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Abstract

We prove an extremal combinatorial result regarding the fraction of satis�able clauses in

boolean CNF formulae enjoying a locally checkable property, thus solving a problem that has

been open for several years.

We then generalize the problem to arbitrary constraint satisfaction problems. We prove a

tight result even in the generalized case.

1 Introduction

We deal with the notion of k-satis�able CNF formulae introduced and studied by Lieberherr and

Specker [4, 5]. A CNF boolean formula (from now on referred to as formula) is k-satis�able if any

subset of k clauses is satis�able. For any k, let r

k

be the largest real (or, better, the supremum of the

set of reals) such that in any k-satis�able set of m clauses, at least r

k

m clauses are simultaneously

satis�ed. Roughly speaking, r

k

somewhat shows how local satis�ability implies (fractional) global

satis�ability. It has been known that r

2

= 2=(1 +

p

5) > :618 [4] (the inverse of the golden ratio),

that r

3

= 2=3 [5], and that lim

k!1

r

k

� 3=4 [3]. Yannakakis [7] has given simpli�ed proofs of the

bounds r

2

� 2=(1 +

p

5) and r

3

� 2=3 using the probabilistic method.

To the best of our knowledge, it was still an open question to determine the exact value of lim

k!1

r

k

.

Our Results

We prove that lim

k!1

r

k

= 3=4. Our proof is constructive: for any r < 3=4 we show that a k exists

such that given a k-satis�able formula we can �nd a probability distribution over its variables in

such a way that any clause is satis�ed with probability at least r. It thus follows that an assignment

satisfying at least a fraction r of clauses must exist. It can even be found in linear time using the

greedy algorithm in [7].

We then consider a similar question for general Constraint Satisfaction Problems (CSP). An

instance of a CSP is a set of boolean predicates (or constraints) over boolean variables. For a �xed

integer h, the hCSP is the restriction of CSP where the arity of the constraints is at most h. Note

that if a hCSP instance does not contain identically false constraints, then the random assignment

where each variable is true with probability 1/2 will satisfy at least a fraction 2

�h

of the constraints.

We say that a CSP instance is k-satis�able if any subset of k constraints is satis�able. For any

�
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integers h and k, we de�ne r

(h)

k

as the supremum of the reals such that for any k-satis�able instance

of hCSP with m constraints, at least r

(h)

k

m are satis�able.

We prove lim

k!1

r

(h)

k

= 2

1�h

. For the lower bound, it will be easy to use the probabilistic

method to obtain r

(h)

h+1

� 2

1�h

. In order to prove the upper bound r

(h)

k

� 2

1�h

for all k we will

need a construction of hypergraphs that generalizes the known construction of graphs with small

maximum cut and large girth [1].

Preliminary De�nitions

A CNF boolean formula (or, simply, a formula) is a set fC

1

; : : : ; C

m

g of disjunctive clauses over a set

of variables X = fx

1

; : : : ; x

n

g. A disjunctive clause is a disjunction of literals where each literal is

either a variable x

i

or a negated variable :x

i

. An assignment for � is a mapping � : X ! ftrue; falseg

that associates a truth value with any variable. If l is a literal, then we say that � satis�es l if

either l = x and �(x) = true or l = :x and �(x) = false. If C = l

1

_ : : :_ l

h

is a clause, we say that

� satis�es C if � satis�es l

j

for some j 2 f1; : : : ; hg. A formula � is k-satis�able [4] if any subset of

k clauses of � is satis�able.

An istance of CSP is set fC

1

; : : : ; C

m

g of constraints over a set of variables X = fx

1

; : : : ; x

n

g.

A constraint is a boolean predicate applied to variables from X . An instance of hCSP (where

h is an integer) is an instance of CSP where the arity of all the predicates is at most h. We

de�ne assignments, satis�ability, and k-satis�ability as for formulae, with \clauses" replaced by

\constraints" in the de�nitions.

A random assignment is a probability distribution over all the assignment. We will restrict

ourselves to random assignments where each variable is assigned true with a certain probability,

independently of the assignments to the other variables (it would actually su�ce bounded inde-

pendence). Thus a random assignment �

R

is entirely speci�ed by the probabilities fp

x

g

x2X

, where

Pr[�

R

(x) = true] = p

x

. To save notation, we will write Pr[x = true] in place of Pr[�

R

(x) = true]

when the random assignment is clear from the context.

2 The CNF result

2.1 Yannakakis' Argument and How to Extend it: an Informal Account

In order to present the main ideas underlying our proof, let us �rst recall Yannakakis' proof that

r

3

� 2=3. Given a 3-satis�able formula he shows how to �nd a probability distribution over the

variables that satis�es all clauses with probability at least 2=3. If a literal l occurs in a unary

clause, then we set Pr[l = true] = 2=3. Note that this de�nition is consistent since it is impossible

to have the clauses (x) and (:x) in the same 3-satis�able formula. To all the other variables (the

ones that do not occur in unary clauses), if any, we give value true with probability 1/2. Ternary

clauses, or longer ones, are satis�ed with probability at least 1�(2=3)

3

= :7037 : : : > 2=3; for longer

clauses probabilities are even better. It remains to consider binary clauses. If at least one of the

literals in a binary clause is true with probability at least 1/2, then the probability that the clause

be satis�ed is at least 1� (2=3)1=2 = 2=3. The only bad case happens when both literals are true

only with probability 1=3, but this is impossible because it would mean that the formula contains

clauses (l

1

); (l

2

); (:l

1

_ :l

2

) which contradicts the fact that it is 3-satis�able.

When we want to achieve the same construction with an arbitrary r < 3=4 in place of 2=3 we

run into some troubles. Let us try with r = :74. Literals occurring in unary clauses must be true

with probability :74. If l occurs in a unary clause, and we have the clause :l _ x, then x must be
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true with probability at least 1� (1� r)=r = :6486 : : : Then we have to consider literals occurring

with :x in a binary clause: they have to be true with probability at least :5991 : : : There are three

more cases to be considered (probabilities will be, respectively, 0:566 : : :, 0:5406 : : :, and 0:5191 : : :)

And we still have to make sure that we are not introducing any inconsistency, and we have to deal

with ternary and 4-ary clauses (clauses with 5 or more literal are satis�ed with probability at least

1� (:74)

5

> :74.)

The above discussion leaves us with the idea that the range of values for the probabilities of

the literals should be p

1

= r, p

2

= 1� (1� r)=r, p

3

= 1� (1� r)=p

2

, : : : p

k

= 1� (1� r)=p

k�1

. It

is conforting that this sequence will eventually go below 1/2, where it can be stopped (Lemma 2).

We also note that, when we want to achieve a ratio close to 3/4, the numbers of cases to be

considered explodes, and that a uniform method to deal with them has to be found.

In order to attribute probabilities to the literals in a uniform way, we introduce the idea of

ranking them according to the depth of proofs of the literals in a simple propositional proof system,

whose axioms are the clauses of the formula. This gives at the same time a uniform way to deal

with clauses of di�erent lenght and a simple method to show that the assignment of probabilities

is consistent.

2.2 The Actual Proof

The following de�nition gives the values that we will use in the probability distribution.

De�nition 1 For any real r 6= 0, we de�ne the sequence fa

r

i

g

i�1

as follows:

� a

r

1

= r;

� a

r

i+1

= 1� (1� r)=a

r

i

.

If we start from a number r < 3=4, the sequence eventually goes below 1/2.

Lemma 2 For any r such that 1=2 < r < 3=4, a h(r) exists such that a

r

h(r)

< :5

Proof: Assume not. Note that if a

r

i

> 0, then a

r

i+1

< a

r

i

, as can be easily proved by induction.

Then we have a monotonically decreasing sequence that is lower bounded by 0.5: such a sequence

must have a limit, let it be x. Then x is a real root of the equation

x = 1� (1� r)=x;

that is,

x

2

� x+ 1� r = 0 :

But such an equation has no real root when 1� 4(1� r) < 0, that is when r < 3=4. 2

The following de�nition allows to rank literals and will be used to assign to each of them the right

probability.

De�nition 3 (Provability) Given a CNF formula �,

� If (l) 2 � then l is 1-provable in �.

� If (l

1

_: : : l

h

) 2 � and :l

j

is i

j

-provable in � for j = 1; : : : ; h�1, then l

h

is (1+maxfi

1

; : : : ; i

h�1

g)-

provable in �.
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A literal is exactly i-provable in � if i is the smallest integer such that it is i-provable in �.

Lemma 4 Let � be a formula with clauses of lenght at most 4. If x is i-provable in � and :x is

j-provable in �, then � is not (3

i+1

+ 3

j+1

� 2)-satis�able.

Proof: Simple induction shows that when a literal l is i-provable in �, then a set S

l

of at most

3

i+1

� 1 clauses of � exists such that any assignment that satis�es all the clauses in S

l

must also

satisfy l. Then, the set S

x

[S

:x

has at most 3

i+1

+3

j+1

� 2 clauses, and no assignment can satisfy

all of them. 2

The next theorem is clearly a su�cient condition to have lim

k!1

r

k

� 3=4.

Theorem 5 For any r such that 1=2 < r < 3=4 a k exists (depending on r) such that for any

k-satis�able formula � we can �nd in polynomial time a probability distribution over the variables

in such a way that any clause is satis�ed with probability at least r.

Proof: For any variable x, the probability p

x

of x to be true will be a rational between r and

1� r, and, in particular, between 1=4 and 3=4. This implies that any 5-ary clause is satis�ed with

probability at least 1� (3=4)

5

> 3=4. Thus we only have to care about unary, binary, ternary and

4-ary clauses. Let us �x r < 3=4 and let k = 2 � 3

h(r)+1

� 1. Let � be a k-satis�able formula, and let

�

4

be the subset of clauses of � of lenght at most 4. Observe that if some literal is i-provable in �

4

for some i � h(r), then it is not possible that its complement is j-provable in �

4

for some j � h(r).

We shall use the values a

r

1

; : : : ; a

r

h(r)�1

; 0:5 in our probability distribution. Let p

i

= a

r

i

for

i = 1; : : : ; h(r)� 1 and p

h(r)

= 1=2. The probability distribution is as follows.

Pr[x = true] =

8

>

<

>

:

p

i

if x is exactly i-provable in �

4

, for i � h(r)� 1

1� p

i

if :x is exactly i-provable in �

4

, for i � h(r)� 1

1

2

otherwise

It should be clear that the de�nition above is consistent. Recall that the sequence p

1

; : : : ; p

h(r)

is

decreasing. So if a variable x is exactly i-provable for some i < h(r), the smaller is i, the larger is

Pr[x = true].

Claim 6 Under the probability distribution above, any clause of � is false with probability at most

1� r.

Proof: The statement is easy for unary clauses and for clauses with �ve or more literals.

Let C = (l

1

_ : : : _ l

h

) be a clause with two or more literals; we assume Pr[l

1

= false] �

Pr[l

1

= false] � : : : � Pr[l

h

= false]. If Pr[l

2

= false] � 1=2 then also Pr[l

1

= false] � 1=2

and Pr[C is false] � 1=4 < 1 � r. It remains to consider the case Pr[l

2

= false] > 1=2. Then

:l

2

is exactly i

2

-provable for some i

2

� h(r) � 1; and also :l

3

and :l

4

(if present) are exactly

i

3

-provable (resp. i

4

-provable) for some i

3

� i

2

(resp. i

4

� i

2

). It follows that l

1

is exactly i

1

-

provable for some i

1

� i

2

+ 1, and thus Pr[l

1

= false] = 1� p

i

1

� 1 � a

i

1

= (1� r)=a

i

1

�1

1

, while

Pr[l

2

= false] = p

i

2

= a

i

2

� a

i

1

�1

. As a consequence, we have

Pr[C is false ] � Pr[l

1

= l

2

= false] � 1� r

2

The theorem thus follows. 2

1

Note that if i

1

= h(r) then l

1

will be assigned probability 1=2 (that is exactly p

i

1

) not because it is exactly

h(r)-provable, but because it is not i-provable for i < h(r) and, of course, neither its complement is (so l

1

falls in the

\otherwise" part of the de�nition).
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3 Constraint Satisfaction Problems

Lemma 7 Let � be a (h+ 1)-satis�able instance of hCSP. Then it is possible to satisfy at least a

fraction 2

1�h

of the constraints.

Proof: We describe a random assignment that satis�es each constraint with probability at least

2

1�h

.

We say that a constraint is conjunctive if there is only one assignment of its variables that

satis�es it. For any variable that occurs in a conjunctive constraint we set it to the value imposed

by the constraint. This is consistent (otherwise the instance would not be 2-satis�able). This

partial assignment does not contradict any (non-conjunctive) constraint (otherwise the instance

would not be (h + 1)-satis�able). We give probability 1=2 to all the other variables. It is easy to

see that any constraint that is not satis�ed by the partial assignment is true with probability at

least 2=2

h

: indeed, either it is still h-ary and has two or more satisfying assignments, or its arity

has been decreased by the partial assignment, and so it is true with probability at least 1=2

h�1

. 2

Let h, r < 2

1�h

, and k be �xed. We will show how to �nd a k-satis�able instance of hCSP such

that only a fraction r of its constraints is simultaneously satis�able.

We will use only one type of constraint, the hypercut

h

constraint, de�ned as follows

hypercut

h

(x

1

; : : : ; x

h�1

; y) � (x

1

6= y) ^ (x

1

= � � � = x

h�1

)

For h = 2 this is the xor constraint, that gives rise to a constraint satisfaction problem that is

equivalent to 2-colorability.

For a set � of hypercut

h

constraints, if hypercut

h

(x

1

; : : : ; x

h�1

; y) 2 � then we say that, for

any i = 1; : : : ; h � 1, x

i

is adjacent to y (and that y is adjacent to x

i

) in �. A cycle of lenght l

(l � 3) is a sequence of variables x

1

; : : : ; x

l

such that x

l

is adjacent to x

1

and x

i

is adjacent to x

i+1

for i = 1; : : : ; l� 1. The reader should easily convince himself that � is satis�able if and only if it

does not contain a cycle of odd lenght. The next theorem is well known for the case h = 2 [1].

Lemma 8 For any integers k, h, and any � > 0, there exists a family of m hypercut

h

constraints

such that no more than (2

1�h

+ �)m are simultaneously satis�able and any k of them are satis�able

Proof: [Sketch] To meet the second requirement we just have to construct an istance without

short cycles of odd lenght. The following construction will work for all su�ciently large n. We �x

a (small) constant � > 0 and a (large) constant c such that

2

1�h

(1 + �)=(1� 2�) < 2

1�h

+ �

2k(2c)

k

� �cn

c � 6 log e log

1

�

2

2

h�1

:

Let m = cn, and let s(n) = n

�

n�1

h�1

�

be all the possible hypercut

h

constraints over the variable

set fx

1

; : : : ; x

n

g. Fix also we construct a random instance of hCSP by choosing each of the s(n)

constraints independently with probability m=s(n). We make the following claims:

1. With probability at least :9, the number of constraints in the random instance is at least

m(1� �).
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2. With probability at least :9, the generated instance is such that any assignment satis�es at

most 2

1�h

(1 + �)m constraints.

3. With probability at least :5, there are at most 2k(2c)

k

cycles of length � k in the generated

instance.

With positive probability a random instance will satisfy all the three properties. In particular, there

will exist an instance satisfying such properties. By removing from it a constraint for each cycle

of length � k, we obtain a new instance with no cycle of length � k, m

0

� m(1� 2�) constraints,

and such that no assignment satis�es more than (2

1�h

+ �)m

0

constraints. This modi�ed instance

proves the lemma.

We now prove the three claims.

1. The average number of constraints is m. By Cherno� bounds, it will be at least (1 � �)m

with probability at least 1� e

��

2

m=2

which is larger than :9 for su�ciently large n.

2. If we �x one the 2

n

possible assignments, that gives value true to tn variables, and value false

to (1� t)n, it will satisfy a randomly chosen constraint with probability

t

h�1

(1� t) + (1� t)

h�1

t � (1=2)

h�1

:

From Cherno� bounds, the probability that, for a random instance, there exists an assignment

satisfying more than m2

1�h

(1� �) constraints is at most

2

n

e

��

2

2

1�h

cn=3

� 2

�n

� :1

for su�ciently large n.

3. There are n(n�1) � � �(n� l+1) possible cycles of length l. Thus, there are at most kn

k

cycles

of length � k. Two �xed nodes are adjacent with probability at most 2c=n. Thus the cycle

exists with probability at most (2c=n)

k

. The average is at most k(2c)

k

; with probability at

most :5 the actual number is more than twice the average.

2

Theorem 9 For any h � 2, lim

k!1

r

(h)

k

= 2

1�h

.

4 Conclusions

It is a startling coincidence that 3/4 is the integrality gap of the tighter known linear program-

ming relaxation of MAX SAT [2] and that 2

1�h

is the integrality gap of the tighter known linear

programming relaxation of MAX hCSP [6]. It would be interesting to understand if this fact has

some explanation.
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