [SX95] showed that a linear number of processors is su�cient to 1/2-approximate the

general Max Sat problem.

The Max kCSP problem. For any k � 1, the Max kCSP problem is the variation of the

Max Sat problem where any clause (also called constraint) is allowed to be an arbitrary boolean

function over k variables. This problem is somehow implicit in [PY91] and has been de�ned in

[KMSV94] (it has also been called \Max k Function Sat" in [AKK95] and \Max k-GSAT" in

[Pap94]). The interest in this problem has been mainly related to the fact that it can express any

Max SNP problem. Variations of this problem have also been studied due to their applications to

the �eld of Arti�cial Intelligence (see [LW96] and the references therein). We show that in order to

r-approximate this problem it is su�cient to r-approximate its restricted versionMax k Conj Sat,

where each clause is a conjunction of literals. For both problems, only 2

�k

-approximate (see e.g.

[KMSV94]) sequential algorithms are known. The same approximation factor is easily achievable

in NC using ideas from [Lub86, BCA91, HMR

+

93]. We de�ne a linear programming relaxation of

the Max k Conj Sat problem and we show that a proper random rounding scheme can be used

to yield a 2

1�k

approximation. The LP relaxation can be near-optimally solved in NC, and so we

obtain an NC (2

1�k

� o(1))-approximate algorithm. Using our reduction, both algorithms extend

to the general Max kCSP problem.

The Max Directed Cut problem. In the Max Directed Cut problem, we are given a

directed graph G = (V;E) and non-negative weights fw

(u;v)

g

(u;v)2E

and we search for a partition

(V

1

; V

2

) of the vertices that maximizes the sum of the weights of the edges whose �rst endpoint is

in V

1

and whose second endpoint is in V

2

. Since it is well known that Max Directed Cut can

be seen as a special case of Max 2 Conj Sat, our result for Max kCSP implies that we have

an NC (1=2 � o(1))-approximate algorithm for Max Directed Cut. Previous results [Lub86]

implied that this problem was 1=4-approximable in NC. Sequential approximation algorithms for

this problem are, however, far better: Feige and Goemans [FG95] (improving a previous :796-

approximate algorithm by Goemans and Williamson [GW95]) recently gave a :855-approximate

algorithm using semide�nite programming.

Relation to PCP's. Finally, we show that an approximation algorithm for Max k Conj Sat

can be used to approximate the probability of acceptance of probabilistic veri�ers that adaptively

read k bits. On the one hand this reduction yields the NP-hardness of approximatingMax k Conj

Sat (and thusMax kCSP) within a factor 2

�0:09k

, on the other hand, together with our improved

approximation algorithm, it can be used to show that certain classes of languages de�ned in terms

of probabilistic proof checking are contained in P. Such results strengthen previous ones by Bellare,

Goldreich and Sudan [BGS95].

Related and independent results After completing this research, we learnt that Cristina

Bazgan independentely used linear programming and random rounding to approximate Max k

Conj Sat within a factor e=(e

1=k

+ 1)

k

[Baz96]. Such approximation is better than 2

�k

, but is

worse than 2

1�k

. Lau and Watanabe [LW96] used linear programming and random rounding to

approximate the Max 2CSP problem over non-boolean domains: both their relaxations and their

3



rounding schemes are di�erent from ours. Motivated by the results of the present paper, a :3674-

approximate algorithm forMax 3 Conj Sat has been recently developed in [TSSW96]. Seemingly,

such an algorithm does not extend to the generalMax k Conj Sat problem, and, since it involves

semide�nite programming, it cannot be easily parallelized.

Organization of the paper

In Section 2 we review some known results; in Section 3 we introduce a general technique to reduce

a certain class of linear programming problems to PLP. Section 4 is devoted to the (3=4 � o(1))-

approximate algorithm for Max Sat. The algorithms for Max kCSP and the applications to the

Max Directed Cut problem are discussed in Sections 5, while the applications to probabilistically

checkable proofs are presented in Section 6. Some open questions are discussed in Section 7.

2 Preliminaries

In what follows we will denote by [n] the set f1; : : : ; ng. Boldface letters will be used to denote

vectors, e.g. u = (u

1

; : : : ; u

m

). Sometimes we will use 1 to denote a vector all whose entries are

equal to 1. We also use the notations

~

O(f)

def

= O(f(log f)

O(1)

) and poly(f)

def

= O(f

O(1)

). Given an

instance I of Max Sat we let opt

MS

(I) be the measure of an optimum solution for I.

De�nition 1 (Positive Linear Programming [LN93]) A maximization linear program is said

to be an instance of positive linear programming (PLP for short) if it is written as

max c

T

x

s.t.

Ax � b

x � 0

where all the entries of A, b and c are non-negative.

Maximization positive linear programs are also called fractional packing problems. Luby and

Nisan developed a very e�cient algorithm for approximating positive linear programming problems.

Theorem 2 ([LN93]) There exists a parallel algorithm that given in input a maximization in-

stance P of PLP and a rational � > 0 returns a feasible solution for P whose cost is at least (1� �)

times the optimum. Furthermore, the algorithm runs in time polynomial in 1=� and logN using

O(N) processors, where N is the number of non-zero entries in P .

The following result is useful to derandomize parallel algorithms where randomization is only

needed to generate random variables with limited independence.

Theorem 3 (see e.g. [LW95, Section 16]) A pairwise independent distribution of n random

variables of size O(n) is explicitely constructable in NC. For any k > 2, a k-wise independent

distribution of n random variables of size O(n

k

) is explicitely constructable in NC.
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3 On LP Problems that Are Reducible to PLP

In this section we will show that a certain class of linear programs can be approximately solved in

NC by reducing them to instances of PLP and then using Luby and Nisan's algorithm.

De�nition 4 ((
; k)-form) Let 
 > 0, k 2 Z

+

be constants; we say that a linear program is in

(
; k)-form if it is written as

max c

T

z

s.t.

A

(1)

z+A

(2)

x�A

(3)

x � b

0 � x � 1

0 � z � 1

where z = (z

1

; : : : ; z

m

), x = (x

1

; : : : ; x

n

) and the following properties hold:

1. All the entries of c and b are non negative.

2. All the entries of A

(1)

; A

(2)

; A

(3)

are in f0; 1g.

3. Any row of A

(1)

has at most one non-zero entry.

4. For any j 2 [m],

P

n

i=1

P

h:a

(1)

h;j

6=0

(a

(2)

h;i

+ a

(3)

h;i

) � k.

5. The solution x

1

= : : : = x

n

= z

1

= : : : = z

m

= 
 is feasible.

The aboved de�nition is admittedly quite arti�cial. It tries to capture the kind of nice properties

that are shared by LP relaxation of certain combinatorial problems. In this paper we deal with

satis�ability problems where there are clauses de�ned over boolean variables, and we want to

�nd a setting of the variables that satis�es the maximum number of clauses. A natural way of

formulating such problems is to use one LP variable for any clause and one for any boolean variable;

this motivates the fact that we distinguish between z variables (for clauses) and x variables (for

boolean variables) and we let the objective function depend only on the z variables. It is also

natural to ask such variables to be between zero and one (one obtains the original combinatorial

problem enforcing the integrality constraints x 2 f0; 1g

n

, z 2 f0; 1g

m

). The constraints of the �rst

kind express the fact that, for any j, z

j

can be one only if the variables occurring in the j-th clause

satisfy a given property. This explains Property 3 in the de�nition: any constraint involves at most

one z variable. Property 4 says that, for any j, the value of z

j

is constrained by at most k of the x

variables. This is not true for the general Max Sat problem, but it will be easy to overcome this

shortcoming.

The main result of this section is that we can e�ciently �nd in NC near optimal solutions for

LP in (
; k) form.

Theorem 5 For any �xed constants 
 > 0 and k 2 Z

+

, there exists a parallel algorithm that, given

in input a linear program in (
; k) form and a rational � > 0, �nds a feasible (1 � �)-approximate

solution in time poly(1=�; logN) using O(N) processors, where N is the size of the input.

Proof: We will essentially describe an L-reduction [PY91] from LP in (
; k) form to PLP. Let

(LP1) be the following program in (
; k) form.
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max c

T

z

s.t.

A

1

z+A

2

x�A

3

x � b

0 � x � 1

0 � z � 1

(LP1)

Let z = (z

1

; : : : ; z

m

), x = (x

1

; : : : ; x

n

). We introduce new variables y = (y

1

; : : : ; y

n

) with the

property that y

i

= 1 � x

i

. Using proper substitutions, we get the linear program (LP2), that is

clearly equivalent to (LP1).

max c

T

z

s.t.

A

1

z+A

2

x+A

3

y � b+A

3

1

x+ y = 1

x � 0

y � 0

0 � z � 1

(LP2)

By using such substitutions we have obtained a formulation where all the entries are non-negative.

Yet, we have introduced equality constraints that are not admitted in PLP. We deal with this new

problem by relaxing the equality constraints to the inequalities x+ y � 1 and then modifying the

objective function in such a way that it is never \convenient" to satisfy strictly such inequalities.

More formally, we introduce a third (and last) formulation, that we call (LP3). For any i 2 [n] we

let

occ

i

=

m

X

j=1

c

j

X

h:a

(1)

h;j

6=0

a

(3)

(h;i)

be the weighted number of constraints where variable x

i

occurs (with a negative sign) together

with variable z

j

, let also occ = (occ

1

; : : : ; occ

n

). (LP3) is the following positive linear program.

max c

T

z+ occ

T

(x+ y)

s.t.

A

1

z+A

2

x+A

3

y � b+A

3

1

x+ y � 1

x � 0

y � 0

0 � z � 1

(LP3)

In the following we will prove that a good approximate solution for (LP3) is (possibly, after small

changes) also a good approximate solution for (LP1). Let Z

�

LP1

be the optimum value of (LP1),

Z

�

LP3

the optimum value of (LP3).

We �rst show that the optimum of (LP3) is not much larger than the optimum of (LP1).

Claim 1 Z

�

LP3

� Z

�

LP1

(1 + k)=
.
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Proof: [Of Claim 1] Property 5 in the de�nition of (
; k) form ensures that Z

�

LP1

�

P

j


c

j

. On

the other hand, the constraints on z, x and y imply that Z

�

LP3

�

P

j

c

j

+

P

i

occ

i

. Let us now

extimate

P

i

occ

i

; from the de�nition of occ and from Property 4 in De�nition 4 we have that

X

i

occ

i

=

X

i

X

j

c

j

X

h:a

(1)

h;j

6=0

a

(3)

h;i

=

X

j

c

j

X

i

X

h:a

(1)

h;j

6=0

a

(3)

h;i

� k

X

j

c

j

:

Thus, Z

�

LP3

� (k + 1)

P

j

c

j

� (k + 1)=
Z

�

LP1

. 2

The following two claims will imply that a feasible solution for (LP3) can be converted into a

feasible solution for (LP1) without increasing the additive error.

Claim 2 If (z;x) is a feasible solution for (LP1) of cost C, then (z;x;1� x) is a feasible solution

for (LP3) of cost C +

P

i

occ

i

.

Claim 3 Given a feasible solution (z;x;y) for (LP3) of cost C+

P

i

occ

i

a feasible solution (z

0

;x

0

)

for (LP1) of cost at least C exists and can be computed in NC using O(N) processors in poly(logN)

time.

Proof: [Of Claim 3] Let (z

0

;x

0

) be the de�ned as follows

x

0

= x z

0

j

= minfz

j

; min

h:a

(1)

h;j

6=0

fb

h

�

X

i

a

(2)

h;i

x

i

+

X

i

a

(3)

h;i

x

i

gg :

It is easy to see that (z

0

;x

0

) is feasible for (LP1) and that it can be computed with the time and

processor bound required in the claim. It will take some more e�orts to bound its cost. Let J be

the set of indices j such that z

0

j

6= z

j

. For any such j 2 J , let h

j

be one of the indices (say, the

smallest one) such that

a

(1)

h

j

;j

6= 0 z

0

j

= b

h

j

�

X

i

a

(2)

h

j

;i

x

i

+

X

i

a

(3)

h

j

;i

x

i

:

Since we have that

z

j

� b

h

j

�

X

i

a

(2)

h

j

;i

x

i

+

X

i

a

(3)

h

j

;i

(1� y

i

) ;

we can derive

z

j

� z

0

j

�

X

i

a

(3)

h

j

;i

(1� (x

i

+ y

i

)) :

Thus

X

j

c

j

z

j

�

X

j

c

j

z

0

j

=

X

j2J

c

j

(z

j

� z

0

j

) �

X

j2J

c

j

X

i

a

(3)

h

j

;i

(1� (x

i

+ y

i

)) �

X

i

occ

i

(1� (x

i

+ y

i

))

Since we assumed that

X

j

c

j

z

j

+

X

i

occ

i

(x

i

+ y

i

) = C +

X

i

occ

i

we have that

X

j

c

j

z

0

j

� C :

2
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Claim 4 Let (z;x;y) be a (1� �
=(k + 1)) approximate solution for (LP3), and let (z

0

;x

0

) be the

feasible solution for (LP1) computed as in Claim 3. Then (z

0

;x

0

) is a (1� �)-approximate solution

for (LP1).

Proof: [Of Claim 4] Let cost

3

(respectively, cost

1

) be the cost of (z;x;y) (respectively, of (z

0

;x

0

)).

From Claim 3 it follows that cost

1

� cost

3

�

P

i

occ

i

. From Claim 2 we have that Z

�

LP1

� Z

�

LP3

�

P

i

occ

i

, and thus Z

�

LP1

� cost

1

� Z

�

LP3

� cost

3

. It follows that.

cost

1

Z

�

LP1

= 1�

Z

�

LP1

� cost

1

Z

�

LP1

� 1�

Z

�

LP3

� cost

3

Z

�

LP1

� 1� 
=(k + 1)

Z

�

LP3

� cost

3

Z

�

LP3

� 1� �

2

The Theorem follows from Claim 4 and from Theorem 2. 2

4 The Max Sat problem

Let fC

1

; : : : ; C

m

g be a collection of disjunctive boolean clauses over variable set X = fx

1

; : : : ; x

n

g

and let w

1

; : : : ; w

m

be the weights of such clauses. For any clause C

j

let us denote by C

+

j

the

set of indices of variables occuring positively in C

j

and with C

�

j

the set of indices of variables

occuring negated, so that C

j

=

W

i2C

+

j

x

i

_

W

i2C

�

j

:x

i

. Goemans and Williamson [GW94] consider

the following linear programming relaxation of the Max Sat problem.

max

P

m

j=1

w

j

z

j

s.t.

z

j

�

P

i2C

+

j

t

i

+

P

i2C

�

j

(1� t

i

) for all j 2 [m]

0 � z

j

� 1 for all j 2 [m]

0 � t

i

� 1 for all i 2 [n]

(SAT)

To see that (SAT) is indeed a relaxation of Max Sat it su�ces to observe that any assigment

� : X ! ftrue; falseg can be converted into a feasible solution for (SAT) such that, for any i, t

i

= 1

if �(x

1

) = true, and t

i

= 0 otherwise, while z

j

= 1 if C

j

is satis�ed by � and z

j

= 0 otherwise. Note

that the measure of such a solution is equal to the sum of the weights of the clauses satis�ed by � .

Remark 6 We note that the solution x = z = 0:5 � 1 is feasible: thus, if we start from a formula

with at most k literals per clause, it is easy to verify that (SAT) is in (1=2; k) form.

Theorem 7 ([GW94, Theorem 5.3]) Let (t; z) be a feasible solution for (SAT). Consider the

random assigment such that, for any i, independently, Pr[x

i

= true] =

1

4

+

1

2

t

i

. Then, for any

j 2 [m], Pr[C

j

is satis�ed] �

3

4

z

j

.

Starting with an optimum solution for (SAT), one gets a random assigment that, on the average,

has a cost that is at least 3/4 of the optimum. An explicit 3/4-approximate assignment can be

found deterministically using the method of conditional expectation ([AS92], see also [Yan94]).

We are now ready to prove the main result of this section.

Theorem 8 (Approximation for Max Sat)

1. An RNC algorithm exists that given an instance of the weighted Max Sat problem and a

rational � > 0, returns an assigment whose expected measure is at least (3=4 � �) times the

optimum. The algorithm runs in poly(1=�; logm) time and uses O(m+ n) processors.
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2. For any � > 0, an NC (3=4 � �)-approximate algorithm for the weighted Max Sat problem

exists that runs in poly(1=�; logm) time and uses O((m+ n)n

5

) processors.

3. A sequential (3=4 � o(1))-approximate algorithm for the weighted Max Sat problem exists

that runs in

~

O(m) time.

Proof: Let � = (C

1

; : : : ; C

m

) be any instance ofMax Sat, and let w

1

; : : : ; w

m

be the weights of the

clauses. We use the following notation: J

4

def

= fj : C

j

contains at most four literals g, J

5

def

= [m]�J

4

,

�

4

def

= fC

j

: j 2 J

4

g, �

5

def

= fC

j

: j 2 J

5

g, w

tot

4

def

=

P

j2J

4

w

j

, and w

tot

5

def

=

P

j2J

5

w

j

. Clearly, we have

that opt

MS

(�) � opt

MS

(�

4

) + w

tot

5

. Let us consider the linear programming relaxations (SAT),

relative to �

4

and let Z

�

SAT

be the optimum of such a linear program. Since (SAT) is in (1=2; 4)

form, it follows from Theorem 5 that we can �nd in NC a solution (z; t) for (SAT) whose measure

is at least (1�4�=3)Z

�

SAT

. Consider now the random assigment such that x

i

is true with probabilty

1=4 + t

1

=2. Note that in such assigment each literal is true with probability at least 1/4, and thus

a clause with �ve or more literals is true with probability at least 1 � (3=4)

5

= 0:76269 : : : > 3=4.

From Theorem 7 and from the above considerations we have that the average measure of such

assigment is

m

X

j=1

w

j

Pr[C

j

is satis�ed ] �

3

4

m

X

j2J

4

w

j

z

j

+

X

j2J

5

0:76269w

j

�

3

4

�

1�

4

3

�

�

Z

�

SAT

+

3

4

w

tot

5

�

�

3

4

� �

�

opt

MS

(�) :

The time bound follows from the fact that the instance of positive linear programming to be solved

has size O(m).

To prove Part (2) just note that the above analysis only assumed 5-wise independence. From

Theorem 3 we have that a 5-wise independent probability distribution over n random variables

exists of size O(n

5

). We can thus run in parallel O(n

5

) copies of the above algorithm (one for each

element of the distribution) and then take the best outcome.

Finally, regarding Part (3), one can use a sequential version of Luby and Nisan's algorithm

to approximate the relaxation. Since the size of the relaxation is bounded by m, it will take

O(m(logm)

O(1)

) time to �nd a (1 � �)-approximate solution, provided that � = 1=(logm)

(O(1))

.

After applying random rounding, derandomization can be done in linear time using conditional

expectation (see e.g. [Yan94]). Observe that, while doing the derandomization, we can ignore all

literals occuring in a clause but the �rst �ve (this is compatible with our approximation analysis).

Thus, derandomization can be done in O(m) time, independent of n. 2

5 The Max kCSP problem

In this section we deal with the Max kCSP problem. We begin by showing that, without loss of

generality, we can restrict ourselves to the simpler Max k Conj Sat problem.

Theorem 9 (Max kCSP vs. Max k Conj Sat) For any k > 1 and for any r, 0 < r � 1, if

Max k Conj Sat is r-approximable, then Max kCSP is r-approximable.
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Proof: Without loss of generality, we can assume that any constraint involves the application of a

boolean function of arity exactly k (indeed, any h-ary function, with h < k can be seen as a k-ary

function whose value is independent of the value of k�h parameters). Let C

1

; : : : ; C

m

be an instance

of Max kCSP over boolean variables x

1

; : : : ; x

n

and assume that all weights are equal to one. For

any j 2 [m], C

j

= f

j

(x

j

1

; : : : ; x

j

k

) where j

1

; : : : ; j

k

2 [n] and f

j

: ftrue; falseg

k

! ftrue; falseg.

Consider now the set S

f

j

� ftrue; falseg

k

of satisfying assigment for f

j

. For any such assignment

b

1

; : : : ; b

k

we can write a k-ary conjunctive clause that is satis�ed only by that assigment, namely,

the clause l

j

1

^ : : : ^ l

j

k

where l

j

i

stands for x

j

i

if b

i

= true, and for :x

j

i

otherwise. In this way,

we can convert any constraint C

j

into jS

f

j

j new conjunctive constraints. We give weight w

j

to all

such constraints. Let D

1

; : : : ;D

m

0

be the union of such sets of new constraints: they constitute an

instance of Max k Conj Sat over variables x

1

; : : : ; x

n

, and it should be clear that any assigment

to x

1

; : : : ; x

n

has the same measure for C

1

; : : : ; C

m

and for D

1

; : : : ;D

m

0

, so the instances have the

same optimum, and an r-approximate solution for D

1

; : : : ;D

m

0

is also an an r-approximate solution

for C

1

; : : : ; C

m

. 2

We shall now prove that, for any k � 1, Max k Conj Sat is 2

1�k

-approximable. As in the

preceding section, we shall give a linear programming relaxation of the problem and a proper ran-

domized rounding scheme. Assume we have an instance of Max k Conj Sat given by constraints

C

1

; : : : ; C

m

, whose weights are w

1

; : : : ; w

m

over variables x

1

; : : : ; x

n

. We denote by C

+

j

(respectively,

C

�

j

) the set of indices of positive (respectively, negative) literals in C

j

, so that

C

j

=

^

i2C

+

j

x

i

^

^

i2C

�

j

:x

i

:

The linear programming relaxation has a variable t

i

for any variable x

i

of the Max k Conj Sat

problem, plus a variable z

j

for any constraint C

j

. The formulation is

max

P

j

w

j

z

j

s.t.

z

j

� t

i

for all j 2 [m]; i 2 C

+

j

z

j

� 1� t

i

for all j 2 [m]; i 2 C

�

j

0 � t

i

� 1 for all i 2 [n]

0 � z

j

� 1 for all j

(CSP)

The proof that (CSP) is a relaxation of Max k Conj Sat, is identical to the proof that (SAT)

is a relaxation of Max Sat: given an assigment � for Max k Conj Sat, set t

i

= 1 if �(x

i

) = true,

and t

i

= 0 otherwise; set z

j

= 1 if � satis�es C

j

, set z

j

= 0 otherwise. It is immediate to verify that

such solution is feasible for (CSP) and that its cost is equal to the total weight of clauses satis�ed

by the assigment.

Theorem 10 (Random rounding for (CSP)) Let (z; t) be a feasible solution for (CSP), con-

sider the random assigment such that

Pr[x

i

= true] =

k � 1

2k

+

t

i

k

:

Then, for any j 2 [m],

Pr[C

j

is satis�ed] �

z

j

2

k�1

:

10



Proof: Note that, according to the random assigment,

Pr[x

i

= false] = 1�

�

k � 1

2k

+

t

i

k

�

=

k � 1

2k

+

1� t

i

k

:

Let us assume that C

j

is a h-ary constraint for some h � k.

Pr[C

j

is satis�ed ] =

0

B

@

Y

i2C

+

j

k � 1

2k

+

t

i

k

1

C

A

�

0

B

@

Y

i2C

�

j

k � 1

2k

+

1� t

i

k

1

C

A

�

�

k � 1

2k

+

z

j

k

�

h

�

�

k � 1

2k

+

z

j

k

�

k

�

z

j

2

k�1

:

Where �rst inequality follows from the constraints on z

j

, second inequality from the fact that h � k

and the last inequality can be proved by studying the �rst derivative of the function

f(z) =

(

k�1

2k

+

z

k

)

k

z

and showing that, in the interval (0; 1), f(z) reaches its minimum for z = 1=2: in that point we

have that f(1=2) = 2

1�k

. 2

Remark 11 The above analysis is tight, as can be shown by considering an instance C

1

; : : : ; C

2

k

where the clauses are all the possible size-k conjunctions over fx

1

; : : : ; x

k

g. Any assigment to

fx

1

; : : : ; x

k

g will satisfy exactly one clause (that is, the optimum is equal to 1). On the other hand,

the feasible solution for (CSP) where all variables are equal to 1=2 has measure 2

k�1

.

Theorem 12 (Approximation for Max k Conj Sat) For any k � 1, the weighted Max k

Conj Sat problem is 2

1�k

-approximable in polynomial time, and is (2

1�k

� o(1))-approximable

in NC.

Proof: Regarding the �rst claim, in order to compute a 2

1�k

-approximate solution it is su�cient

to optimally solve (CSP) using a polynomial time algorithm for linear programming [Kha79, Kar84],

then use the random rounding scheme described in Theorem 10 and �nally use conditional expec-

tation (see [AS92]) to obtain an assigment whose measure is no smaller than the average measure

of such random assigment. The approximation guarantee follows from Theorem 10.

Regarding the second claim, observe that t = z = :5 � 1 is a feasible solution, and so it can be

easily checked that (CSP) is in (1=2; k) form. We can then apply Theorem 5 to show that (CSP)

can be approximated within a factor 1 � o(1) in NC. Random rounding yields a solution that on

the average is 2

1�k

� o(1) approximate, and we can use k-wise independent distributions to do

derandomization. 2

Corollary 13 (Approximation for Max kCSP) For any k > 1, the weightedMax kCSP prob-

lem is 2

1�k

-approximable in polynomial time, and (2

1�k

� o(1))-approximable in NC.
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5.1 The Max Directed Cut problem

TheMax Directed Cut can be seen as the restriction ofMax 2 Conj Sat to instances where in

each clause there is exactly one positive literal and one negative literal. Indeed, there is a natural

correspondence between nodes and boolean variables, edges and constraints; and partitions and

assigments. It is a folklore result that has been mentioned a few times in the litterature (e.g.

in [TSSW96]) and can be traced back to the idea of giving logical formulations of combinatorial

optimization problems [PY91].

Such equivalence immediately implies the existence of a parallel approximation algorithm for

Max Directed Cut.

Corollary 14 (Approximation for Max Directed Cut)

1. An RNC algorithm exists that given an instance of the weightedMax Directed Cut problem

and a rational � > 0, returns a cut whose expected measure is at least (1=2 � �) times the

optimum. The algorithm runs in poly(1=�; logm) time and uses O(m+ n) processors.

2. For any � > 0, an NC (1=2��)-approximate algorithm for the weighted Max Directed Cut

problem exists that runs in poly(1=�; logm) time and uses O((m+ n)n) processors.

In Remark 11 we showed the tightness of our analysis of random rounding for any k. An inspection

of the proof for k = 2 shows that the instance that we consider is

f(x

1

^ x

2

); (:x

1

^ x

2

); (x

1

^ :x

2

); (:x

1

^ :x

2

)g

and it doesn't correspond to aMax Directed Cut problem. This fact may lead us to hope that a

better random rounding scheme is possible for the special case of linear programs arising fromMax

Directed Cut instances. Indeed, this is not the case. Let us �rst see how the LP relaxations

of Max Directed Cut problems look like. Given a graph G = (V;E), where we assume for

simplicity V = [jV j], and given weights fw

(i;j)

g

(i;j)2E

for the edges, the LP relaxation is as follows.

max

P

(i;j)2E

w

(i;j)

z

(i;j)

s.t.

z

(i;j)

� t

i

for all (i; j) 2 E

z

(i;j)

� 1� t

j

for all (i; j) 2 E

0 � t

i

� 1 for all i 2 V

0 � z

(i;j)

� 1 for all (i; j) 2 E

(DI)

Consider now the directed complete graph with 2n vertices and 2n(2n�1) = 4n

2

�2n edges (assume

that all weights are one). Then the optimum of the Max Directed Cut problem is clearly n

2

(the balanced partition), while the solution with all variables equal to 1/2 is feasible for (DI) and

has measure 2n

2

� n. The ratio between the two values is arbitrarily close to 1=2.

6 Relations with Proof Checking

We start by giving some de�nitions about probabilistically checkable proofs (we follow the notation

used in [BGS95]). A veri�er is an oracle probabilistic polynomial-time Turing machine V . During

its computation, V tosses random coins, reads its input and has oracle access to a string � called

proof. Let x be an input and � be a proof. We denote by Acc[V

�

(x)] the probability over its

random tosses that V accepts x using � as an oracle. We also denote by Acc[V (x)] the maximum

of Acc[V

�

(x)] over all proofs �. The e�ciency of the veri�er is determined by several parameters.

12



De�nition 15 (PCP parameters) Let L be a language, and let V be a veri�er for L. Then we

say that

� V uses r(n) random bits (where r : Z

+

! Z

+

is an integer function) if for any input x and

for any proof �, V tosses at most r(jxj) random coins;

� V has query complexity q (where q is an integer) if for any input x, any random string R,

and any proof �, V reads at most q bits from �;

� V has soundness s (where s 2 [0; 1] is a real) if, for any x 62 L, Acc[V (x)] � s;

� V has completeness c (where c 2 [0; 1] is a real) if, for any x 2 L, Acc[V (x)] � c.

Remark 16 Note that a veri�er that has query complexity q can read its q bits adaptively, that is,

the i-th access to the proof may depend on the outcomes of the previous i� 1 accesses.

De�nition 17 (PCP classes) Let L be a language, let 0 < s < c � 1 be any constants, q be a

positive integer and r : Z

+

! Z

+

, then we say that L 2 PCP

c;s

[r; q] if a veri�er V exists for L that

uses O(r(n)) random bits, has query complexity q, soundness s and completeness c.

Several recent results about the hardness of approximation of combinatorial optimization prob-

lems (includingMax Sat [BGS95] andMax Directed Cut [BGS95, TSSW96]) have been proved

using the fact, proved in [BGS95], that NP = PCP

1;s

[log; 3] for any s > 0:85. The veri�er devel-

oped to prove such result is adaptive. Using less than 3 queries or having a soundness smaller than

0.85 would immediately imply improved non-approximability results. Due to such consideration, it

seems interesting to consider what kind of combinations of parameters may be su�cient to char-

acterize NP, and which one are too weak (unless P = NP). The next result implies that one can

prove inclusion of PCP classes into P by simply developing approximation algoritms for Max k

Conj Sat.

Theorem 18 (Max k Conj Sat vs PCP) If Max k Conj Sat is r-approximable for some r �

1, then PCP

c;s

[log; k] � P for any c=s > 1=r.

Proof: Let L 2 PCP

c;s

[log; k] and let V be a veri�er witnessing it. Let x be any string of size

n. Let l be the maximum lenght of a proof for x (note that l is polynomial in n). On input x,

V tosses � log n random bits (for some constant �) and adaptively reads q bits of the proof. Let

r = 2

� log n

be the total (polynomial) number of possible sequences of coin tosses of V . For any of

such strings R 2 f0; 1g

� log n

, let us consider the behaviour of V with input x and random tosses

R: clearly it is entirely determined by the outcomes of its queries, and can be represented as a

binary tree of height k. Indeed, any internal vertex corresponds to a query, branching corresponds

to the two possible outcomes of the query and leaves correspond to �nal accepting or rejecting

states. Any root-leaf path corresponds to a set of queries (positions of the proof) q

1

; : : : ; q

k

and to

answers a

1

; : : : ; a

k

, and it is followed by the veri�er if and only if �[q

i

] = a

i

for any i 2 [k]. Let us

now associate a boolean variable x

i

to any position �[i] of the proof, for any i 2 [l]. There is an

immediate correspondence between proofs (i.e. strings in f0; 1g

l

) and assigments for such variables

(i.e. strings in ffalse; trueg

l

), say by identifying 1 with true, and 0 with false. According to this

intuition, we encode root-leaf paths leading to acceptance as conjunctive clauses in the expected

way: a path involving queries q

1

; : : : ; q

k

and answers a

1

; : : : ; a

k

is converted into the conjunctive

clause l

q

1

^ : : : ; l

q

k

where l

q

i

stands for x

q

i

if a

i

= 1, and stands for :x

q

i

otherwise. It should be
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clear that those clauses are inconsistent one with the other, and that an assigments satis�es one of

those clauses i� the corresponding proof makes the veri�er accept when it uses random string R.

We can repeat such construction for any R, and it leads to an instance of Max k Conj Sat such

that i clauses are simultaneously satis�able i� a proof exists that makes V accept x with probability

i=r. It follows that the optimum of the resulting Max k Conj Sat instance is at least cr if x 2 L,

and is at most sr otherwise. Any approximation better than s=c is su�cient to distinguish between

the two cases. 2

A �rst consequence of Theorem 18 is thatMax k Conj Sat is hard to approximate even within

very small factors.

Theorem 19 (Hardness of Max k Conj Sat) For any k � 11, if Max k Conj Sat is

2

�bk=11c

-approximable, then P = NP.

Proof: Bellare Goldreich and Sudan [BGS95] prove that an s < :5 exists such that NP =

PCP

1;s

[log; 11]. Then, bk=11c independent repetitions of their protocol yield NP = PCP

1;s

0

[log; k],

where s

0

< 2

�bk=11c

: applying Theorem 18, the claim follows. 2

The following result can be obtained by combining Theorems 12 and 18

Theorem 20 (Weak PCP classes) PCP

c;s

[log; q] � P for any c=s > 2

q�1

. In particular,

PCP

1;0:249

[log; 3] � P.

The above theorem improves over previous results by Bellare, Goldreich and Sudan [BGS95],

stating that PCP

c;s

[log; q] � P for any c=s > 2

q

and PCP

1;0:18

[log; 3] � P, respectively.

7 Conclusions

Following the work of [Rag88, GW94] we considered linear programming relaxations of combi-

natorial optimization problems and used random rounding to obtain feasible solutions from the

fractional solutions of the linear programs. Since linear programming is hard to approximate in

parallel, we converted such linear programs into instances of positive linear programming, that can

be approximated in NC.

In the case of the Max Sat problem we presented an algorithm that almost matches the best

known sequential positive approximability result. For the Max Directed Cut problem, instead,

the gap between the performances of polynomial-time algorithms and NC ones is still large. An

intriguing question is whether the known non-approximability results for sequential algorithms can

be improved when we restrict to NC algorithms (under the assumption that P 6= NC). A possible

way may be to devise probabilistic proof systems for P more e�cient than the currently known

proof systems for NP. Such a result would have a great independent interest. However, it is not

clear why proofs for P should be easier to check than proofs for NP (they only appear to be easier

to generate).
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