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Abstract

We study optimization problems that may be expressed as \Boolean constraint satisfaction

problems". An instance of a Boolean constraint satisfaction problem is given by m constraints

applied to n Boolean variables. Di�erent computational problems arise from constraint satis-

faction problems depending on the nature of the \underlying" constraints as well as on the goal

of the computational task. Here we consider four possible goals: Max CSP (Min CSP) is the

class of problems where the goal is to �nd an assignment maximizing the number of satis�ed

constraints (minimizing the number of unsatis�ed constraints). Max Ones (Min Ones) is the

class of optimization problems where the goal is to �nd an assignment satisfying all constraints

with maximum (minimum) number of variables set to 1. Each class consists of in�nitely many

problems and a problem within a class is speci�ed by a �nite collection of �nite Boolean functions

that describe the possible constraints that may be used.

In this work we determine tight bounds on the \approximability" (i.e., the ratio to within

which each problem may be approximated in polynomial time) of every problem in Max

Ones, Min CSP and Min Ones. Combined with an earlier result of Creignou [11] this com-

pletely classi�es all optimization problems derived from Boolean constraint satisfaction. Our

results capture a diverse collection of optimization problems such as MAX 3-SAT, Max Cut,

Max Clique, Min Cut, Nearest Codeword etc. Our results unify recent results on the

(in)approximability of these optimization problems and yield a compact presentation of most

known results. Moreover, these results provide a formal basis to many statements on the be-

haviour of natural optimization problems, that have so far only been observed empirically.
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1 Introduction

The approximability of an optimization problem is the best possible performance ratio that is

achieved by a polynomial-time approximation algorithm for the problem. The approximability is

studied as a function of the input size and is always a function bounded from below by 1. Research

in the nineties has led to dramatic progress in our understanding of the approximability of many

central optimization problems. The results cover a large number of optimization problems, deriving

tight bounds on the approximability of some, while deriving \asymptotically" tight bounds on many

more.

1

In this paper we study optimization problems derived from \Boolean constraint satisfaction prob-

lems" and present a complete classi�cation of these problems based on their approximability. Our

work is motivated by an attempt to unify this recent progress on the (in)approximability of combi-

natorial optimization problems. In the case of positive results, i.e., bounding the approximability

from above, a few paradigms have been used repeatedly and these serve to unify the results nicely.

In contrast, there is a lack of similar uni�cation among negative or inapproximability results. Inap-

proximability results are established by approximation preserving reductions from hard problems,

and such reductions tend to exploit every feature of the problem whose hardness is being shown,

rather than isolating the \minimal" features that would su�ce to obtain the hardness result. As a

result inapproximability results are typically isolated, and are not immediately suited for uni�ca-

tion.

The need for a uni�ed study is however quite essential at this stage. The progress in the under-

standing of optimization problems has shown large amounts of diversity in their approximability.

Despite this diversity, natural optimization problems do seem to exhibit some noticeable trends in

their behaviour. However in the absence of a terse description of known results it is hard to extract

the trends; leave alone, trying to provide them with a formal basis. Some such trends are described

below:

� There exist optimization problems that are solvable exactly, that admit polynomial time

approximation schemes or PTAS (i.e., for every constant � > 1, there exists a polynomial

time �-approximation algorithm), that admit constant factor approximation algorithms, log-

arithmic factor approximation algorithms and polynomial factor approximation algorithms.

But this list appears to be nearly exhaustive, raising the question: \Are there \natural"

optimization problems with intermediate approximability?"

2

� A number of minmization problems have an approximability of logarithmic factors. However

so far no natural maximization problem has been shown to have a similar approximability,

raising the question: \Are there any \natural" maximization problems which are approx-

imable to within polylogarithmic factors, but no better?"

� Papadimitriou and Yannakakis [38] de�ne a class of optimization problems calledMAX SNP.

This class has played a central role in many of the recent inapproximability results, and yet

1

We say that the approximability of an optimization is known asymptotically, if we can determine a function

f : Z ! Z and constants c

1

; c

2

such that the approximability is between 1 + f(n) and 1 + c

1

f(n

c

2

). This choice is

based on the common choice of an approximation preserving reduction. See De�nition 2.7.

2

There are problems such as the minimum feedback arc set for which the best known approximation fac-

tor is O(log n log log n) [16] and the asymmetric p-center problem where the best known approximation factor is

O(log

�

n) [37]. However, no matching inapproximability results are known for such problems.
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even now the class does not appear to be fully understood. The class contains a number

of NP-hard problems, and for all such known problems it turns out to be the case that the

approximability was bounded away from 1! This raises the natural question: \Are there any

NP-hard problems in MAX SNP that admit polynomial time approximation schemes?"

In order to study such questions, or even to place them under a formal setting, one needs to �rst

specify the optimization problems in some uniform framework. Furthermore, one has to be careful

to ensure that the task of determining whether the optimization problem studied is easy or hard

(to, say, compute exactly) is decidable. Unfortunately, barriers such as Rice's theorem (which says

this question may not in general be decidable) or Ladner's theorem (which says problems may not

be just easy or hard [34]) force us to severely restrict the class of problems which can be studied in

such a manner.

Schaefer [41] from 1978 isolates one class of decision problems which can actually be classi�ed

completely. He obtains this classi�cation by restricting his attention to \Boolean constraint sat-

isfaction problems". A problem in this class is speci�ed by a �nite set F of Boolean functions

on �nitely many variables, referred to as the constraints. (These functions are speci�ed by, say,

a truth table.) A function f : f0:1g

k

! f0; 1g, when applied to k variables x

1

; : : : ; x

k

represents

the constraint f(x

1

; : : : ; x

k

) = 1. An instance of a constraint satisfaction problem speci�ed by F

consists of m \constraint applications" on n Boolean variables where each constraint application

is the application of one of the constraints from F to some ordered subset of the n variables. The

language Sat(F) consists of all instances which have an assignment satisfying all m constraints.

Schaefer describes six classes of function families, such that if F is a subset of one of these classes,

then the decision problem is in P, else he shows that the decision problem is NP-hard.

Our Setup: In this paper we consider di�erent optimization versions of Boolean constraint sat-

isfaction problems. In each case the problem is speci�ed by a family F , and the instance by m

constraints from F applied to n Boolean variables. The goals for the four versions vary as follows:

In the problem Max CSP(F) the goal is to �nd an assignment that maximizes the number of

satis�ed constraints. Analogously in the problem Min CSP(F) the goal is to �nd an assignment

that minimizes the number of unsatis�ed constraints. Notice that while the problems are equiva-

lent w.r.t. exact computation their approximability may (and often does) di�er. In the problem

Max Ones(F) (Min Ones(F)) the goal is to �nd an assignment satisfying all constraints, while

maximizing (minimizing) the number of variables set to 1. We also consider the weighted version

of all the above problems. In the case of Weighted Max CSP(F) (Weighted Min CSP(F))

the instance includes a non-negative weight for every constraint and the goal is to maximize (min-

imize) the sum of the weights of the satis�ed (unsatis�ed) constraints. In the case of Weighted

Max Ones(F) (Weighted Min Ones(F)) the instance includes a non-negative weight for every

variable and the goal is to �nd an assignment satisfying all constraint maximizing (minimizing)

the weight of the variables set to 1. The collection of problems fMax CSP(F)jFg yields the class

Max CSP, and similarly we get the classes (Weighted) Min CSP, Max Ones, Min Ones.

Together these classes capture a host of interesting optimization problems. Max CSP is a subset

of MAX SNP and forms a combinatorial core of the problems in MAX SNP. It also includes a

number of well-studied MAX SNP-complete problems, including MAX 3-SAT, MAX 2-SAT, and

Max Cut. Max Ones shows more varied behavior among maximization problems and includes

Max Clique and a problem equivalent toMax Cut. Min CSP andMin Ones are closely related

to each other capturing very similar problems. The list of problems expressible as one of these
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includes: The s-tMin Cut problem, Vertex Cover,Hitting Set with bounded size sets, Integer

programs with two variables per inequality [25]. Min UnCut [20],Min 2CNF Deletion [33], and

Nearest Codeword [2]. The ability to study all these di�erent problems in a uniform framework

and extract the features that make the problems easier/harder than the others shows the advantage

of studying optimization problems under the constraint satisfaction framework.

We provide a complete characterization of the asymptotic approximability of every optimization

problem in the classes mentioned above. For the classMax CSP such a classi�cation was obtained

by Creignou [11] who shows that every problem in the class is either solvable to optimality in

polynomial time, or has a constant approximability bounded away from 1. For the remaining

classes we provide complete characterizations. The detailed statement of our results, comprising

of 22 cases appear in Theorems 2.9-2.12. (This includes a technical strengthening of the results of

Creignou [11].) In short the results show that everyMax Ones problem is either solvable optimally

in P, or has constant factor approximability, or polynomial approximability or it is hard to �nd

feasible solutions. For the minimization problems, the results show that the approximability of every

problem lies in one of at most 7 levels. However it does not pin down the approximability of every

problem| but rather highlights a number of open problems in the area of minimization that deserve

further attention. Most notably it exposes a class of problems for which Min UnCut is complete,

a class for which Min 2CNF Deletion is complete and a class for which Nearest Codeword

is complete. The approximability of these problems is not yet resolved.

Our results do indeed validate some of the observations about trend exhibited by optimization

problems. We �nd that when restricted to constraint satisfaction problems; the following can

be formally established. The approximability of optimization problems does come from a small

number of levels; maximization problems do not have a log-approximable respresentative while

minimization problems may have such representatives (e.g. Min UnCut). NP-hard Max CSP

problems are also MAX SNP-hard. We also �nd that weights do not play any signi�cant role in

the approximability of combinatorial optimization problems, a thesis in the work of Crescenzi et

al. [15]

3

.

Finally, we conclude with some thoughts on directions for further work. We stress that while

constraint satisfaction problems provide a good collection of core problems to work with, they

are by no means an exhaustive or even near-exahustive collection of optimization problems. Our

framework lacks such phenomena as polynomial time approximation schemes (PTAS); it does not

capture several important optimization problems such as TSP and numerous scheduling, sequencing

and graph partitioning problems. One possible reason for the non-existence of PTAS is that in our

problems the input instances have no restrictions in the manner in which constraints may be

imposed on the input variables. Signi�cant insight may be gleaned from restricting the problem

instances. A widely prescribed condition is that the incidence graph on the variables and the

constraints should form a planar graph. This restriction has been recently studied by Khanna

and Motwani [28] and they show that it leads to polynomial time approximation schemes for a

general class of constraint satisfaction problems. Another input restriction of interest could be that

variables are allowed to participate only in a bounded number of constraints. We are unaware of any

work on this front. An important extension of our work would be to consider constraint families

which contain constraints of unbounded arity (such as those considered in Min F

+

�

1

). Such

an extension would allow us to capture problems such as Set Cover. Other directions include

3

Our de�nition of an unweighted problem is more loose than that of Crescenzi et al. In their de�nition they

disallow instances with repeated constraints, while we do allow them. We believe that it may be possible to remove

this discrepancy from our work by a careful analysis of all proofs. We do not carry out this exercise here.
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working with larger domain sizes (rather than Boolean domains for the variables), and working

over spaces where the solution space is the set of all permutations of [n] rather than f0; 1g

n

.

Related Work: The works of Schaefer [41] and Creignou [11] have already been mentioned above.

We reproduce some of the results of Creignou in Theorem 2.9, with some technical strengthenings.

This strengthening is described in Section 2.5. Another point of di�erence with the result of

Creignou is that our techniques allow us to directly work with the approximability of optimization

problems, while in her case the results formally establish NP-hardness and the hardness of approx-

imation can in turn be derived from them. A description of these techniques appear in Section 2.6.

Among other works focussing on classes showing dichotomy is that of Feder and Vardi [17] who

consider the \largest" possible class of natural problems in NP that may exhibit a dichotomy. They

motivate constraint satisfaction problems over larger domains and highlight a number of central

open questions that lie on the path to the resolution of the complexity of deciding them. Creignou

and Hermann [12] show a dichotomy result analogous to Schaefer's for counting versions of con-

straint satisfaction problems. In the area of approximability, the works of Lund and Yannakakis [36]

and Zuckerman [44] provide two instances where large classes of problems are shown to be hard

to approximate simultaneously | to the best of our knowledge these are the only cases where the

results provide hardness for many problems simultaneously. Finally we mention a few results that

are directly related to the optimization problems considered here. Trevisan et al. [42] provide an al-

gorithm for �nding optimal implementations (or "gadgets" in their terminology) reducing between

Max CSP problems. Karlo� and Zwick [27] describe generic methods for �nding \semide�nite

relaxations" of Max CSP problems - and use these to provide approximation algorithms for these

problems. These results further highlight the appeal of the \constraint satisfaction" framework for

studying optimization problems.

2 De�nitions and Results

2.1 Constraints, Constraint Applications and Constraint Families

We start by formally de�ning constraints and constraint satisfaction problems. Schaefer's work [41]

proposes the study of such problems as a generalization of 3-satis�ability (3-SAT). We will use the

same example to illustrate the de�nitions below.

A constraint is a function f : f0; 1g

k

! f0; 1g. A constraint f is satis�ed by an input s 2 f0; 1g

k

if f(s) = 1. A contraint family F is a �nite collection of constraints ff

1

; : : : ; f

l

g. For example,

constraints of interest for 3-SAT are described by the constraint family F

3SAT

= fOR

k;j

: 1 �

k � 3; 0 � j � kg, where OR

k;j

: f0; 1g

k

! f0; 1g denotes the constraint which is satis�ed by

all assignments except 1

j

0

k�j

. A constraint application, of a constraint f to n Boolean variables,

is a pair hf; (i

1

; : : : ; i

k

)i, where the i

j

2 [n] indicate to which k of the n boolean variables the

constraint is applied. (Here and throughout the paper we use the notation [n] to denote the

set f1; : : : ; ng.) For example to generate the clause (x

5

W

:x

3

W

x

2

) we could use the constraint

application hOR

3;1

; (3; 5; 2)i or hOR

3;1

; (3; 2; 5)i. Note that the applications allow the constraint to

be applied to di�erent ordered sets of variables but not literals. This distinction is an important

one. This is why we need all the constraints OR

3;0

;OR

3;1

etc. to describe 3-SAT. In a constraint

application hf; (i

1

; : : : ; i

k

)i, we require that i

j

6= i

j

0

for j 6= j

0

. (This is why we need both the

functions OR

2;0

as well as OR

3;0

in 3-SAT.)
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Constraints and constraint families are the ingredients that specify an optimization problem. Thus

it is necessary that their description be �nite. (Notice that the description of F

3SAT

is �nite.)

Constraint applications are used to specify instances of optimization problems (as well as Schaefer's

generalized satis�ability problems) and the fact that their description lengths grow with the instance

size is crucially exploited here. (Notice that the description size of a constraint application used to

describe a 3-SAT clause will be 
(logn).) While this distinction between constraints and constraint

applications is important, we will often blur this distinction in the rest of this paper. In particular

we may often let the constraint application C = hf; (i

1

; : : : ; i

k

)i refer just to the constraint f . In

particular, we will often use the expression \C 2 F" when we mean \f 2 F , where f is the �rst part

of C". We now describe Schaefer's class of satis�ability problems and the optimization problems

considered in this paper.

De�nition 2.1 (Sat(F))

Input: A collection of m constraint applications of the form fhf

j

; (i

1

(j); : : : ; i

k

j

(j))ig

m

j=1

, on

boolean variables x

1

; x

2

; :::; x

n

where f

j

2 F and k

j

is the arity of f

j

.

Objective: Decide if there exists a boolean assignment to x

i

's which satis�es all the constraints.

For example, the problem Sat(F

3SAT

) is the classical 3-SAT problem.

De�nition 2.2 (Max CSP(F) (Min CSP(F)))

Input: A collection of m constraint applications of the form fhf

j

; (i

1

(j); : : : ; i

k

j

(j))ig

m

j=1

, on

boolean variables x

1

; x

2

; :::; x

n

where f

j

2 F and k

j

is the arity of f

j

.

Objective: Find a boolean assignment to x

i

's so as to maximize (minimize) the number of satis�ed

(unsatis�ed) constraints.

In the weighted problem Weighted Max CSP(F) (Weighted Min CSP(F)) the input includes

m non-negative weights w

1

: : : : ; w

m

and the objective is to �nd an assignment which maximizes

(minimizes) the sum of the weights of the satis�ed (unsatis�ed) constraints.

De�nition 2.3 (Max Ones(F) (Min Ones(F)))

Input: A collection of m constraint applications of the form fhf

j

; (i

1

(j); : : : ; i

k

j

(j))ig

m

j=1

, on

boolean variables x

1

; x

2

; :::; x

n

where f

j

2 F and k

j

is the arity of f

j

.

Objective: Find a boolean assignment to x

i

's which satis�es all the constraints and maximizes

(minimizes) the total number of variables assigned true.

In the weighted problemWeighted Max Ones(F) (Weighted Min Ones(F)) the input includes

n non-negative weights w

1

: : : : ; w

n

and the objective is to �nd an assignment which satis�es all

constraints and maximizes (minimizes) the sum of the weights of variables assigned to 1.

The class (Weighted) Max CSP is the set of all optimization problems (Weighted) Max

CSP(F) for every constraint family F . The classes (Weighted) Max Ones, Min CSP, Min

Ones are de�ned similarly.

The optimization problemMax 3Sat is easily seen to be equivalent toMax CSP(F

3SAT

). This and

the other problems Max Ones(F

3SAT

), Min CSP(F

3SAT

) and Min Ones(F

3SAT

) are considered

in the rest of this paper. More interesting examples of Max Ones, Min CSP and Min Ones

problems are described in Section 2.3. We start with some preliminaries on approximability that

we need to state our results.
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2.2 Approximability, Reductions and Completeness

A combinatorial optimization problem is de�ned over a set of instances (admissible input data); a

�nite set sol(x) of feasible solutions is associated to any instance. An objective function attributes

an integer value to any solution. The goal of an optimization problem is, given an instance x, �nd

a solution y 2 sol(x) of optimum value. The optimum value is the largest one for maximization

problems and the smallest one for minimization problems. A combinatorial optimization problem

is said to be an NPO problem if instances and solutions are easy to recognize, solutions are short,

and the objective function is easy to compute. See e.g. [10] for formal de�nitions.

De�nition 2.4 (Performance Ratio) An approximation algorithm for an NPO problem A has

performance ratio R(n) if, given any instance I of A with jIj = n, it computes a solution of value

V which satis�es

max

�

V

opt(I)

;

opt(I)

V

�

� R(n):

A solution satisfying the above inequality is referred to as being R(n)-approximate. We say that a

NPO problem is approximable to within a factor R(n) if it has a polynomial-time approximation

algorithm with performance ratio R(n).

De�nition 2.5 (Approximation Classes) AnNPO problem A is in the class PO if it is solvable

to optimality in polynomial time. A is in the class APX (resp. log-APX/ poly-APX) if there

exists a polynomial-time algorithm for A whose performance ratio is bounded by a constant (resp.

logarithmic/polynomial factor in the size of the input).

Completeness in approximation classes can be de�ned using appropriate approximation preserving

reducibilities. In this paper, we use two notions of reducibility: A-reducibility and AP-reducibility.

We discuss the di�erence between the two and the need for having two di�erent notions after the

de�nitions.

De�nition 2.6 (A-reducibility [14]) An NPO problem A is said to be A-reducible to an NPO

problem B, denoted A�

A

B, if two polynomial time computable functions f and g and a constant

� exist such that:

(1) For any instance I of A, f(I) is an instance of B.

(2) For any instance I of A and any feasible solution S

0

for f(I), g(I;S

0

) is a feasible solution

for I.

(3) For any instance I of A and any r > 1, if S

0

is a r-approximate solution for f(I) then g(I;S

0

)

is an (�r)-approximate solution for I.

De�nition 2.7 (AP-reducibility [13]) For a constant � > 0 and two NPO problems A and B,

we say that A is AP-reducible to B, denoted A�

A

B, if two polynomial-time computable functions

f and g exist such that the following holds:

(1) For any instance I of A, f(I) is an instance of B.

(2) For any instance I of A, and any feasible solution S

0

for f(I), g(I;S

0

) is a feasible solution

for x.

8



(3) For any instance I of A and any r > 1, if S

0

is an r-approximate solution for f(I), then

g(I;S

0

) is an (1 + (r � 1)�+ o(1))-approximate solution for I, where the o notation is with

respect to jIj.

We say that A is AP-reducible to B if a constant � > 0 exists such that A is �-AP-reducible to B.

Remark:

1. Notice that Conditions (3) of both reductions only preserve the quality of an approximate

solution in absolute terms (to within the speci�ed limits) and not as functions of the instance

size. For example, an A-reduction from � to �

0

which blows up instance size by quadratic

factor and an O(n

1=3

) approximation algorithm for �

0

combine to give only an O(n

2=3

) ap-

proximation algorithm for �.

2. The di�erence in the two reductions is level of approximability that is preserved by the two.

(Condition (3) in the de�nitions.) A-reductions preserve constant factor approximability or

higher, i.e., if � is A-reducbile to �

0

and �

0

is approximable to within a factor of r(n), then �

is approximable to within �r(n

c

) for some constants �; c. This property su�ces to preserve

membership in APX (log-APX, poly-APX), i.e., if � is in APX (log-APX, poly-APX) then

� is also in APX(resp. log-APX, poly-APX). However it does not preserve membership in

PO, as can be observed by setting r = 1.

3. AP-reductions reductions are more sensitive than A-reductions. Thus if � is AP-reducbile to

�, then an r-approximate solution is mapped to an h(r) approximate solution where h(r)! 1

as r ! 1. Thus AP-reductions preserve membership in PO or PTAS as well.

4. Condition (3) of the AP-reduction is strictly stronger and thus every AP-reduction is also

an A-reduction. Unfortunately neither one of these reductions su�ce for our purposes. We

need AP-reductions to show APX-hardness of problems, but we need the added 
exibility of

A-reductions for other hardness results.

5. The original de�nitions of AP-reducibility and A-reducibility of [14] and [13] were more gen-

eral. Under the original de�nitions, the A-reducibility does not preserve membership in

log-APX, and it is not clear whether every AP-reduction is also an A-reduction. The re-

stricted versions de�ned here are more suitable for our purposes. In particular, it is true that

the Vertex Cover problem is APX-complete under our de�nition of AP-reducibility.

De�nition 2.8 (APX and poly-APX-completeness) An NPO problem � is APX-hard if ev-

ery APX problem is AP-reducible to �. An NPO problem � is log-APX-hard (poly-APX-hard)

if every log-APX (poly-APX) problem is A-reducible to �. A problem � is APX- (log-APX-

, poly-APX-) if it is in APX (resp. log-APX, poly-APX) and it is APX- (resp. log-APX-,

poly-APX-) hard.

2.3 Problems captured by Max CSP, Max Ones, Min CSP and Min Ones

We �rst specify our notation for commonly used functions.

0 and 1 are the functions which are always satis�ed and never satis�ed respectively. Together

these are the trivial functions. We will assume that all our function families do not have any

trivial functions.
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T and F are unary functions given by T (x) = x and F (x) = :x.

For a positive integer i and non-negative integer j � i, OR

i;j

is the function on i variables

given by OR

i;j

(x

1

; : : :x

i

) = :x

1

W

� � �

W

:x

j

W

x

j+1

W

� � �

W

x

i

. OR

i

= OR

i;0

; NAND

i

= OR

i;i

;

OR = OR

2

; NAND = NAND

2

.

Similarly, AND

i;j

is given by AND

i;j

(x

1

; : : :x

i

) = :x

1

V

� � �

V

:x

j

V

x

j+1

V

� � �

V

x

i

. AND

i

=

AND

i;0

; NOR

i

= AND

i;i

; AND = AND

2

; NOR = NOR

2

.

The function XOR

i

is given by XOR(x

1

; : : : ; x

i

) = x

1

� � � � � x

i

. XOR = XOR

2

.

The function XNOR

i

is given by XOR(x

1

; : : : ; x

i

) = :(x

1

� � � � � x

i

). XNOR = XNOR

2

.

Now we enumerate some interesting maximization and minimization problems which are \captured"

by (i.e., are equivalent to some problem in)Max CSP,Max Ones,Min CSP andMin Ones. The

following list is interesting for several reasons. First, it highlights the importance of these classes

as ones that contain interesting optimization problems. They show the diversity of the problems

captured by these classes. Furthermore, some of these problems turn out to be \complete" problems

for the partitions they belong to. Some are even necessary for a full statement of our results. Last,

for several of the minimization problems listed below, their approximability is not yet fully resolved.

We feel that these problems are somehow representative of the lack of our understanding of the

approximability of minimization problems. We start with the maximization problems.

For any positive integer k,Max kSat =Max CSP(fOR

i;j

ji 2 [k]; 0 � j � ig). Max kSat is a

well-studied problem and known to beMAX SNP-complete [38], for k � 2. EveryMAX SNP-

complete problem is in APX (i.e., approximable to within a constant factor in polynomial

time) [38]. Also for MAX SNP-complete problem there exists a constant � greater than 1,

such that the problem is problem is not �-approximable unless NP = P [3].

Max Cut = Max CSP(fXORg). Max Cut is also MAX SNP-complete [38] and the

best known approximation algorithm for this problem achieves a performance ratio of 1:14 �

1=:878, [22].

For any positive integer k, Max EkSat = Max CSP(fOR

k;j

j0 � j � kg). The problem Max

EkSat is a variant of Max kSat restricted to have clauses of length exactly k.

Max Clique = Max Ones(NAND). Max Clique is known to be approximable to within

a factor of O(n=log

2

n) in an n-vertex graph [9] and is known to be hard to approximate to

within a factor of 
(n

1��

) for any � > 0 unless NP = RP [18, 23].

We now go on to the minimization problems.

The well known minimum s-t cut problem in directed graphs is equivalent to Weighted Min

CSP(F) for F = fOR

2;1

; T; Fg. This is shown in Section 5.1. This problem is well-known to

be solveable exactly in polynomial time.

The Hitting Set problem, when restricted to sets of bounded sizes B can be captured as

Min Ones(F) for F = fOR

k

jk � Bg. Also, of interest to our paper is a slight generalization

of this problem which we call the Implicative Hitting Set-B Problem (Min IHS-B) which

is Min CSP(fOR

k

: k � Bg [ fOR

2;1

; Fg). The Min Ones version of this problem will be

of interest to us as well. The Hitting Set-B problem is well-known to be approximable to

within a factor of B. We show that Min IHS-B is approximable to within a factor of B + 1.
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Min UnCut = Min CSP(fXORg). This problem has been studied previously by Klein et

al. [32] and Garg et al. [20]. The problem is known to be MAX SNP-hard and hence not

approximable to within some constant factor greater than 1. On the other hand, the problem

is known to be approximable to within a factor of O(logn) [20].

Min 2CNF Deletion = Min CSP(fOR;NANDg). This problem has been studied by Klein

et al. [33]. They show that the problem is MAX SNP-hard and that it is approximable to

within a factor of O(logn log log n).

Nearest Codeword = Min CSP(fXOR;XNORg). This is a classical problem for which

hardness of approximation results have been shown by Arora et al. [2]. The Min Ones version

of this problem is essentially identical to this problem. For both problems, the hardness result

of Arora et al. [2] shows that approximating this problem to within a factor of 
(2

log

1��

n

) is

hard for every � > 0, unless NP � QP. No non-trivial approximation guarantees are known

for this problem (the trivial bound being a factor of m, which is easily achieved since deciding

if all equations are satis�able amounts to solving a linear system).

Lastly we also mention one more problem which is required to present our main theorem.

Min Horn Deletion = Min CSP(fOR

3;1

; T; Fg). This problem is essentially as hard as the

Nearest Codeword.

2.4 Properties of function families

We start with the six properties de�ned by Schaefer:

A constraint f is 0-valid (resp. 1-valid) if f(0; : : : ; 0) = 1 (resp. f(1; : : : ; 1) = 1).

A constraint is weakly positive (resp. weakly negative) if it can be expressed as a CNF-formula

having at most one negated variable (resp. at most one unnegated variable

4

) in each clause.

A constraint is a�ne if it can be expressed as a conjunction of linear equalities over Z

2

.

A constraint is 2cnf if it is expressible as a 2CNF-formula.

The above de�nitions extend to constraint families naturally. For instance, a constraint family F

is 0-valid if every constraint f 2 F is 0-valid. Using the above de�nitions Schaefer's main theorem

states: For any constraint family F , Sat(F) is in P if F is 0-valid or 1-valid or weakly positive or

weakly negative or a�ne or 2cnf; else deciding Sat(F) is NP-hard. We use the shorthand \F is

(not) decidable" to say that deciding membership in Sat(F) is solvable in P (is NP-hard).

We need to de�ne some additional properties to describe the approximabilities of the optimization

problems we consider:

f if 2-monotone if f(x

1

; : : : ; x

k

) is expressible as (x

i

1

V

� � �

V

x

i

p

)

W

(:x

j

1

V

� � �

V

:x

j

q

) (i.e., f

is expressible as a DNF-formula with at most two terms - one containing only positive literals

and the other containing only negative literals).

A constraint is width-2 a�ne if it is expressible as a conjunction of linear equations over Z

2

such that each equation has at most 2 variables.

A constraint is strongly 0-valid if it is satis�ed by all assignments with at most one 1.

4

Such clauses are usually called Horn clauses.
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A constraint f is IHS-B+ (for Implicative Hitting Set-Bounded+) if it is expressible as a CNF

formula where the clauses are of one of the following types: x

1

W

� � �

W

x

k

for some positive inte-

ger k, or :x

1

W

x

2

, or :x

1

. IHS-B� constraints and constraint families are de�ned analogously

(with every literal being replaced by its complement). A family is a IHS-B family if the family

is a IHS-B+ family or a IHS-B� family.

We use the following shorthand for the above families: (1) F

0

is the family of 0-valid constraints;

(2) F

1

is the family of 1-valid constraints; (3) F

S0

is the family of strongly 0-valid constraints; (4)

F

2M

is the family of 2-monotone constraints; (5) F

HS

is the family of IHS-B constraints; (6) F

2A

is the family of width-2 a�ne constraints; (7) F

2CNF

is the family of 2CNF constraints; (8) F

A

is

the family of a�ne constraints; (9) F

WP

is the family of weakly positive constraints; (10) F

WN

is

the family of weakly negative constraints.

2.5 Main Results

We now present the main results of this paper. A more pictorial representation is available in

Appendices B.1, B.2, B.3 and B.4. The theorems use the shorthand �

0

is �-complete to indicate

that the problem �

0

is equivalent (under A-reductions) to the problem �. All theorems are stated

assuming F has no trivial constraints, i.e., constraints that are always satis�ed or never satis�ed.

The �rst theorem is a minor strengthening of Creignou's theorem [11] so as to cover problems such

asMax EkSat. The remaining theorems coverMax Ones,Min CSP andMin Ones respectively.

Theorem 2.9 (Max CSP classi�cation) For any constraint set F , the problem (Weighted)

Max CSP(F) is always either in PO or is APX-complete. Furthermore, it is in PO if and only if

F is 0-valid or 1-valid or 2-monotone.

Theorem 2.10 (Max Ones classi�cation) For any constraint set F , the problem (Weighted)

Max Ones(F) is either in PO or is APX-complete or poly-APX-complete or decidable but not

approximable to within any factor or not decidable. Furthermore,

(1) If F is 1-valid or weakly positive or a�ne with width 2, then (Weighted) Max Ones(F) is

in P.

(2) Else if F is a�ne then (Weighted) Max Ones(F) is APX-complete.

(3) Else if F is strongly 0-valid or weakly negative or 2CNF then (Weighted) Max Ones(F)

is poly-APX-complete.

(4) Else if F is 0-valid then Sat(F) is in P but �nding a solution of positive value is NP-hard.

(5) Else �nding a feasible solution to (Weighted) Max Ones(F) is NP-hard.

Theorem 2.11 (Min CSP classi�cation) For any constraint set F , the problem (Weighted)

Min CSP(F) is in PO or is APX-complete or Min UnCut-complete or Min 2CNF Deletion-

complete or Nearest Codeword-complete or Min Horn Deletion-complete or the decision

problem is NP-hard. Furthermore,

(1) If F is 0-valid or 1-valid or 2-monotone, then (Weighted) Min CSP(F) is in PO.

(2) Else if F is IHS-B then (Weighted) Min CSP(F) is APX-complete.

(3) Else if F is width-2 a�ne then (Weighted) Min CSP(F) is Min UnCut-complete.
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(4) Else if F is 2CNF then (Weighted) Min CSP(F) is Min 2CNF Deletion-complete.

(5) Else if F is a�ne then (Weighted) Min CSP(F) is Nearest Codeword-complete.

(6) Else if F is weakly positive or weakly negative then (Weighted) Min CSP(F) isMin Horn

Deletion-complete.

(7) Else deciding if the optimum value of an instance of (Weighted) Min CSP(F) is zero is

NP-complete.

Theorem 2.12 (Min Ones classi�cation) For any constraint set F , the problem (Weighted)

Min Ones(F) is either in PO or APX-complete or Nearest Codeword-complete or Min Horn

Deletion-complete or poly-APX-complete or the decision problem is NP-hard. Furthermore,

(1) If F is 0-valid or weakly negative or width-2 a�ne, then (Weighted) Min Ones(F) is in

PO.

(2) Else if F is 2CNF or IHS-B then (Weighted) Min Ones(F) is APX-complete.

(3) Else if F is a�ne then Min Ones(F) is Nearest Codeword-complete.

(4) Else if F is weakly positive then (Weighted) Min Ones(F) is Min Horn Deletion-

complete.

(5) Else if F is 1-valid thenMin Ones(F) is poly-APX-complete. andWeighted Min Ones(F)

is decidable but hard to approximate to within any factor.

(6) Else �nding any feasible solution to (Weighted) Min Ones(F) is NP-hard.

2.6 Techniques

Two simple ideas play an important role in this paper. First is the notion of an implementation

which shows how to use the constraints of a family F to enforce constraints of a di�erent family F

0

,

thereby laying the groundwork of a reduction among problems. The notion of an implementation

is inspired by the notion of gadgets formalized by Bellare et al. [8] who in our language de�ne

implementations for speci�c pairs of function families (F ;F

0

). In this work we unify their de�nition,

so as to make it work for arbitrary pairs of function families. This de�nition of implementation also

�nds applications in the work of Trevisan et al. [42] who, in our language, show uniform methods

for searching for e�cient implementations for pairs of function families (F;F

0

).

A second simple idea we exploit here is that of working with weighted versions of optimization

problems. Even though our primary concerns were only the approximability of the unweighted

versions of problems, many of our results use as intermediate steps the weighted versions of these

problems. The weights allow us to manipulate problems more locally. However, simple and well-

known ideas eventually allow us to get rid of the weights and thereby yielding hardness of the

unweighted problem as well. As a side-e�ect we also show that the unweighted and weighted

problems are equally hard to approximate in all the relevant optimization problems. This extends

to minimization problems the results of Crescenzi et al. [15].

The de�nitions of implementations and weighted problems follows in Section 3. Section 4 shows

some technical results showing how we exploit the fact that we have functions which don't exhibit

some property. The results of this section play a crucial role in all the hardness results. This sets us
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up for the proofs of our main theorems. In Section 5 we show the containment results and hardness

results for Max CSP. Similarly Sections 6, 7, and 8 deal with the classes Max Ones, Min CSP,

and Min Ones, respectively.

3 Implementations

We now describe the main technique used in this paper to obtain hardness of approximation results.

Suppose we want to show that for some constraint set F , the problem Max CSP(F) is APX-hard.

We will start with a problem that is known to be APX-hard, such as Max Cut, which turns

out to be Max CSP(fXORg). We will then wish to reduce this problem to Max CSP(F). The

main technique we use to do this is to \implement" the constraint XOR using constraints from the

constraint set F . We show how to formalize this notion next and then show how this translates to

approximation preserving reductions.

De�nition 3.1 (Implementation) A collection of constraint applications C

1

; : : : ; C

m

over a set

of variables ~x = fx

1

; : : : ; x

p

g called primary variables and ~y = fy

1

; : : : ; y

q

g called auxiliary variables,

is an �-implementation of a constraint f(~x) for a positive integer � if the following conditions are

satis�ed:

(1) For any assignment to ~x and ~y at most � constraints from C

1

; : : : ; C

m

are satis�ed.

(2) For any ~x such that f(~x) = 1, there exists ~y such that exactly � constraints are satis�ed.

(3) For any ~x; ~y such that f(

~

X) = 0, at most (�� 1) constraints are satis�ed.

An implementation which satis�es the following additional property is called a strict �-imple-

mentation:

For any ~x such that f(x) = 0, there exists ~y such that exactly (� � 1) constraints are

satis�ed.

An �-implementation which satis�es the additional property that � = m is called a perfect imple-

mentation.

A constraint set F (strictly / perfectly) implements a constraint f if there exists a (strict / perfect)

�-implementation of f using constraints of F for some � <1.

Remark: The de�nition of [8] de�ned (non-strict and non-perfect) implementations for speci�c

choices of f and F . For each choice they provided a separate de�nition. We unify their de�nitions

into a single one. Furthermore as we will show later, the use of strictness and/or perfectness greratly

enhance the power of implementations. These aspects are formalized for the �rst time here.

A constraint f 1-implements itself strictly and perfectly. Some more examples of strict and/or

perfect implementations are given below.

Proposition 3.2 The family fXORg perfectly and strictly 2-implements the constraint XNOR.

Proof: The constraints XOR(x; z

Aux

) and XOR(y; z

Aux

) perfectly and strictly implement the

constraint XNOR(x; y). 2

Proposition 3.3 If f(~x) = f

1

(~x)

V

� � �

V

f

k

(~x), then the family ff

1

; : : : ; f

k

g perfectly k-implements

ffg.
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Proof: The collection ff

1

(~x); : : : ; f

k

(~x)g is a perfect k-implementation of f(~x). 2

The following lemma shows that the implementations of constraints compose together, if they are

strict or perfect.

Lemma 3.4 If F

f

strictly implements (perfectly implements) a constraint f , and F

g

strictly imple-

ments (perfectly implements) a constraint g 2 F

f

, then (F

f

nfgg)[F

g

strictly implements (perfectly

implements) the constraint f .

Proof: Let C

1

; : : : ; C

m

1

be constraint applications from F

f

on variables ~x; ~y giving an �

1

-imple-

mentation of f with ~x being the constraint variables. Let C

0

1

; : : : ; C

0

m

2

be constraint applications

from F

g

on variable set

~

x

0

;

~

z

0

yielding an �

2

-implementation of g. Further let the �rst � constraints

of C

1

; : : : ; C

m

1

be applications of the constraints g.

We create a collection of m

1

+ �(m

2

� 1) constraints from (F

f

n fgg) [ F

g

on a set of variables

~x; ~y;

~

z

0

1

; : : : ;

~

z

0

�

as follows: We include the constraint applications C

�+1

; : : : ; C

m

1

on variables ~x; ~y

and for every constraint application C

j

, for j 2 f1; : : : ; �g, on variables ~v

j

(which is a subset of

variables from ~x; ~y) we place the constraints C

0

1;j

; : : : ; C

0

m

2

;j

on variable set ~v

j

;

~

z

0

j

with

~

z

0

j

being

the auxiliary variables.

We now show that this collection of constraints satisi�es properties (1)-(3) from De�nition 3.1 with

� = �

1

+�(�

2

� 1). Additionally we show that perfectness and/or strictness is preserved. We start

with properties (1) and (3).

Consider any assignment to ~x satisfying f . Then any assignment to ~y satis�es at most �

1

constraints

from the set C

1

; : : : ; C

m

1

. Let 
 of these be from the set C

1

; : : : ; C

�

. Now for every j 2 f1; : : : ; �g

any assignment to

~

z

0

j

satis�es at most �

2

of the constraints C

0

1;j

; : : : ; C

0

m

2

;j

. Furthermore if the

constraint C

j

was not satis�ed by the assignment to ~x; ~y, then at most �

2

� 1 constraints are

satis�ed. Thus the total number of constraints satis�ed by any assignment is at most 
(�

2

) + (��


)(�

2

� 1)+ (�

1

�
) = �

1

+�(�

2

� 1). This yields property (1). Property (3) is achieved similarly.

We now show that if the �

1

- and �

2

-implementations are perfect we get property (2) with perfect-

ness. In this case for any assignment to ~x satisfying f , there exists an assignment to ~y satisfying

C

1

; : : : ; C

m

1

. Furthermore for every j 2 f1; : : : ; �g, there exists an assignments to

~

z

0

j

satisfying all

the constraints C

0

1;j

; : : : ; C

0

m

2

;j

. Thus there exists an assignment to ~x; ~y;

~

z

0

1

; : : : ;

~

z

0

�

satisfying all

m

1

+ �(m

2

� 1) constraints. This yields property (2) with perfectness.

Finally we consider the case when the �

1

- and �

2

-implementations are strict (but not necessarily

perfect) and show that in this case also the collection of constraints above satis�es property (b)

and (d). Given an assignment to ~x satisfying f there exists an assignment to ~y satisfying �

1

constraints from C

1

; : : : ; C

m

1

. Say this assigment satis�ed 
 clauses from the set C

1

; : : : ; C

�

and

�

1

� 
 constraints from the set C

�+1

; : : : ; C

m

1

. Then for every j 2 f1; : : : ; �g such that the

clauses C

j

is satis�ed by this assignment to ~x; ~y, there exists an assignment to

~

z

0

j

satisfying �

2

clauses from the set C

0

1;j

; : : : ; C

0

m

2

;j

. Furthermore, for the remaining values of j 2 f1; : : : ; �g there

exists an assignment to the variables

~

z

0

j

satisfying �

2

� 1 of the constraints C

0

1;j

; : : : ; C

0

m

2

;j

(here

we are using the strictness of the �

2

implementations). This setting to

~

Y ;

~

Z

0

1

; : : : ;

~

Z

0

�

satis�es


�

2

+ (� � 
)(�

2

� 1) + �

1

� 
 = �

1

+ �(�

2

� 1) of the m constraints. This yields property (2). A

similar analysis can be used to show the strictness. 2

Next we show a simple monotonicity property of implementations.
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Lemma 3.5 For integers �; �

0

with � � �

0

, if F �-implements f then F �

0

-implements f . Fur-

thermore strictness and perfectness are preserved under this transformation.

Proof: Let constraint applications C

1

; : : : ; C

m

from F on ~x; ~y form an �-implementation of f . Let

g be a constraint from F that is satis�able and let k be the arity of g. Let C

m+1

; : : : ; C

m+�

0

��

be �

0

� � applications of the constraint g on new variables z

1

; : : : ; z

k

. Then the collection of

constraints C

1

; : : : ; C

m+�

0

��

on variable set ~x; ~y; ~z form an �

0

-implementation of f . Furthermore

the transformation preserves strictness and perfectness. 2

3.1 Reduction from strict implementations

We �rst show how strict implementations are useful in establishing AP-reducibility among Max

CSP problems. But �rst we need a simple statement about the approximability of Max CSP

problems.

Proposition 3.6 ([38]) For every constraint family F that has no trivial constraints there exists

a constant k such that given any instance I of Weighted Max CSP(F) with constraints of total

weight W a solution satisfying constraints of weight W=k can be found in polynomial time.

Proof: The proposition follows from the proof of Theorem 1 in [38] which shows the above for

every MAX SNP problem. 2

Lemma 3.7 If every constraint of F is strictly implemented by F

0

, then Max CSP(F) is AP-

reducible to Max CSP(F

0

).

Proof: The reduction uses Proposition 3.6 above. Let � a constant such that given an instance

I of Max CSP(F) with m constraints an assignment satisfying

m

�

constraints can be found in

polynomial time.

Recall that we need to show polynomial time constructible functions f and g such that f maps an

instance I of Max CSP(F) to an instance of Max CSP(F

0

), and g maps a solution to f(I) back

to a solution of I.

Given an instance I on n variables and m constraints, the mapping f simply replaces every con-

straint in I (which belongs to F) with a strict �-implementation using constraints of F

0

, for some

constant �. (Notice that by Lemma 3.5 some such � does exist.) The mapping retains the original

n variables of I as primary variables and uses m independent copies of the auxiliary variables; one

independent copy for every constraint in I.

Let h~x; ~yi be a r-approximate solution to the instance f(I), where ~x denotes the original variables of

I and ~y denote the auxiliary variables introduced by f . The mapping g uses two possible solutions

and takes the better of the two: The �rst solution is x; and the second solution x

0

is the solution

which satis�es at least m=� of the constraints in I. g outputs the solution which satis�es more

constraints.

We now show that a r-approximate solution leads to an r

0

-approximate solution where r

0

� 1+
(r�

1) for some constant 
. Let opt denote the value of the optimum to I. Then the optimum of f(I)

is exactly opt+m(�� 1). This computation uses the fact that for every satis�ed constraint in the

optimal assignment to I, we can satisfy � constraints of its implementation by choosing the auxiliary

variables appropriately (from Properties (1) and (2) of De�nition 3.1); and for every unsatis�ed

constraint exactly �� 1 constraints of its implementation can be satis�ed (from Property (3) and
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strictness of the implementation). Thus the solution h~x; ~yi satis�es at least

1

r

(opt + m(� � 1))

constraints of f(I). Thus x satis�es at least

1

r

(opt+m(�� 1))�m(�� 1) constraints in I. (Here

we use Properties (1) and (3) of De�nition 3.1 to see that there must be at least

1

r

(opt +m(� �

1))�m(�� 1) constraints of I in whose implementations exactly � constraints must be satis�ed.)

Thus the solution output by g satis�es at least

maxf

1

r

(opt+m(�� 1))�m(�� 1);

m

�

g

constraints. Using the fact that maxfa; bg � �a + (1 � �)b for any � 2 [0; 1] and using � =

r

r+�(��1)(r�1)

, we lower bound the above expression by

opt

r + �(�� 1)(r� 1)

:

Thus

r

0

�

opt

opt=(r+ �(� � 1)(r� 1))

= r + �(� � 1)(r� 1) = 1 + (�(�� 1) + 1)(r� 1):

Thus we �nd that g maps r-approximate solutions of f(I) to 1 + 
(r � 1) approximate solutions

to I for 
 = �(�� 1) + 1 <1 as required. 2

3.2 Reductions from perfect implementations

We now show how to use perfect implementations to get reductions. Speci�cally we obtain reduc-

tions among Weighted Max Ones, Weighted Min Ones and Min CSP problems.

Lemma 3.8 If F

0

perfectly implements every constraint of F then Weighted Max Ones(F)

(Weighted Min Ones(F)) is AP-reducible to Weighted Max Ones(F

0

) (resp. Weighted

Min Ones(F

0

)).

Proof: Again we need to show polynomial time constructible functions f and g such that f maps an

instance I ofWeighted Max Ones(F) (Weighted Min Ones(F)) to an instance ofWeighted

Max Ones(F

0

) (Weighted Min Ones(F)), and g maps a solution to f(I) back to a solution of

I.

Given an instance I on n variables and m constraints, the mapping f simply replaces every con-

straint in I (which belongs to F) with a strict �-implementation using constraints of F

0

, for some

constant �. (Notice that by Lemma 3.5 some such � does exist.) The mapping retains the original

n variables of I as primary variables and uses m independent copies of the auxiliary variables;

one independent copy for every constraint in I. Further, f(I) retains the weight of the primary

variables from I and associates a weight of zero to all the newly created auxiliary variables. Given

a solution to f(I), the mapping g is simply the projection of the solution back to the primary

variables. It is clear that every feasible solution to I can be extended into a feasible solution to

f(I) which preserves the value of the objective; alternatively, the mapping g maps feasible solutions

to f(I) into feasible solutions to I with the same obective. (This is where the perfectness of the

implementations is being used.) Thus the optimum of f(I) equals the value of the optimum of I

and given an r-approximate solution to f(I), the mapping g yields an r-approximate solution to

I. 2
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Lemma 3.9 If every constraint of F is perfectly implemented by F

0

then Min CSP(F) is A-

reducible to Min CSP(F

0

).

Proof: Let k be large enough so that any constraint from F has a perfect k-implementation using

constraints from F

0

. Let I be an instance of Min CSP(F) and let I

0

be the instance of Min

CSP(F

0

) obtained by replacing each constraint of I with the respective k-implementation. Once

again each implementation uses the original set of variables for its primary variables and uses its

own independent copy of the auxiliary variables. It is easy to check that any assigment for I

0

of

cost V yields an assigment for I whose cost is between V=k and V . It is immediate to check that

if the former solution is r-approximate, then the latter is (kr)-approximate. 2

3.3 Weighted vs. unweighted problems

Lemma 3.8 crucially depends on its ability to work with weighted problems to obtain reductions.

The following lemma shows that in most cases showing hardness for weighted problems is su�cient.

Speci�cally it shows that as long as a problem is weakly approximable, its weighted and unweighted

versions are equivalent. The result uses a a similar result from Crescenzi et al. [15] who prove that

for \nice" problems in poly-APX, weighted problems AP-reduce to problems with polynomially-

bounded integral weights. Their de�nition of \nice" includes all problems dealt with in this paper.

Using this result we scale all weights down to small integers and then simulate the small integral

weights by replication of clauses and/or variables.

Lemma 3.10 For any constraint family F, if Weighted Max CSP(F) is in poly-APX, then

Weighted Max CSP(F)AP-reduces to Max CSP(F). Analogous results hold for Min CSP(F),

Max Ones(F) and Min Ones(F).

Proof: We �rst use the above mentioned result of [15, Theorem 4] to AP-reduce Weighted

Max CSP(F) (resp. Weighted Min CSP(F), Weighted Max Ones(F) or Weighted Min

Ones(F)) to the special class of Weighted Max CSP(F) problems with polynomially bounded

positive integral weights.

5

Thus it su�ces to show an AP-reduction from this special class of

problems to the unweighted case.

Given an instance ofWeighted Max CSP(F) on variables x

1

; : : : ; x

n

, constraints C

1

; : : : ; C

m

and

weights w

1

; : : : ; w

m

; we reduce it to the unweighted case by replication of constraints. Thus the

reduced instance has variables x

1

; : : : ; x

n

and constraint ffC

j

i

g

w

i

j=1

g

m

i=1

where constraint C

j

i

= C

i

. It

is clear that the reduced instance is essentially the same as the instance we started with. Similarly

we reduce Weighted Min CSP(F) to Min CSP(F).

Given an instance I of Weighted Max Ones(F) on variables x

1

; : : : ; x

n

, constraints C

1

; : : : ; C

m

and weights w

1

; : : : ; w

n

; we create an instance I

0

of Max Ones(F) on variables ffy

j

i

g

w

i

j=1

g

n

i=1

.

For every constraint C

j

of I of the form f(x

i

1

; : : : ; x

i

k

), and for every j 2 f1; : : : ; kg and n

j

2

f1; : : : ; w

i

j

g we impose the constraints f(y

n

1

i

1

; : : : ; y

n

k

i

k

). We now claim that the reduced instance is

essentially equivalent to the instance we started with. To see this, notice that given any feasible

solution ~y to the I

0

we may convert it to another feasible solution ~y

0

in which, for every i, all

the variables f(~y

0

)

j

i

jj = 1; : : : ; w

i

g have the same assignment, by setting (~y

0

)

j

i

to 1 if any of the

variables y

j

0

i

, j

0

= 1; : : : ; w

i

is set to 1. Notice that this preserves feasibility; and only increases the

5

Strictly speaking, the reduction of [15] reduces to instances with some weights being possibly zero. However it is

easy to modify their proof so that this does not happen. In particular, we may just add one to every weight in the

reduced instance and verify that this still produces an AP-reduction.
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contribution to the objective function. The assignment ~y

0

now induces an assignment to ~x with

the same value of the objective function. Thus the reduced instance is essentially equivalent to

the original one. This concludes the reduction fromWeighted Max Ones(F) toMax Ones(F).

The reduction from Weighted Min Ones(F) to Min Ones(F) is similar. 2

4 Characterizations: New and Old

In this section we characterize some of the properties of functions that we study. Most of the

properties are de�ned so as to describe how a function behaves if it exhibits the property. For the

hardness results however we need to see how to exploit the fact that a function does not satisfy some

given property. For this we would like to see some simple witness to the fact that the function does

not have a given property. As an example consider the a�neness property. If a function is a�ne,

it is easy to see how to use this property. What will be important to us is if there exist a simple

witness to the fact that a function f is not a�ne. Schaefer [41] provides such a characterization:

If a function is not a�ne. then there exist assignments s

1

, s

2

and s

3

that satisfy f such that

s

1

�s

2

�s

3

does not satisfy f . This is exploited by Schaefer (and by us) in our classi�cations. This

section describes other such characterizations and the implementations obtained from them. First

we introduce some more de�nitions and notations that we will be used in the rest of the paper.

4.1 De�nitions and Notations

For s 2 f0; 1g

k

, we let �s 2 f0; 1g

k

denote the complement of s. For a constraint f of arity k,

let f

�

be the constraint f

�

(s) = f(�s). For a constraint family F , let F

�

= ff

�

: f 2 Fg. For

s

1

; s

2

2 f0; 1g

k

, s

1

�s

2

denotes the bitwise exclusive-or of the assignments s

1

and s

2

. For s 2 f0; 1g

k

,

Z(s) denotes the subset of indices i 2 [k] where s is zero and O(s) denotes the subset of indices

where s in one.

For a constraint f of arity k, S � [k] and b 2 f0; 1g, f j

(S;b)

is the constraint of arity k

0

= k � jSj

de�ned as follows: For variables x

i

1

; : : : ; x

i

0

k

, where fi

1

; : : : ; i

k

0
g = [k] � S f j

(S;0)

(x

i

1

; : : : ; x

i

k

0

) =

f(x

1

; : : : ; x

k

) where x

i

= b for i 2 S. We will sometimes use the notation f

(i;b)

to denote the function

f

(fig;b)

. For a constraint family F , the family Fj

0

is the family ff

S;0

jf 2 F ; S � [arity(f)]g. The

family Fj

1

is de�ned analogously. The family Fj

0;1

is the family (Fj

0

)j

1

(or equivalently the family

(Fj

1

)j

0

).

De�nition 4.1 (C-closed) A constraint f is C-closed (complementation-closed) if for every as-

signment s, f(s) = f(�s).

De�nition 4.2 (Existential zero/existential one) A constraint f is an existential zero con-

straint if f(

~

0) = 1 and f(

~

1) = 0. A constraint f is an existential one constraint if f(

~

0) = 0 and

f(

~

1) = 1.

Every constraint f can be expressed as the conjunction of disjuncts. This respresentation of a

function is referred to as the conjuncive normal form (CNF) represntation of f . Alternately, a

function can also be represented as a disjunction of conjuncts and this representation is called the

disjunctive normal form (DNF) representation.

A partial setting to the variables of f that �xes the value of f to 1 is called a term of f . A

partial setting that �xes f to 0 is called a clause of f . We refer to the terms and clauses in a
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functional form: I.e., we say OR

3;1

(x

1

; x

2

; x

3

) = x

1

W

x

2

W

:x

3

is a clause of f(x

1

; : : : ; x

p

) if setting

x

1

= x

2

= 0 and x

3

= 1 �xes f to being 0. Similarly we use the AND

i;j

to denote the terms.

Notice that a DNF (CNF) representation of f can be obtained by expressing as the conjunction

(disjunction) of its terms (clauses).

De�nition 4.3 (Minterm/Maxterm) A partial setting to a subset of the variables of f is a

minterm if it is a term of f and no restriction of the setting to any strict subset of the variables

�xes the value of f . Analogously a clause of f is a maxterm if it is a minimal setting to the variables

of f so as to �x its value to 0.

As in the case of terms and clauses, we represent minterms and maxterms functionally, i.e., using

OR

i;j

and AND

i;j

.

De�nition 4.4 (Basis) A constraint family F

0

is a basis for a constraint family F if any con-

straint of F can be expressed as a conjunction of constraints drawn from F

0

.

Thus, for example, the basis for an a�ne constraint is the set fXOR

p

jp � 1g [ fXNOR

p

jp � 1g.

The basis of a width-2 a�ne constraint is the set F = fXOR;XNOR; T; Fg, and a 2CNF constraint

is the set F = fOR

2;0

;OR

2;1

;OR

2;2

; T; Fg. The de�nition of a basis is motivated by the fact that

if F

0

is a basis for F , then F

0

can perfectly implement every function in F (see Proposition 3.3).

4.2 0-validity and 1-validity

The characterization of 0-valid and 1-valid functions is obvious. We now show what can be imple-

mented with functions that are not 0-valid and not 1-valid.

Lemma 4.5 Let f be a non-trivial constraint which is C-closed and is not 0-valid (or equivalently

not 1-valid)

6

. Then ffg perfectly and strictly implements the XOR constraint.

Proof: Let k denote the arity of f and let k

0

and k

1

respectively denote the maximum number

of 0's and 1's in any satisfying assignment for f ; clearly k

0

= k

1

. Now let S

x

= fx

1

; : : : ; x

2k

g and

S

y

= fy

1

; : : : ; y

2k

g be two disjoint sets of 2k variables each. We begin by placing the constraint

f on a large collection of inputs as follows: for each satisfying assignment s, we place

�

2k

i

��

2k

k�i

�

constraints on the variable set S

x

[ S

y

such that every i-variable subset of S

x

appears in place of

0's in s and every (k� i) variable subset of S

y

appears in place of 1's in the assignment s, where i

denotes the number of 0's in s. Let this collection of constraints be denoted by I.

Clearly, any solution which assigns identical values to all variables in S

x

and the complementary

value to all variables in S

y

, satis�es all the constraints in I. We wish to show the converse, i.e.,

every assignment satisfying all the above constraints assigns identical values to all variables in S

x

and the complementary value to every variable in S

y

.

Let Z and O respectively denote the set of variables set to zero and one respectively. We claim

that any solution which satis�es all the constraints must satisfy either Z = S

x

or Z = S

y

.

To see this, assume without loss of generality that jS

x

\ Zj � k. This implies that jS

y

\Oj � k or

else there exists a constraint in I with all its input variables set to zero and hence is unsatis�ed.

This in turn implies that no variable in S

x

can take value one; otherwise, there exists a constraint

with k

1

+ 1 of its inputs set to one, and is therefore unsatis�ed. Finally, we can now conclude that

6

Notice that C-closedness implies that f is 0-valid if and only if it is 1-valid.
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no variable in S

y

takes value zero; otherwise, there exists a constraint with k

0

+ 1 of its inputs

set to zero and is therefore unsatis�ed. Thus, Z = S

x

. Analogously, we could have started with

the assumption that jS

x

\ Oj � k and established Z = S

y

. Hence an assignment satis�es all the

constraints in I i� it satis�es either the condition Z = S

x

or the condition Z = S

y

.

We now augment the collection of constraints as follows. Consider a least Hamming weight sat-

isfying assignment s for f . Without loss of generality, we assume that s = 10

p

1

q

. Clearly then,

s

0

= 0

p+1

1

q

is not a satisfying assignment. Since f is C-closed, we have the following situation :

f()

s

0

0

p

z }| {

00:::0

q

z }| {

11:::1 0

s 1 00:::0 11:::1 1

�s 0 11:::1 00:::0 1

�

s

0

1 11:::1 00:::0 0

We add the constraints f(x; x

1

; x

2

; :::; x

p

; y

1

; y

2

; :::; y

q

) and f(y; y

1

; y

2

; :::; y

p

; x

1

; x

2

; :::; x

q

). If x = 1,

then to satisfy the constraint f(x; x

1

; x

2

; :::; x

p

; y

1

; y

2

; :::; y

q

), we must have Z = S

x

. Otherwise, we

have x = 0 and then to satisfy the constraint f(x; x

1

; x

2

; :::; x

p

; y

1

; y

2

; :::; y

q

) we must have Z = S

y

.

In either case, the only way we can also satisfy the constraint

f(y; y

1

; y

2

; :::; y

p

; x

1

; x

2

; :::; x

q

)

is by assigning y the complementary value. Thus these set of constraints perfectly and strictly

implement the constraint x� y; all constraints can be satis�ed i� x 6= y and if x = y there exists

an assignment to variables in S

x

and S

y

such that precisely 1 constraint is unsatis�ed. 2

Lemma 4.6 Let f

0

, f

1

and g be non-trivial constraints, possibly identical, which are not 0-valid

and not 1-valid and not C-closed respectively. Then ff

0

; f

1

; gg perfectly and strictly implement both

the unary constraints T and F .

Proof: We will only describe the implementation of constraint T (�); the analysis for the constraint

F (�) is identical. Assume, for simplicity, that all the three functions f

0

, f

1

and g are of arity k.

We build on the implementation in the proof of Lemma 4.5. To implement T (x), we use a set

of 4k auxiliary variables S

x

= fx

1

; : : : ; x

2k

g and S

y

= fy

1

; : : : ; y

2k

g. For each h 2 ff

0

; f

1

; gg, for

each satisfying assignment s of h, if j is the number of 0's in s we place the

�

2k

j

��

2k

k�j

�

constraints

h with all possible subsets of S

x

appearing in the indices in Z(s) and all possible subsets of S

y

appearing in O(s). Finally we introduce one constraint involving the primary variable x. Let s be

the satisfying assignment of minimum Hamming weight which satis�es f

0

. Notice s must include at

least one 1. Assume, without loss of generality that s = 10

p

1

q

. Then we introduce the constraint

f

0

(x; x

1

; : : : ; x

p

; y

1

; : : : ; y

q

).

It is clear that by setting all variables in S

x

to 0 and all variables in S

y

to 1 we get an assignment

that satis�es all constraints except possibly the last constraint (which involves x). Furthermore the

last constraint is satis�ed if and only if x = 1.

Now we argue that any solution which satis�es all the constraints above must set x to 1, all variables

in S

x

to 0 and all variables in S

y

to 1.

Let O be the set of variables in S

x

[S

y

set to one and Z be the set of variables set to zero. Suppose

jS

x

\Oj � k then we must have jS

y

\ Oj � k. To see this, consider a satisfying assignment s such
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that g(�s) = 0; there must exist such an assignment since g is not C-closed. Now if jS

y

\ Zj � k,

then clearly at least one constraint corresponding to s is unsatis�ed - namely, the one in which the

positions in O(s) are occupied by the variables in (S

y

\ Z) and the positions in Z(s) are occupied

by the variables in (S

x

\ O). Thus we must have jS

y

\ Oj � k. But if we have both jS

x

\ Oj � k

and jS

y

\Oj � k, then there is at least one unsatis�ed constraint in the instance I

1

since f

1

is not

1-valid. Thus this case cannot arise.

So we now consider the case jS

x

\ Zj � k. Then for constraints in I

0

to be satis�ed, we must

once again have jS

y

\ Oj � k; else there is a constraint with all its inputs set to zero and is hence

unsatis�ed. This can now be used to conclude that S

y

\ Z = � as follows. Consider a satisfying

assignment with smallest number of ones. This number is positive since f

0

is not 0-valid. If we

consider all the constraints corresponding to this assignment with inputs from S

y

and S

x

\Z only,

it is easy to see that there will be at least one unsatis�ed constraint if S

y

\ Z 6= �. Hence each

variable in S

y

is set to one in this case. Finally, using the constraints on the constraint f

1

which is

not 1-valid, it is easy to conclude that in fact Z = S

x

.

Having concluded that S

x

= Z and S

y

= O, it is easy to see that the constraint f

0

(x; x

1

; : : : ; x

p

; y

1

;

: : : ; y

q

) is satis�ed only if x = 1. Thus the set of constraints imposed above yields a strict and

perfect implementation of T (�). The constraint F (�) can be implemented in an analogous manner.

2

For the CSP classes, it su�ces to consider the case when F is neither 0-valid nor 1-valid. For the

Max Ones and Min Ones classes we also need to consider the case when F only fails to have

one of these two properties. So keeping these classes in mind we prove the following lemma, which

shows how to obtain a weak version of T and F in these cases.

Lemma 4.7 If F is not C-closed and not 1-valid, then F perfectly and strictly implements some

existential zero constraint. Analogously, if F is not C-closed and not 0-valid, then F perfectly and

strictly implements some existential one constraint.

Proof: We only prove the �rst part of the lemma. The second part is similar.

The proof reduces to two simple subcases. Let f be the constraint that is not 1-valid. If f is

0-valid, then we are done since f is an existential zero constraint. If f is not 0-valid, then F has a

non-C-closed function, a non 0-valid function and a non-1-valid function, and hence by Lemma 4.6

, F perfectly and strictly implements F which is an existential zero function. 2

4.3 2-monotone functions

De�nition 4.8 (0=1-Consistent Set) A set V � f1; : : : ; kg is 0-consistent (1-consistent) for a

constraint f : f0; 1g

k

! f0; 1g if every assignment s with Z(s) � V (resp. O(s) � V ) is a satisfying

assignment for f .

Lemma 4.9 A constraint f is a 2-monotone constraint if and only if all the following conditions

are satis�ed:

(a) for every satisfying assignment s of f either Z(s) is 0-consistent or O(s) is 1-consistent.

(b) if V

1

is 1-consistent and V

2

is 1-consistent for f , then V

1

\ V

2

is 1-consistent, and

(c) if V

1

is 0-consistent and V

2

is 0-consistent for f , then V

1

\ V

2

is 0-consistent.
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Proof: We use the fact that a constraint can be expressed in DNF form as a disjunction of

conjunctions (sum of terms). For a 2-monotone constraint this implies that we can express it as

a sum of two terms. Every satisfying assignment must satisfy one of the two terms and this gives

Property (a). Properties (b) and (c) are obtained from the fact that the constraint has at most

one term with all positive literals and at most one term with all negative literals.

Conversely consider a constraint f which satis�es properties (a)-(c). Let s

1

; : : : ; s

l

be the satisfying

assignments of f such that Z(s

i

) is 0-consistent, for i 2 f1; : : : ; lg. Let t

1

: : : : ; t

k

be the satisfying

assignments of f such that O(t

j

) is 1-consistent, for j 2 f1; : : : ; kg. Then Z = \

i

Z(s

i

) and

O = \

j

O(t

j

) are 0-consistent and 1 consistent sets for f respectively (using (b) and (c)) which

cover all satisfying assignments of f . Thus f(

~

X) = (^

i2Z

�

X

i

) _ (^

j2O

X

j

), which is 2-monotone. 2

We now use the characterization above to prove, in Lemma 4.11, that if a function f is not 2-

monotone, then the family ff; T; Fg implements the function XOR. We �rst prove a simple lemma

which shows implementations of XOR by some speci�c constraint families. This will be used in

Lemma 4.11.

Lemma 4.10 1. The family fAND

2;1

g strictly implements the XOR constraint.

2. For every p � 2, the family ff

p

; T; Fg strictly and perfectly implements the XOR constraint,

where f

p

(x

1

; : : : ; x

p

) = OR

p

(x

1

; : : : ; x

p

)

V

NAND

p

(x

1

; : : : ; x

p

).

3. For every p � 2, the family fNAND

p

; T; Fg strictly implements the XOR constraint.

Proof: For Part (1) we observe that the constraints fAND

2;1

(x

1

; x

2

);AND

2;1

(x

2

; x

1

)g provide a

strict (but not perfect) 1-implementation of XOR(x

1

; x

2

).

For Part (2) notice that the claim is trivial if p = 2. For p � 3, the constraints ff

p

(x

1

; : : : ; x

p

); T (x

3

);

: : : ; T (x

p

)g perfectly and strictly implement OR(x

1

; x

2

). Similarly the constraints ff

p

(x

1

; : : : ; x

p

);

F (x

3

); : : : ; F (x

p

)g perfectly and strictly implement the constraint NAND(x

1

; x

2

). Finally the con-

straints OR(x

1

; x

2

) and NAND(x

1

; x

2

) perfectly and strictly implement the constraint XOR(x

1

; x

2

).

Part (2) follows from the fact that implementations compose (Lemma 3.4).

Finally for Part (3), we �rst use the constraints fNAND

p

(x

1

; : : : ; x

p

); F (x

3

); : : : ; F (x

p

)g to imple-

ment the constraint NAND(x

1

; x

2

). We then use the constraints fNAND(x

1

; x

2

);NAND(x

1

:x

2

);

T (x

1

); T (x

2

)g to obtain a 3-implementation of the constraint XOR(x

1

; x

2

). 2

Lemma 4.11 Let f be a constraint which is not 2-monotone. Then ff; T; Fg strictly implements

XOR.

Proof: The proof is divided into three cases, which depend on which of the 3 conditions de�ning

2-monotonicity is violated by f . We �rst state and prove the claims.

Claim 4.12 If f is a function violating property (a) of Lemma 4.9, then ff; T; Fg strictly and

perfectly implement XOR.

Proof: There exists some assignment s satisfying f , and two assignments s

0

and s

1

such that

Z(s) � Z(s

0

) and O(s) � O(s

1

), such that f(s

0

) = f(s

1

) = 0. Rephrasing slightly, we know that

there exists a triple (s

0

; s; s

1

) with the following properties:

f(s

0

) = f(s

1

) = 1; f(s) = 0; Z(s

0

)�Z(s)�Z(s

1

); O(s

0

) � O(s) � O(s

1

); (1)

We call property (1) the \sandwich property". Of all triples satisfying the sandwich property, pick

the one that minimizes jZ(s

0

) \O(s

1

)j.
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Without loss of generality, assume that Z(s

0

)\O(s

1

) = f1; : : : ; pg Z(s

0

)\Z(s

1

) = fp+1; : : : ; qg and

O(s

0

)\O(s

1

) = fq+1; : : : ; kg. (Notice that the sandwich property implies that O(s

0

)\Z(s

1

) = ;.)

Let f

1

be the constraint given by f

1

(x

1

; : : : ; x

p

) = f(x

1

; : : : ; x

p

; 0; : : : ; 0; 1; : : : ; 1). Notice that the

constraint applications f(x

1

: : : x

k

) and T (x

i

) for every i 2 O(s

0

) \ O(s

1

) and F (x

i

) for every

i 2 Z(s

0

) \ Z(s

1

) implement the function f

1

. Thus it su�ces to show that ff

1

; T; Fg implements

XOR.

The constraint f

1

has the following properties:

1. f

1

(

~

0) = f

1

(

~

1) = 0.

2. f

1

has a satisfying assignment. Thus p (the arity of f

1

) is at least 2.

3. If f

1

(t) = 0, then for every assignment t

0

such that Z(t

0

)�Z(t) f

1

(t

0

) = 0. (This follows

from the minimality of jZ(s

0

) \ O(s

1

)j above. If not then consider the assignments s

0

0

; s

0

; s

0

1

:

where all the three assignments are zero on Z(s

0

)\Z(s

1

), all three are one on O(s

0

)\O(s

1

)

and on the set Z(s

0

) \ O(s

1

), s

0

0

is set to all zeroes, s

0

is identical to t

0

and s

0

1

is identical

to t. The triples (s

0

0

; s

0

; s

0

1

) also satisfy the sandwich property and have a smaller value of

jZ(s

0

0

) \O(s

0

1

)j.)

4. If f

1

(t) = 0, then for every assignment t

1

such that O(t

1

)�O(t) f

1

(t

1

) = 0. (Again from the

minimality of jZ(s

0

) \O(s

1

)j.)

These properties of f

1

now allow us to identify f

1

almost completely. We show that either (a) p = 2

and f

1

(x

1

x

2

) is either x

1

V

:x

2

or :x

1

V

x

2

; or (b) f is satis�ed by every assignment other than

the all zeroes assignment and the all ones assignment. In either case ff

1

; T; Fg strictly implements

XOR (from Lemma 4.10, Parts (1) and (2)). Thus proving that either (a) or (b) holds concludes

the proof of the claim.

Suppose (b) is not the case. I.e., f

1

is left unsatis�ed by some assignment t and t 6=

~

0 and t 6=

~

1.

Then we will show that the only assignment that can satisfy f

1

is

�

t. But this implies that t,

�

t,

~

0 and

~

1 are the only possible assignments to f

1

, implying p must be 2 thereby yielding that (a) is true.

Thus it su�ces to show that if f

1

(t) = 0, and t

0

6=

�

t, then f

1

(t

0

) = 0. Since t

0

is not the bitwise

complement of t, there must exist some input variable which shares the same assignment in t and

t

0

. W.l.o.g. assume this is the variable x

1

. Then we claim that the assignment f

1

(01 : : :1) = 0.

This is true since O(01 : : :1)�O(t). Now notice that f(t

0

) = 0 since Z(t

0

)�Z(01 : : :1). Thus we

conclude that either (a) or (b) holds and this concludes the proof of the claim. 2

Claim 4.13 Suppose f violates property (b) of Lemma 4.9. Then ff; T; Fg strictly and perfectly

implement XOR.

Proof: Let V

1

and V

2

be two 1-consistent sets such that V

1

\ V

2

is not 1-consistent. I.e., There

exists an assignment s s.t. O(s)�V

1

\ V

2

and f(s) = 0. Among all such assignments let s be the

one with the maximum number of 1's. The situation looks as described below:

V

1

z }| {

s

V

1

nO(s)

z }| {

00:::0

| {z }

p

11:::1

| {z }

q

V

2

z }| {

V

1

\V

2

z }| {

11:::1

| {z }

r

11:::1

| {z }

t

V

2

nO(s)

z }| {

00:::0

| {z }

u

00:::0

| {z }

v

11:::1

| {z }

w
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In other words s = 0

p

1

q+r+t

0

u+v

1

w

and f(s) = 0. Furthermore, every assignment of the form

1

p+q+r

�

t+u+v+w

satis�es f and every assignment of the form �

p+q

1

r+t+u

�

v+w

satis�es f (where the

�s above can be replaced by any of 0=1 independently). In particular this implies that p; u � 1.

Consider the function f

1

on p+u � 2 variables obtained from f by restricting the variables in O(s)

to 1 and restricting the variables in Z(s)� (V

1

[ V

2

) to 0. Notice that the constraint applications

f(x

1

: : : x

k

), T (x

i

) for i 2 O(s) and F (x

i

) for i 2 Z(s)� (V

1

[ V

2

) strictly implement f

1

. Thus it

su�ces to show that ff

1

; T; Fg implements XOR. We do so by observing that f

1

(x

1

: : :x

p+u

) is the

function NAND

p+u

. Notice that f

1

(

~

0) = 0. Furthermore if f

1

(t) = 0 for any other assignment t then

it contradicts the maximality of the number of 1's in s. The claim now follows from Lemma 4.10,

Part (3), which shows that the family fNAND

p+u

; T; Fg implements XOR, provided p+ u � 2. 2

Claim 4.14 Suppose f violates property (c) of Lemma 4.9. Then ff; T; Fg strictly and perfectly

implement XOR.

Proof: Similar to proof of the claim above. 2

The lemma now follows from the fact any constraint f

2

that is not 2-monotone must violate one of

the properties (a), (b) or (c) from Lemma 4.9. 2

4.4 A�ne functions

Lemma 4.15 ([41]) f is an a�ne function if and only if for every three satisfying assignments

s

1

; s

2

and s

3

to f , s

1

� s

2

� s

3

is also a satisfying assignment.

We �rst prove a simple consequence of the above which gives a slightly simpler su�cient condition

for a function to be a�ne.

Corollary 4.16 If f is not a�ne, then there exist two satisfying assignments s

1

and s

2

to f such

that s

1

� s

2

does not satisfy f .

Proof: Assume otherwise. Then for any three satisfying assignments s

1

; s

2

and s

3

, we have that

f(s

1

� s

2

) = 1 and hence f((s

1

� s

2

)� s

3

) = 1, thus yielding that f is a�ne. 2

Lemma 4.17 If f is a a�ne constraint then any function obtained by restricting some of the

variables of f to constants and existentially quantifying over some other set of variables is also

a�ne.

Proof: We use Lemma 4.15 above. Let f

1

be a function derived from f as above. Consider any

three assignments s

0

1

, s

0

2

and s

0

3

which satisfy f

1

. Let s

1

s

2

and s

3

be the respective extensions which

satisfy f . Then the assignment s

1

� s

2

� s

3

extends s

0

1

� s

0

2

� s

0

3

and satis�es f . Thus s

0

1

� s

0

2

� s

0

3

satis�es f

1

. Thus (using Lemma 4.15) again, we �nd that f

1

is a�ne. 2

Lemma 4.18 If f is an a�ne function which is not of width-2 then f implements either the

function XOR

p

of XNOR

p

for some k � 3.

Proof: Let k be the arity of f . De�ne a dependent set of variables to be a set of variables S �

f1; : : : ; kg such that not every assignment to the variables in S extends to a satisfying assignment

of f . A dependent set S is minimally dependent set if no strict subset S

0

� S is a dependent set.

Notice that f can be expressed as the conjunction of constraints on its minimally dependent sets.
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Thus if f is not of width-2 then it must have a minimally dependent set S of cardinality at least 3.

Assume S = f1; : : : ; pg, where p � 3. Consider the function

f

1

(x

1

: : : x

p

) = 9x

p+1

; : : : ; x

k

s.t. f(x

1

; : : :x

k

):

f

1

is a�ne (by Lemma 4.17), is not satis�ed by every assignment and has at least 2

p�1

satisfying

assignments. Thus f

1

has exactly 2

p�1

assignments (since the number of satisfying assignments

must be a power of 2). Thus f

1

is desribed by exactly one linear constraint and by the minimality

of S this must be the constraint XOR(x

1

: : : x

p

) or the constraint XNOR(x

1

: : : x

p

). 2

4.5 Horn Clauses, 2CNF and IHS

Lemma 4.19 If f is a weakly positive (weakly negative / IHS-B+/ IHS-B-/ 2CNF) constraint

then any function obtained by restricting some of the variables of f to constants and existentially

quantifying over some other set of variables is also weakly positive (resp. weakly negative / IHS-B+/

IHS-B-/ 2CNF).

Proof: It is easy to see that f remains weakly positive (weakly negative / IHS-B+/ IHS-B-/

2CNF) when some variable is restricted to a constant. Hence it su�ces to consider the case where

some variable y is quanti�ed existentially. (Combinations of the possibilities can then be handled

by a simple induction.) Thus consider the function f

1

(x

1

: : :x

k

)

def

= 9y s.t. f(x

1

: : :x

k

y). Let

f(x

1

: : : x

k

y) =

0

@

m

^

j=1

C

j

(�x)

1

A

^

0

@

m

0

^

j

0

=1

(C

0

j

0

(�x) + y)

1

A

^

0

@

m

1

^

j

1

=1

(C

1

j

1

(�x) + :y)

1

A

be a conjunctive normal form expression for f which shows it is weakly positive (weakly negative

/ IHS-B+/ IHS-B-/ 2CNF), where the clauses C

j

, C

0

j

0

and C

1

j

1

involve literals on the variables

x

1

; : : : ; x

k

.

We �rst show a simple transformation which creates a conjunctive normal form expression for f

1

.

Later we show that f

1

inherits the appropriate properties of f .

De�ne m

0

�m

1

clauses C

01

j

0

j

1

(�x)

def

= C

0

j

0

(�x)

W

C

1

j

1

(�x). We now show that for every �x,

f

1

(�x) =

0

@

m

^

j=1

C

j

(�x)

1

A

0

@

m

0

^

j

0

=1

m

1

^

j

1

=1

C

01

j

0

j

1

(�x)

1

A

: (2)

f

1

(�x) = 1 then there must exist y such that f(�xy) = 1. Notice that in this case �x is such that all

the clauses C

j

(�x) are satis�ed and so are all the clauses C

y

j

y

(�x). Thus all the clauses C

01

j

0

j

1

(�x) are

also satis�ed and thus the right hand side expression above is satis�ed. Conversely if the right hand

side expression is satis�ed then we claim that �x satis�es all the clauses C

0

or all the clauses C

1

.

If not and say the clauses C

0

j

0

and C

1

j

2

are not satis�ed, then neither is the clause C

01

j

0

j

1

. Thus by

setting y to i where all the clauses C

i

are satis�ed, we �nd that f(�xy) is satis�ed. Thus f

1

(�x) = 1.

To conclude we need to verify that the right hand side of (2) satis�es the same properties as f .

Furthermore we only have to consider clauses of the form C

01

j

0

j

1

(�x) since all other clauses are directly

from the expression for f . We verify this below:
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� If f is weakly positive, then the clause C

0

j

0

involves at most one negated variable, and the

clause C

1

j

1

involves no negated variable (since the clause participating in f is (C

1

j

1

(�x) + :y)

which has a negated y involved in it). Thus the clause de�ning C

01

j

0

j

1

also has at most one

negated variable.)

� Similarly if f is weakly negative, then the clauses C

01

j

0

j

1

has at most one positive literal.

� If f is 2CNF, then the clauses C

0

j

0

and C

1

j

1

are of length 1 and hence the clause C

01

j

0

j

1

is of

length at most 2.

� If f is IHS-B+ then the clause C

0

j

0

has either has only one literal which is negated or has

only positive literals. Furthermore C

1

j

1

has at most one positive literal. Thus C

01

j

0

j

1

either has

only positive literals or has at most two literals one of which is negated. Hence C

01

j

0

j

1

is also

IHS-B+.

� Similarly if f in IHS-B� then the clause C

01

j

0

j

1

is also IHS-B�.

This concludes the proof of the lemma. 2

Lemma 4.20 f is a weakly positive (weakly negative) constraint if and only if all its maxterms are

weakly positive (weakly negative).

Proof: Assume otherwise and assume :x

1

+ � � �+ :x

p

+ x

p+1

+ � � �+ x

q

is a maxterm of f , for

some p � 2. Let the arity of f be k. Consider the function

f

1

(x

1

x

2

)

def

= 9x

q+1

; : : : ; x

k

s.t. f(x

1

x

2

1

p�2

0

q�p

x

q+1

: : : x

k

):

Since :x

1

+ � � �x

q

is an admissible clause in a CNF representation of f , we have that if we set

x

1

; : : : ; x

p

to 1 and setting x

p+1

; : : : ; x

q

to 0 then no assignment to x

q+1

; : : : ; x

k

satis�es f . Thus

we �nd that f

1

(11) = 0. By the fact that clause is a maxterm we have that both the assignments

x

1

: : : x

q

= 01

p�1

0

q�p

and x

1

: : :x

q

= 101

p�2

0

q�p

can be extended to satisfying assignments of f .

Thus we �nd that f

1

(10) = f

1

(01) = 1. Thus f

1

is either the function NOR or XOR. It can

be veri�ed easily that neither of these is 2-monotone. (Every basic weakly positive function on 2

variables is unsatis�ed on at least one of the two assignments 01 or 10.) But this is in contradiction

to Lemma 4.19 which shows that every function obtained by restricting some variables of f to

constants and existentially quantifying over some others should yield a weakly positive function.

Thus our assumption must be wrong. 2

Lemma 4.21 f is a 2CNF constraint if and only if all its maxterms are 2CNF.

Proof: The \if" part is obvious. For the other direction we use Lemma 4.19. Assume for contrac-

tiction that f has a maxterm of the form x

1

W

x

2

W

x

3

W

� � �

W

x

p

W

:x

p+1

W

� � �

W

:x

q

. (For simplicity

we assume p � 3. Other cases where one or more of the variables x

1

; : : : ; x

3

are negated can be

handled similarly.) Consider the function

f

1

(x

1

x

2

x

3

)

def

= 9x

q+1

; : : : ; x

k

s.t. f(x

1

; x

2

; x

3

; 0

p�3

; 1

q�p

; x

q+1

; : : : ; x

k

):

Then since x

1

W

x

2

W

x

3

: : : is a maxterm of f , we have that f

1

(000) = 0 and f

1

(100) = f

1

(010) =

f

1

(001) = 1. We claim that f

1

can not be a 2CNF function. If not, then to make f

1

(000) = 0, at

least one of the clauses x

1

, x

2

, x

3

, x

1

W

x

2

, x

2

W

x

3

or x

3

W

x

1

, should be a clause of f

1

in any 2CNF

representation. But all these clauses are left unsatis�ed by at least one of the assignments 100, 010
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or 001. This validates our claim that f

1

is not a 2CNF constraint. But f

1

was obtained from f by

setting some variables to a constant and existentially quantifying over others and by Lemma 4.19

f

1

must also be a 2CNF function. This yields the desired contradiction. 2

Lemma 4.22 f is a width-2 a�ne function if and only if all its minimally dependent sets are of

cardinality at most 2.

Proof: We use the fact that F

2A

� F

2CNF

\ F

A

. Suppose f 2 F

2A

has a minimally dependent

set of size p � 3 and say the set is x

1

; : : : ; x

p

. Then by existential quanti�cation over the variables

x

p+1

; : : : ; x

k

and by setting the variables x

4

; : : : ; x

p

to 0, we obtain the function f

1

(x

1

; x

2

; x

3

) which

is either XOR

3

or XNOR

3

. But now notice that neither of these functions is a 2CNF function. But

since f is a 2CNF function Lemma 4.19 implies that f

1

must also be a 2CNF function. This yields

the required contradiction. 2

5 Classi�cation of Max CSP

The main results of this section are in Sections 5.1 and 5.2 were �rst obtained by Creignou [11].

Her focus however is on the exact results and the proofs for approximation hardness are left to

the reader to verify. We give full proofs using the notions of implementations. Our proof is also

stronger since it does not assume replication of variables as a basic primitive. This allows us to

talk about problems such as Max EkSat. In Section 5.3 we extend Schaefer's results to establish

the hardness of satis�able Max CSP problems. Similar results, again with replication of variables

being allowed, were �rst shown by Hunt et al. [26].

5.1 Containment results for Max CSP

We start with the polynomial time solvable cases.

Proposition 5.1 Weighted Max CSP(F) (Weighted Min CSP(F)) is in PO if F is 0-valid

(1-valid).

Proof: Set each variable to zero (resp. one); this satis�es all the constraints. 2

Before proving the containment in PO ofMax CSP(F) for 2-monotone function families, we show

that the corresponding Weighted Min CSP(F) is in PO. The containment for Weighted Max

CSP(F) will follow easily.

Lemma 5.2 Weighted Min CSP(F) is in PO if F is 2-monotone.

Proof: This problem reduces to the problem of �nding s-t min-cut in directed weighted graphs.

2-monotone constraints have the following possible forms :

(a) AND

p

(x

i

1

; : : : ; x

i

p

),

(b) NOR

q

(x

i

1

; : : : ; x

i

q

), and

(c) AND

p

(x

i

1

; : : : ; x

i

p

)

W

NOR

q

(x

i

1

; : : : ; x

i

q

).
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Construct a directed graph G with two special nodes F and T and a vertex v

i

corresponding to

each variable x

i

in the input instance. Let 1 denote an integer larger than the total weight of all

constraints.

Now we proceed as follows for each of the above classes of constraints :

� For a constraint C of weight w of the form (a), create a new node e

C

and add an edge from

each v

i

j

, j 2 [p], to e

C

of capacity 1 and an edge from e

C

to T of capacity w.

� For a constraint C of weight w of the form (b), create a new node e

C

and add an edge from

e

C

to each v

i

j

, j 2 [q], of capacity 1, and an edge from F to e

C

of capacity w.

� Finally, for a constraint C of weight w of the form (c), we create two nodes e

C

and e

C

and

add an edge from every v

i

j

, j 2 [p], to e

C

of capacity 1, and �nally an edge from e

C

to e

C

of capacity w.

Notice that each vertex of type e

C

or e

C

can be associated with a term: e

C

with a term on positive

literals and e

c

with a term on negated literals. We use this association to show that the value of

the min F-T cut in this directed graph equals the weight of the minimum number of unsatis�ed

constraints in the given Weighted Min CSP(F) instance.

Given an assignment which fails to satisfy constraints of weight W , we associate a cut as follows:

Vertex v

i

is placed on the F side of the cut if and only if it is set to 0. A vertex e

C

is placed on the

T side if and only if the term associated with it is satis�ed. A vertex e

C

is placed on the F side if

and only if the term associated with it is satis�ed. It can be veri�ed that such an assignment has no

directed edges of capacity1 going from the F side of the cut to the T side of the cut. Furthermore

for every constraint C of weight w, the unique edge of capcaity w inserted corresponding to this

constraint crosses the cut if and only if the constraint is not satis�ed. Thus there exists a F-T cut

in this graph of capacity exactly W and hence the min F-T cut value is at most W .

In the other direction, we show that given a F-T cut in this graph of cut capacity W < 1, there

exists an assignment which fails to satisfy constraints of weight at most W . Such an assignment is

simply to assign x

i

= 0 i� v

i

is on the F side of the cut. It may be veri�ed that if a constraint C

of capacity w is not satis�ed by this assignment, then either an edge of capacity 1 must cross the

cut or the edge of capacity w corresponding to C must cross the cut, under any placement of e

C

and/or e

C

as the case may be. Since the total weight of the cut is less than 1, the latter must be

the case. Thus the assignment fails to satisfy constraints of total weight at most W . Thus the min

F-T cut in this graph has capacity exactly equal to the optimum of the Weighted Min CSP(F)

instance, and thus the latter problem can be solved exactly in polynomial time. 2

For the sake of completeness we also prove the converse direction to the above lemma. We show

that the s-t min-cut problem can be phrased as a Min CSP(F) problem for a 2-monotone family

F .

Lemma 5.3 The s-t min-cut problem is in Weighted Min CSP(fOR

2;1

; T; Fg).

Proof: Given an instance G = (V;E) of the s-t min-cut problem, we construct an instance of

Weighted Min CSP(F)on variables x

1

; x

2

; : : : ; x

n

where x

i

corresponds to the vertex i 2 V �

fs; tg:

� For each edge e = (s; i) with weight w

e

, we create the constraint F (x

i

) with weight w

e

.
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� For each edge e = (i; t) with weight w

e

, we create the constraint T (x

i

) with weight w

e

.

� For each edge e = (i; j) with weight w

e

and such that i; j 62 fs; tg, we create the constraint

OR

2;1

(j; i) with weight w

e

.

Given a solution to this instance of Weighted Min CSP(F), we construct an s-t cut by placing

the vertices corresponding to the false variables on the s-side of the cut and the remaining on the

t-side of the cut. It is easy to verify that an edge e contributes to the cut i� its corresponding

constraint is unsatis�ed. Hence the optimal Min CSP(F) solution and the optimal s-t min-cut

solution coincide. 2

Going back to our main objective, we obtain as a simple corollary to Lemma 5.2 the following:

Corollary 5.4 For every F � F

2M

, Weighted Max CSP(F)2 PO.

Proof: Follows from the fact that given an instance I ofWeighted Max CSP(F), the optimum

solution to I viewed as an instance ofWeighted Min CSP(F) is also an optimum solution to the

Weighted Max CSP(F) version. 2

Finally we prove a simple containment result for all of Max CSP(F) which follows as an easy

consequence of Proposition 3.6.

Proposition 5.5 For every F, Weighted Max CSP(F) is in APX.

Proof: Follows from Proposition 3.6 and the fact that the total weight of all constraints is an

upper bound on the optimal solution. 2

5.2 Negative results for Max CSP

In this section we prove that if F 6� F

0

;F

1

;F

2M

then Max CSP(F) is APX-hard. We start with

a simple proposition which establishes Max CSP(XOR) as our starting point.

Lemma 5.6 Max CSP(XOR) is APX-hard.

Proof: We observe that Max CSP(XOR) captures the MAX CUT problem shown to be APX-

hard by [38, 3]. Given a graph G = (V;E) with n vertices and m edges, create an instance I

G

of Max CSP(F) with one variable x

u

for every vertex u 2 V and with constraints XOR(x

u

; x

v

)

corresponding to every edge fu; vg 2 E. It is easily seen there is a one-to-one correspondence

between (ordered) cuts in G and the assignments to the variables of I

G

which maintains the values

of the objective functions (i.e., the cut value and the number of satis�ed constraints). 2

We start with the following lemma which shows how to use the functions which are not 0-valid or

1-valid.

Lemma 5.7 If F 6� F

0

;F

1

then Max CSP(F [ fT; Fg) is AP-reducible to Max CSP(F) and

Min CSP(F [ fT; Fg) is A-reducible to Min CSP(F).

Proof: Let f

0

be the function from F that is not 0-valid and let f

1

be the function that is not

1-valid. If some function g in F is is not C-closed, then, by Lemma 4.6 F perfectly and strictly

implements T and F . Hence, by Lemmas 3.7 and 3.9, Max CSP(F [ fT; Fg) is AP-reducible to

Max CSP(F) and Min CSP(F [ fT; Fg) is A-reducible to Min CSP(F).
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Otherwise, every function of F is C-closed and hence by Lemma 4.5, F perfectly and strictly

implements the XOR function and hence the XNOR function. Thus it su�ces to show that Max

CSP(F [ fT; Fg) is AP-reducible to Max CSP(F [ fXOR;XNORg) (and Min CSP(F [ fT; Fg)

is A-reducible to Min CSP(F [ fXOR;XNORg)) for C-closed families F . Here we use an idea

from [8] described next.

Given an instance I of Max CSP(F [fT; Fg) on variables x

1

; : : : ; x

n

and constraints C

1

; : : : ; C

m

,

we de�ne an instance I

0

of Max CSP(F) (Min CSP(F)) whose variables are x

1

; : : : ; x

n

and

additionally one new auxiliary variable x

F

. Each constraint of the form F (x

i

) (resp. T (x

i

)) in I

is replaced by a constraint XNOR(x

i

; x

F

) (resp. XOR(x

i

; x

F

)). All the other constraints are not

changed. Thus I

0

also has m constraints. Given a solution a

1

; : : : ; a

n

; a

F

for I

0

that satis�es m

0

of these constraints, notice that the assignment :a

1

; : : : ;:a

n

;:a

F

also satis�es the same collection

of constraints (since every function in F is C-closed). In one of these cases the assignment to

x

F

is false and then we notice that a constraint of I is satis�ed if and only if the corresponding

constraint in I

0

is satis�ed. Thus every solution to I

0

can be mapped to a solution of I with the

same contribution to the objective function. 2

The required lemma now follows as a simple combination of Lemmas 4.9 and 5.7.

Lemma 5.8 If F 6� F

0

;F

1

;F

2M

, then Max CSP(F) is APX-hard.

Proof: By Lemma 4.11 F [fT; Fg strictly implements the XOR function. ThusMax CSP(XOR)

AP-reduces toMax CSP(F[fT; Fg) which in turn (by Lemma 5.7) AP-reduces toMax CSP(F).

Thus Max CSP(F) is APX-hard. 2

5.3 Hardness at Gap Location 1

Schaefer's dichotomy theorem can be extended to show that in the cases where Sat(F) in NP-

hard to decide, it is actually hard to distinguish satis�able instances from instances which are not

satis�able in a constant fraction of the constraints. This is termed hardness at gap location 1

by Petrank [39] who highlights the usefulness of such hardness results in other reductions. The

essential observation needed is that perfect implementations preserve hardness gaps located at 1

and that Schaefer's proof is based on perfect implementations. Thus we have the following theorem:

Theorem 5.9 For every constraint set F either SAT(F) is easy to decide, or there exists � = �

F

>

0 such that it is NP-hard to distinguish satis�able instances of SAT(F), from instances where 1� �

fraction of the constraints are not satis�able.

However Schaefer's proof of NP-hardness in his dichotomy theorem relies on the ability to replicate

variables within a constraint application. We observe that this assumption can be eliminated by

creating a perfect implementation of the function XNOR. Once we have a perfect implementation

of XNOR, we can replace any p replicated copies of a variable x by p new variables x

1

; x

2

; :::; x

p

and

add constraints of the form XNOR(x

1

; x

2

);XNOR(x

1

; x

3

); :::;XNOR(x

1

; x

p

). We now show how to

create a perfect implementation of the XNOR function.

Lemmas 4.5 and 4.6 show that Max CSP(ff

0

; f

1

; f

2

g), where f

0

is not 0-valid and f

1

is not 1-

valid, can be used to create either a perfect implementation of the function XNOR or a perfect

implementation of both unary functions T and F . In the latter case, we can show the following

lemma.
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Lemma 5.10 If f is not weakly negative then ff; T; Fg can perfect implement XOR or OR. Sim-

ilarly, if f is not weakly positive then ff; T; Fg can perfect implement either XOR or NAND.

Proof: We only prove the �rst part - the second part follows by symmetry. By Lemma 4.20

we �nd that f has a maxterm with at least two positive literals. W.l.o.g. the maxterm is of

the form x

1

W

x

2

W

� � �x

p

W

:x

p+1

W

� � �

W

x

q

. We consider the function f

0

which is f existentially

quanti�ed over all variables but x

1

; : : : ; x

q

. Further we set x

3

; : : : ; x

p

to 0 and x

p+1

; : : : ; x

q

to 1.

Then the assignment x

1

= x

2

= 0 is a non-satisfying assignment. The assignments x

1

= 0 6= x

2

and x

1

6= 0 = x

2

must be satisfying assignments by the de�nition of maxterm (and in particular

by the minimality of the clause). The assignment x

1

= x

2

= 1 may go either way. Depending on

this we get either the function XOR or OR. 2

Corollary 5.11 If f

2

is not weakly positive and f

3

is not weakly negative, then ff

2

; f

3

; T; Fg per-

fectly implements (at gap location 1) the XOR function.

Since the SAT(F) problems that we need to establish as NP-hard in Schaefer's theorem satisfy the

condition that there exists f

0

; f

1

; f

2

; f

3

2 F such that f

0

is not 0-valid and f

1

is not 1-valid, f

2

is

not weakly positive and f

3

is not weakly negative, we conclude that F can perfectly implement

the XOR function. This, in turn, can be used to perfectly implement the function XNOR(x; y) by

using Proposition 3.2. Thus replication can be eliminated from Schaefer's proof.

6 Classi�cation of Max Ones

Again we will �rst prove the positive results and then show the negative results. But before we do

either, we will show a useful reduction between unweighted and weighted Max Ones(F) problems

which holds for most interesting function families F .

6.1 Preliminaries

We begin with a slightly stronger notion de�nition of polynomial-time solvability of Sat(F) (than

that of [41]). We then show that given this stronger form of polynomial time decidability the

weighted and unweighted cases of Max Ones(F) are equivalent by showing that this stronger

form of polynomial time decidability leads to a polynomial approximation algorithm. We conclude

by showing that for the Max Ones problems which we hope to show to be APX-complete or

poly-APX-complete, the strong form of decidability does hold.

De�nition 6.1 We say that a constraint family F is strongly decidable if, givenm constraints from

F on n variables x

1

; : : : ; x

n

and an index i 2 f1; : : : ; ng, there exists a polynomial time algorithm to

�nd an assignment to x

1

; : : : ; x

n

satisfying all m constraints and additionally satisfying the property

x

i

= 1 if one such exists.

Lemma 6.2 For every strongly decidable constraint family F , Weighted Max Ones(F) is in

poly-APX.

Proof: Consider an instance of Weighted Max Ones(F) with variables x

1

; : : : ; x

n

, constraint

applications C

1

; : : : ; C

m

and weights w

1

; : : : ; w

n

. Assume w

1

� w

2

� � � � � w

n

. Let i be the largest

index such that there exists a feasible solution with x

i

= 1. Notice that i can be determined in

polynomial time due to the strong decidability of F . We also use the strong decidability to �nd an
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assignment with x

i

= 1. It is easily veri�ed that this yields an n-approximate solution. (Weight of

this solution is at least w

i

, while weight of optimal is at most

P

i

j=1

w

j

� iw

i

� nw

i

.) 2

Before concluding we show that most problems of interest to us will be able to use the equivalence

established above between weighted and unweighted problems.

Lemma 6.3 If F � F

0

for any F

0

2 fF

1

;F

S0

;F

2CNF

;F

A

;F

WP

;F

WN

g, then F is strongly decid-

able.

Proof: Recall that for i 2 [k], f j

(fig;1)

is the constraint obtained from f by restricting the ith input

to 1. De�ne F

�

to be the constraint set:

F

�

def

= F [ ff j

i;1

jf 2 F ; i 2 [k]g:

First, observe that the problem of strong decidability of F reduces to the decision problem Sat(F

�

).

Further, observe that if F � F

0

for F

0

2 fF

1

;F

2CNF

;F

A

;F

WP

;F

WN

g, then F

�

� F

0

as well. Lastly,

if F

�

� F

S0

, then F

�

� F

0

. Thus in each case we end up with a problem from Sat(F) for a family

F which is polynomial time decidable in Schaefer's dichotomy. 2

Lemma 6.4 If a constraint set F perfectly implements an existential zero constraint, then F per-

fectly implements Fj

0

. Similarly, if a constraint set F perfectly implements an existential one

constraint, then F perfectly implements Fj

1

.

Proof: We show how to implement the constraint f(0; x

1

; : : : ; x

k�1

). The proof can be extended

to other sets by induction. Let f

1

be an existential zero constraint in F and let K be the arity of

f

1

. Then the constraints f(y

i

; x

1

; : : : ; x

k�1

), for i 2 [K], along with the constraint f

1

(y

1

; : : : ; y

K

)

perfectly implement the constraint f(0; x

1

; : : : ; x

k�1

). (Observe that since at least one of the y

i

's

in the set y

1

; : : : ; y

K

is zero, the constraint f(0; x

1

; : : : ; x

k�1

) is being enforced. Furthermore, we

can always set all of y

1

; : : : ; y

K

to zero, ensuring that any assignment to x

1

; : : : ; x

k�1

satisfying

f(0; x

1

; : : : ; x

k�1

) does satisfy all the constraints listed above.) 2

6.2 Containment results

Lemma 6.5 If F is 1-valid or weakly positive or width-2 a�ne, then Weighted Max Ones(F)

is in PO.

Proof: If F is 1-valid, then setting each variable to 1 satis�es all constraint applications with the

maximum possible variable weight.

If F is weakly positive, consider the CNF formulae for the f

i

2 F such that each clause has at most

one negated variable. Clearly, clauses consisting of a single literal force the assignment of these

variables. Setting these variables may create new clauses of a single literal; set these variables and

continue the process until all clauses have at least two literals or until a contradiction is reached. In

the latter case no feasible assignment is possible. In the former case, setting the remaining variables

to one satis�es all constraints, and there exists no feasible assignment with a greater weight of ones.

In the case that F is a�ne with width 2, we reduce the problem of �nding a feasible solution to

checking whether a graph is bipartite, and then use the bipartition to �nd the optimal solution.

Notice that each constraint corresponds to a conjunction of constraints of the form X

i

= X

j

or

X

i

6= X

j

. Create a vertex X

j

for each variable X

j

and for each constraint X

i

6= X

j

, add an edge

(X

i

; X

j

). For each constraint X

i

= X

j

, identify the vertices X

i

and X

j

and associate the sum of
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their weights to the identi�ed vertex; if this creates a self-loop, then clearly no feasible assignment

is possible. Check whether the graph is bipartite; if not, then there is no feasible assignment. If it

is bipartite, then for each connected component of the graph choose the larger weight side of the

bipartition and set the corresponding variables to one. 2

Lemma 6.6 If F is a�ne then Weighted Max Ones(F) is in APX.

Remark: Our proof actually shows that Max Ones(F) has a 2-approximation algorithm. Com-

bined with the fact that the AP-reduction of Lemma 3.10 does not lose much in the approximation

factor we essentially get the same factor for Weighted Max Ones(F) as well.

Proof: By Lemmas 3.10, 6.2 and 6.3 it su�ces to consider the unweighted case. (Lemma 6.3 shows

that F is strongly-decidable; Lemma 6.2 uses this to show that Weighted Max Ones(F) is in

poly-APX; and Lemma 3.10 uses this to provide an AP-reduction fromWeighted Max Ones(F)

to Max Ones(F).)

Given an instance I ofMax Ones(F), notice that �nding a solution which satis�es all constraints

is the problem of solving a linear system of equations over GF[2]. Say the linear system is given by

Ax = b, where A is an m� n matrix, and b is a m� 1 column vector, and the x is an n� 1 vector.

Assume w.l.o.g. that the rows of A are independent. By simple row operations and reordering

of the variables, we can set up the linear system as [I jA

0

]x = b

0

. Thus if x

0

represents the vector

hx

1

; : : : ; x

m

i and x

00

represents the vector hx

m+1

; : : : ; x

n

i then the set of feasible solutions to the

given linear system are given by

fhx

0

; x

00

ijx

00

2 f0; 1g

n�m

; x

0

= �A

0

x

00

+ b

0

g:

Pick a random element of this set by picking x

00

at random and setting x

0

accordingly. Notice that

for any i 2 fm+1; : : : ; ng x

i

= 1 w.p.

1

2

. Furthermore, for any i 2 [m], x

i

is either forced to 0 in all

feasible solutions, or x

i

is forced to 1 in all feasible solutions or x

i

= 1 w.p. 1=2. Thus, if S � [n]

is the set of variables which are ever set to 1 in a feasible solution, then expected number of 1's in

a random solution is at least jSj=2. But S is an upper bound on opt. Thus the expected value of

the solution is at least opt=2 and hence the solution obtained is 2-approximate solution. 2

Proposition 6.7 If F � F

0

for some F

0

2 fF

1

;F

S0

;F

2CNF

;F

A

;F

WP

;F

WN

g, then Weighted

Max Ones(F) 2 poly-APX.

Proof: Follows immediately from Lemmas 6.2 and 6.3. 2

Proposition 6.8 ([41]) If F � F

0

, then Sat(F) is in P.

6.3 Hardness results

6.3.1 APX-hard case

We wish to show in this section that if F is an a�ne family but not width-2 a�ne, then Max

Ones(F) is APX-hard. By Lemmas 6.2 and 3.10 it su�ces to show this for Weighted Max

Ones(F). The basic APX-hard problem we work with in this section are described in the following:

Lemma 6.9 Weighted Max Ones(XNOR

3

) and Weighted Max Ones(fXOR;XNOR

4

g) are

APX-hard.
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Proof: We reduce theMax Cut problem to the weightedMax Ones(XNOR

3

) problem as follows.

Given a graph G = (V;E) we create a variable x

v

for every vertex v 2 V and a variable y

e

for every

edge e 2 E. The weight w

v

associated with the vertex variable x

v

is 0. The weight w

e

of an edge

variable y

e

is 1. For every edge e between u and v we create the constraint y

e

� x

u

� x

v

= 0. It

is clear that any 0=1 assignment to the x

v

's de�ne a cut and for an edge e = fu; vg, y

e

is one i� u

and v are on opposite sides of the cut. Thus solutions to the Max Ones problem correspond to

cuts in G with the objective function being the number of edges crossing the cut. This shows the

APX-hardness of Max Ones(XNOR

3

).

The reduction for Weighted Max Ones(fXOR;XNOR

4

g) is similar. Given a graph G = (V;E),

we create the variables x

v

for every v 2 V , y

e

for every e 2 E and one global variable z (which is

supposed to be zero) andm

def

= jEj auxiliary variables y

1

; : : : ; y

m

. For every edge e = fu; vg in G we

impose the constraints x

e

� x

u

� x

v

� z = 0. In addition we throw in the constraints z � y

i

= 1 for

every i 2 f1; : : : ; mg. Finally we make the weight of the vertex variables and z zero and the weight

of the edge variables and the auxiliary variables y

i

is made 1. The optimum to this Max Ones

problem isMax Cut(G)+m. Given an r-approximate solution for theMax Ones(fXOR

4

;XORg)

instance created above, we consider the two possible solutions (as usual): (1) The solution induced

by the assignment with 0 vertices on one side and one vertices on the other & (2) A cut with

m=K edges crossing the cut (notice such a cut can be found based on Prop 3.6). The better of

these solutions has maxf(

1

r

)(m +Max Cut(G)) � m;

m

2

g �

r

3r�2

Max Cut(G) �

1

1+2(r�1)

edges

crossing the cut. Thus an r-approximate solution to Weighted Max Ones(fXOR;XNOR

4

g)

yields a (1 + 2(r � 1))-approximate solution to Max Cut(G). Thus Max Cut(G) AP-reduces to

Weighted Max Ones(fXOR;XNOR

4

g) and hence the latter is APX-hard. 2

Lemma 6.10 If F is a�ne but neither width-2 a�ne nor 1-valid, then F perfectly implements

either XNOR

3

or the family fXOR;XNOR

4

g.

Proof: Since F is a�ne but not of width-2, it can implement the function XOR

p

or XNOR

p

for

some p � 3 (Lemma 4.18). Let f be the non 1-valid function. We consider two possible cases

depending on whether F is C-closed or not. If g 2 F is not C-closed, then we �nd (by Lemma 6.4)

that ff; gg (and hence F) perfectly implements the existential zero property. This case is covered in

Claim 6.11 and we show that in this case F implements myxnor

3

. In the other case, F is C-closed

and hence (by Lemma 4.6) F perfectly implements the XOR function. This case is covered in

Claim 6.12 and we show that in this case F perfectly implements either XNOR

3

or XNOR

4

. This

concludes the proof of Lemma 6.10 (modulo Claims 6.11 and 6.12). 2

APX-hard.

Claim 6.11 If ffg is an existential zero function and h is either the function XOR

p

or XNOR

p

for some p � 3, then the constraint set ff; hg perfectly implements XNOR

3

.

Proof: Since ffg perfectly implements the existential zero property, the set ff; hg can perfectly

implement ff; hgj

0

(using Lemma 6.4). In particular, ff; hg can implement the constraints x

1

�x

2

=

b and x

1

� x

2

� x

3

= b for some b 2 f0; 1g. Notice �nally that the constraints x

1

� x

2

� y = b and

y� x

3

= b form a perfect implementation of the constraint x

1

� x

2

� x

3

= 0. Thus ff; hg perfectly

implements the constraint XNOR

3

. 2

Claim 6.12 If f is either the XOR

p

or the XNOR

p

function for some p � 3, then the constraint

set ff;XORg either perfectly implements XNOR

3

or XNOR

4

.
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Proof: Since XOR perfectly implements XNOR it su�ces to prove this using the functions

ff;XOR;XNORg.

W.l.o.g assume that f is the function XNOR, since else XOR

p

(x

1

; : : : ; x

p�1

; y) and XOR(y; x

p

)

perfectly implement the constraint XNOR

p

(x

1

; : : : ; x

p

).

Now if p is odd, then the constraints XNOR

p

(x

1

; : : : ; x

p

) and XNOR(x

4

; x

5

), XNOR(x

6

; x

7

) and

so on up to XNOR(x

p�1

; x

p

) implement the constraint XNOR

3

(x

1

; x

2

; x

3

).

Now if p is even, then the constraints XNOR

p

(x

1

; : : : ; x

p

) and XNOR(x

5

; x

6

), XNOR(x

7

; x

8

) and

so on up to XNOR(x

p�1

; x

p

) implement the constraint XNOR

4

(x

1

; x

2

; x

3

; x

4

). 2

Lemma 6.13 If F is a�ne but neither width-2 a�ne nor 1-valid, then Max Ones(F) is APX-

hard.

Proof: Follows from Lemmas 3.8, 6.9,and 6.10. 2

6.3.2 The poly-APX-hard case

This part turns out to be long and the bulk of the work will be done in Lemmas 6.16-6.21. We �rst

describe the proof of the hardness result modulo the above lemmas. (Hopefully, the proof will also

provide some motivation for the rest of the lemmas.)

Lemma 6.14 If F � F

0

for some F

0

2 fF

0

;F

2CNF

;F

WN

g but F 6� F

00

for any F

00

2 fF

1

;F

A

;

F

WP

g, then Max Ones(F) is poly-APX-hard.

Proof: As usual, by Lemmas 6.2 and 3.10, it su�ces to show hardness of the weighted version.

First we show in Lemma 6.15 thatMax Ones(fNAND

k

g) is poly-APX-hard for every k � 2. Thus

our goal is to establish that any non 1-valid, non-a�ne, and non weakly positive function family

can implement some NAND

k

constraint. We do so in three phases.

The main complication here is that we don't immediately have a non 0-valid constraint to work

with and thus we can't immediately reduce Max Ones(F) to Max Ones(F [ fT; Fg). So we

go after something weaker and try to show that F can perfectly implement Fj

0;1

. In Phase 3,

(Lemmas 6.20 and 6.21) we show that this su�ces. Lemma 6.20 uses the fact that Fj

0;1

is not

weakly positive to implement either NAND

2

or XOR. In the former case we are done and in the

latter case, Lemma 6.21 uses the fact that Fj

0;1

is not a�ne to implement NAND.

Thus our task reduces to that of showing that F can implement Fj

0;1

. Part of this is easy. In

Phase 1, we show that F implements every function in Fj

0

. This is shown via Lemma 6.16 which

shows that any family which is either 0-valid or 2CNFor weakly negative but not 1-valid or a�ne or

weakly positive must have a non C-closed function. This along with the non 1-valid function allows

it to implement every function in Fj

0

(by Lemmas 4.7 and 6.4). The remaining task for Phase 2

is to show that F

0

can implement F

1

. If F also has a non 0-valid function then we are done since

now we can implement all of Fj

0;1

(another application of Lemmas 4.7 and 6.4). Thus all lemmas

in Phase 2, focus on Fj

0

for 0-valid function families F . If Fj

0

is all 0-valid, then all we can show

is that F

0

either implements NAND

k

for some k or OR

2;1

(Lemmas 6.17 and 6.18). The former is

good, but the latter seems insu�cient. In fact we are unable to implement Fj

0;1

in this case. We

salvage the situation by reverting back to reductions. We AP-reduce the problemWeighted Max

Ones(Fj

0

[ fOR

2;1

g) to Weighted Max Ones(Fj

0;1

) (Lemma 6.19). This su�ces to establish
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the poly-APX-hardness of Weighted Max Ones(F) since

Weighted Max Ones(Fj

0;1

) �

AP

Weighted Max Ones(Fj

0

[ fOR

2;1

g)

�

AP

Weighted Max Ones(F)

and the last is poly-APX-hard. 2

Lemma 6.15 Max Ones(fNAND

k

g) is poly-APX-hard for every k � 2.

Proof: We reduce from Max Clique, which is known to be poly-APX-hard. Given a graph

G, construct a Max Ones(ffg) instance consisting of a variable for every vertex in G and the

constraint f is applied to every subset of k vertices in G which does not induce a clique. It may

be veri�ed that the optimum number of ones in any satisfying assignment to the instance created

in this manner is maxfk � 1; !(G)g, where !(G) is the size of the largest clique in G. Given a

solution to the Max Ones(ffg) instance with l � k ones, the set of vertices corresponding to the

variables set to one form a clique of size l. If l < k, output any singleton vertex. Thus in all cases

we obtain a clique of size at least l=(k� 1) vertices. Thus given an r-approximate solution to the

Max Ones(fNAND

k

g) problem, we can �nd a (k � 1)r approximate solution to Max Clique.

Thus Max Clique is A-reducible to Max Ones(fNAND

k

g). 2

Phase 1: F implements Fj

0

.

Lemma 6.16 If F � F

0

for some F

0

2 fF

0

;F

2CNF

;F

WN

g but F 6� fF

1

;F

2A

;F

WP

g then there

exists a constraint in F that is not C-closed constraint.

Proof: Notice that a C-closed 0-valid constraint is also 1-valid. Thus if F is 0-valid, then the non

1-valid constraint is not C-closed.

Next we claim that a C-closed weakly positive function f is also weakly negative. To do so,

consider the function

�

f given by

�

f(x) = f(�x). Notice that for a C-closed function f =

�

f . Suppose

f(x) =

V

j

C

j

(x) where the C

j

's are weakly positive clauses. Then

�

f(x) can be described as

V

j

�

C

j

(x)

(where

�

C

j

(x) = C

j

(�x)). But in this representation

�

f (and thus f) is seen to be a weakly negative

function, thereby verifying our claim. Thus if F is weakly negative but not weakly positive, the

non weakly-positive constraint is the non C-closed constraint.

Finally we consider the case when f is a 2CNF formula. Again de�ne

�

f(x) = f(�x) and f

0

(x) =

f(x)

�

f(x). Notice that f

0

= f if f is C-closed. Again consider the CNF representation of

f =

V

j

C

j

(x) where the C

j

(x)'s are clauses of f of length 2. Then f

0

(x) can be expressed as

V

j

(C

j

(x)

V

�

C

j

(x)). But C

j

V

�

C

j

are a�ne constraints of width 2! Thus f

0

and hence f is an a�ne

wifth-2 constraint. Thus if F is 2CNF but not width-2 a�ne, the non width-2 a�ne constraint is

the non C-closed constraint. 2

Lemma 4.7 along with Lemma 6.4 su�ce to prove that F implements Fj

0

. We now move on to

Phase 2.

Phase 2: From F

0

to Fj

0;1

.

Recall that if F has a non 0-valid function, then by Lemmas 6.16, 4.7 and 6.4 it implements an

existential one and thus Fj

0;1

. Thus all lemmas in this Phase assume F is 0-valid.

Lemma 6.17 If f is 0-valid and not weakly positive, then ffgj

0

either perfectly implements NAND

k

for some k � 2 or OR

2;1

or XNOR.
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Proof: Let C = :x

1

W

� � �

W

:x

p

W

y

1

W

� � �

W

y

q

be a maxterm in f with more than one negation i.e.

p � 2. Since f is not weakly positive, Lemma 4.20 shows that such a maxterm exists. Substituting

a 0 in place of variables y

1

; y

2

; : : : ; y

q

, and existentially quantifying over all variables not in C, we

get a constraint g such that :x

1

W

:x

2

W

� � �

W

:x

p

is a maxterm in g. Consider an unsatisfying

assignment s for g with the smallest number of 1's and let k denote the number of 1's in s; we

know k > 0 since the original constraint is 0-valid. W.l.o.g. assume that s assigns value 1 to

the variables x

1

; x

2

; : : : ; x

k

and 0 to the remaining variables. It is easy to see that by �xing the

variables x

k+1

; x

k+2

; : : : ; x

p

to 0, we get a constraint g

0

= (:x

1

W

:x

2

W

� � �

W

:x

k

). If k > 1, then

this perfectly implements the constraint (:X

1

W

� � �

W

:X

k

) and we are done.

Otherwise k = 1, i.e. there exists an unsatisfying assignment s which assigns value 1 to exactly

one of the x

i

's, say x

1

. Now consider a satisfying assignment s

0

which assigns 1 to x

1

and has a

minimum number of 1's among all assignments which assign 1 to x

1

. The existence of such an

assignment follows from C being a maxterm in g. For instance, the assigment 1

p�1

0 is a satisfying

assignment which satis�es such a property. W.l.o.g. assume that s

0

= 1

i

0

p�i

. Thus the constraint

g looks as follows:

x

1

x

2

x

3

:::x

i

x

i+1

:::x

p

g()

s

1

0 0 00:::0 00:::0 1

s

2

1 0 00:::0 00:::0 0

s

0

= s

3

1 1 11:::1 00:::0 1

s

4

0 1 ::: 00:::0 ?

Existential quanti�cation over the variables x

3

; x

4

; : : : ; x

i

and �xing the variables x

i+1

through x

p

to 0 yields a constraint g

0

which is either OR

2;1

(x

2

; x

1

) or XNOR(x

1

; x

2

). The lemma follows. 2

Now we consider the case where we can implement the function XNOR. and show that in this case

we can either perfectly implement NAND or OR

2;1

. In the former case we are done and for the

latter case we show in Lemma 6.19 thatWeighted Max Ones(Fj

1

) is AP-reducible toWeighted

Max Ones(F [ fOR

2;1

g).

Lemma 6.18 If f is 0-valid but not a�ne then ff;XNORg perfectly implements either NAND or

the constraint OR

2;1

.

Proof: Corollary 4.16 to Lemma 4.15 shows that if f is not a�ne then there exist two satisfying as-

signments s

1

and s

2

such that s

1

�s

2

is not a satisfying assignment for f . Reorder the variables such

that Z(s

1

) \Z(s

2

) = fx

1

; : : : ; x

p

g, Z(s

1

) \O(s

2

) = fx

p+1

; : : : ; x

q

g, O(s

1

) \Z(s

2

) = fx

q+1

; : : : ; x

r

g

and O(s

1

)\O(s

2

) = fx

r+1

; : : : ; x

k

g. Using the fact that f is 0-valid, we �nd that f looks as follows:

x

1

:::x

p

x

p+1

:::x

q

x

q+1

:::x

r

x

r+1

:::x

k

g(~x)

00:::0 00:::0 00:::0 00:::0 1

s

1

00:::0 00:::0 11:::1 11:::1 1

s

2

00:::0 11:::1 00:::0 11:::1 1

s

1

� s

2

00:::0 11:::1 11:::1 00:::0 0

Consider the collection of constraints:

1. f(0; : : : ; 0; x

p+1

; : : : ; x

k

).

2. XNOR(x; x

i

) for i 2 Z(s

1

) 2 O(s

2

).
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3. XNOR(y; x

i

) for i 2 O(s

1

) 2 Z(s

2

).

4. XNOR(z; x

i

) for i 2 O(s

1

) 2 O(s

2

).

Existentially quantifying over the variables x

p+1

; : : : ; x

k

we obtain an implementation of a constraint

h(x; y; z) such that h(000) = h(011) = h(101) = 1 and h(110) = 0. Furthermore, by restricting

more of the variables in (1) above to 0, we get a perfect implementation of any function in fhgj

0

.

Using Claim 6.22 again we get that fhgj

0

can implement either NAND or OR

2;1

, and thus we are

done. 2

Finally we show how to use OR

2;1

functions.

Lemma 6.19 If F is 0-valid then Weighted Max Ones(Fj

1

) AP-reduces to Weighted Max

Ones(F [ fOR

2;1

g).

Proof: We show something even stronger. We show how to AP-reduceWeighted Max Ones(F[

fTg) to Weighted Max Ones(F [ fOR

2;1

g). This su�ces since T is an existential one function

and this F [ fTg can perfectly implement Fj

1

.

Given an instance I of Weighted Max Ones(F [ fTg) construct an instance I

0

of Weighted

Max Ones(F[fOR

2;1

g) as follows. The variable set of I

0

is the same as that of I. Every constraint

from F in I is also included in I

0

. The only remaining constraints are of the form T (X

i

) for some

variables X

i

. We simulate this constraint in I

0

with n � 1 constraints of the form OR

2;1

(X

j

; X

i

)

(i.e., :X

j

W

X

i

) for every j 2 [n], j 6= i. Every solution to the resulting instance I

0

is also a solution

to I, since the solution must have X

i

= 1 or else every X

j

= 0. Thus the resulting instance ofMax

Ones(F [ fX +

�

Y g) has the same objective function and the same feasible space and is hence at

least as hard as the original problem. 2

This concludes Phase 2.

Phase 3: Fj

0;1

implements NAND.

Lemma 6.20 If f is not weakly positive, then ffgj

0;1

perfectly implements either XOR or NAND.

Proof: Let C = (:x

1

W

� � �

W

:x

p

W

y

1

W

� � �

W

y

q

) be a maxterm in f with more than one negation

i.e. p � 2. Substituting a 1 for variables x

3

; : : : ; x

p

, a 0 for variables y

1

; : : : ; y

q

, and existentially

quantifying over all variables not in C, we get a constraint f

0

such that f

0

(11) = 0, f

0

(01) = f

0

(10) =

1 (These three properties follow from the de�nition of a maxterm). Depending on whether f

0

(00)

is 0 or 1 we get the function XOR or NAND, respectively. 2

Lemma 6.21 Let g be a non-a�ne constraint. Then the constraint set fg;XORgj

0;1

perfectly

implements NAND.

Proof: Again it su�ces to consider fg;XOR;XNORgj

0;1

. Let g be of arity k. By Lemma 4.15 we

�nd that there must exist assignments s

1

; s

2

and s

3

satisfying g such that s

1

� s

2

� s

3

does not

satisfy g. Partition the set [k] into upto eight equivalence classes S

b

1

b

2

b

3

for b

1

; b

2

; b

3

2 f0; 1g such

that for any index i 2 S

b

1

b

2

b

3

, (s

j

)

i

= b

j

for every j 2 f1; 2; 3g. (Refer to Figure 1 below.)

W.l.o.g. assume that indices 1 to p are in S

000

and q + 1 to k are in S

111

etc. Notice that the

assignment of a variable in S

b

1

b

2

b

3

under assignment s

1

� s

2

� s

3

is also �xed (to b

1

� b

2

� b

3

). Now

consider the collection of constraints
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S

000

S

001

S

010

S

011

S

100

S

101

S

110

S

111

g(~x)

s

1

0:::0 0:::0 0:::0 0:::0 1:::1 1:::1 1:::1 1:::1 1

s

2

0:::0 0:::0 1:::1 1:::1 0:::0 0:::0 1:::1 1:::1 1

s

3

0:::0 1:::1 0:::0 1:::1 0:::0 1:::1 0:::0 1:::1 1

s

1

� s

2

� s

3

0:::0 1:::1 1:::1 0:::0 1:::1 0:::0 0:::0 1:::1 0

Figure 1: Partition of inputs to g

1. g(0; : : : ; 0; x

p+1

: : : ; x

v

; 1; : : : ; 1).

2. XNOR(x; x

i

) for i 2 S

001

.

3. XNOR(y; x

i

) for i 2 S

010

.

4. XNOR(z; x

i

) for i 2 S

011

.

5. XOR(z; x

i

) for i 2 S

100

.

6. XOR(y; x

i

) for i 2 S

101

.

7. XOR(x; x

i

) for i 2 S

110

.

By existentially quantifying over the variables x

p+1

; : : : ; x

q

we perfectly implement a constraint

h(x; y; z) with the following properties: h(000) = h(011) = h(101) = 1 and h(110) = 0. Further-

more, by restricting more variables in condition (1) above, we can actually implement any function

in the set fhgj

0;1

. Claim 6.22 now shows that for any such function h, the set fhgj

0

perfectly

implements either OR

2;1

or NAND. In the latter case we are done. In the former case, notice that

the constraints OR

2;1

(x; z) and XOR(z; y) perfectly implement the constraint NAND(x; y) so in

this case too we are done (modulo Claim 6.22). 2

Claim 6.22 If h is ternary function such that h(000) = h(011) = h(101) = 1 and h(110) = 0, then

fhgj

0

perfectly implements either NAND or OR

2;1

.

Proof: Let Figure 2 describe the truth table for the function h.

x
yz

00      01     11      10

1       -        1       A0

1      B        1       -       0

Figure 2: Truth-table of the constraint h(X; Y; Z)

The undetermined values of interest to us are indicated in the table by A and B. The following

analysis shows that for every possible value of A and B, we can perfectly implement either NAND

or OR

2;1

A = 0 =) 9 x h(x; y; z) = y

W

:z

B = 0 =) 9 y h(x; y; z) = y

W

:x

A = 1; B = 1 =) h(x; y; 0) = :x

W

:y

Thus in each case we perfectly implement either the constraint NAND or OR

2;1

. 2
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6.3.3 Remaining cases

We now prove that if F is not strongly decidable, then deciding if there exists a non-zero solution

is NP-hard. This is shown in Lemma 6.23. The last of the hardness results follows directly from

Schaefer's theorem.

Lemma 6.23 If F 6� F

0

, for any F

0

2 fF

S0

;F

1

;F

2CNF

;F

A

;F

WP

;F

WN

g, then the problem of

�nding solutions of non-zero value to a given instance of (unweighted) Max Ones(F) is NP-hard.

Proof: Assume, for simplicity, that all contraints of F have arity k. Given a constraint f :

f0; 1g

k

! f0; 1g and an index i 2 [k], let f #

i

be the constraint mapping f0; 1g

k�1

to f0; 1g given

by

f #

i

(x

1

; : : : ; x

k

)

def

= f(x

1

; : : : ; x

i�1

; 1; x

i+1

; : : : ; x

k

) ^ f(x

1

; : : : ; x

i�1

; 0; x

i+1

; : : : ; x

k

):

Let F

0

be the set of constraints de�ned as follows:

F

0

def

= F [ ff #

i

j f 2 F ; i 2 [k]g:

We will argue that deciding Sat(F

0

) is NP-hard and then that deciding Sat(F

0

) reduces to �nding

non-zero solutions to Max Ones(F).

First observe that F

0

6� F

00

, for any F

00

2 fF

0

;F

1

;F

2CNF

;F

A

;F

WP

;F

WN

g. In particular it is not

0-valid, since F is not strongly 0-valid. Hence, once again applying Schaefer's result, we �nd that

deciding Sat(F

0

) is NP-hard.

Given an instance of Sat(F

0

) on n variables ~x with m constraints

~

C, with C

1

; : : : ; C

m

0

2 F and

C

m

0

+1

; : : : ; C

m

2 F

0

n F , consider the instance of Max Ones(F) de�ned on variable set

w

1

; : : : ; w

k+1

; y

1

; : : : ; y

n

; z

1

; : : : ; z

n

with the following constraints:

1. Let f be a non-1-valid constraint in F . We introduce the constraint f(w

1

; : : : ; w

k

).

2. For every constraint C

i

(v

i

1

; : : : ; v

i

k

), 1 � i � m

0

, we introduce two constraints C

i

(y

i

1

; : : : ; y

i

k

)

and C

i

(z

i

1

; : : : ; z

i

k

).

3. For every constraint C

i

(v

i

1

; : : : ; v

i

k�1

), m

0

+1 � i � m, we introduce 2(n+k+1) constraints.

For simplicity of notation, let C

i

(v

i

1

; : : : ; v

i

k�1

) == g(1; v

i

1

; : : : ; v

i

k�1

) ^ g(0; v

i

1

; : : : ; v

i

k�1

)

where g 2 F . The 2(n+ k + 1) constraints are:

� g(w

j

; y

i

1

; : : : ; y

i

k�1

), for 1 � j � k + 1.

� g(z

j

; y

i

1

; : : : ; y

i

k�1

), for 1 � j � n.

� g(w

j

; z

i

1

; : : : ; z

i

k�1

), for 1 � j � k + 1.

� g(y

j

; z

i

1

; : : : ; z

i

k�1

), for 1 � j � n.

We now show that the instance ofMax Ones(F) created above has a non-zero satisfying assignment

if and only if the instance of Sat(F

0

) has a satisfying assignment. Let s = s

1

s

2

:::s

k

be a satisfying

assignment for the non 1-valid constraint f chosen above. First if v

1

; : : : ; v

n

form a satisfying

assignment to the instance of Sat(F

0

), then we claim that the assignment w

j

= s

j

for 1 � j �

k, w

k+1

= 1 and y

j

= z

j

= v

j

for 1 � j � n is a satisfying assignment to the instance of
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Max Ones(F) which has at least one 1 (namely w

k+1

). Conversely, let some non-zero setting

w

1

; : : : ; w

k+1

; y

1

; : : : ; y

n

; z

1

; : : : ; z

n

satisfy the instance ofMax Ones(F). W.l.o.g. assume that one

of the variable w

1

; : : : ; w

k+1

; y

1

; : : : ; y

n

is a 1. Then we claim that the setting v

j

= z

j

, 1 � j � n

satis�es the instance of Sat(F

0

). It is easy to see that the constraints C

i

(v

i

1

; : : : ; v

i

k

), 1 � i � m

0

,

are satis�ed. Now consider a constraint C

i

(v

i

1

; : : : ; v

i

k�1

) = g(0; v

i

1

; : : : ; v

i

k�1

) ^ g(1; v

i

1

; : : : ; v

i

k�1

).

Since at least one of the variables in the set w

1

; : : : ; w

k

is a 0 and at least one of the variables in

the set w

1

; : : : ; w

k+1

; y

1

; : : : ; y

n

is 1, we know that both g(0; z

i

1

; : : : ; z

i

k�1

) and g(1; z

i

1

; : : : ; z

i

k�1

)

are satis�ed and hence C

i

(v

i

1

; : : : ; v

i

k�1

) = 1. Thus the reduced instance of Max Ones(F) has a

non-zero satisfying assignment if and only if the instance of Sat(F

0

) is satis�able. 2

The following lemma directly from Schaefer provides the �nal piece needed for completing the proof

of Theorem 2.10.

Lemma 6.24 ([41]) If F 6� F

0

for any F

0

2 fF

0

;F

1

;F

2CNF

;F

A

;F

WP

;F

WN

g, then Sat(F) is

NP-hard.

7 Classi�cation of Min CSP

7.1 Preliminary results

We start with a simple equivalence between the complexity of the (Weighted) Min CSP problem

for a function family and its complement.

Proposition 7.1 For every constraint family F, (Weighted) Min CSP(F) is AP-reducible to

(Weighted) Min CSP(F

�

).

Proof: The reduction substitutes every constraint f(~x) from F with the constraint f

�

(~x) from F

�

.

A solution for the latter problem is converted into a solution for the former one by complementing

the value of each variable. The transformation preserves the cost of the solution. 2

Proposition 7.2 If F is decidable then Weighted Min CSP(F) is in poly-APX and is AP-

reducible to Min CSP(F).

Proof: Given an instance I of Weighted Min Ones(F) with constraints C

1

; : : : ; C

m

sorted in

order of decreasing weight w

1

� � � � � w

m

. Let j be the largest index such that the constraints

C

1

; : : : ; C

j

are simulataneously satis�able. Notice that j is computable in polynomial time and an

assignment ~a satisfying C

1

; : : : ; C

j

is computable in polynomial time. Then the solution ~a is an

m-approximate solution to I, since every solution must fail to satisfy at least one of the constraints

C

1

; : : : ; C

j+1

and thus have an objective of at least w

j+1

, while ~a achieves an objective of at most

P

m

i=j+1

w

i

� mw

j+1

. Thus we conclude that Weighted Min CSP(F) is in poly-APX. The

second part of the proposition follows by Lemma 3.10. 2

7.2 Containment Results (Algorithms) for Min CSP

We now show the containment results described in Theorem 2.11. Most results described here are

simple containment results which follow easily from the notion of a \basis". The more interesting

result here is a constant factor approximation algorithm for IHS-B which is presented in Lemma 7.3.

Recall that the classes contained in PO have already been dealt with in Section 5.1. We now move

on to APX-containment results.
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Lemma 7.3 If F � F

HS

, then Weighted Min CSP(F) 2 APX.

Proof: By Propositions 3.3 and 7.1 it su�ces to prove the lemma for the problem Weighted

Min CSP(IHS-B), where IHS-B = fOR

k

jk 2 [B]g [ fOR

2;1

; Fg. We will show that for every B,

Weighted Min CSP(IHS-B) is B + 1-approximable.

Given an instance I of Weighted Min CSP(IHS-B) on variables x

1

; : : : ; x

n

with constraints

C

1

; : : : ; C

m

with weights w

1

; : : : ; w

m

, we create a linear program on variables y

1

; : : : ; y

n

(corre-

sponding to the boolean variables x

1

; : : : ; x

n

) and variables z

1

; : : : ; z

m

(corresponding to the con-

straints C

1

; : : : ; C

m

). For every constraint C

j

in the instance I we create a LP constraint using the

following transformation rules:

C

j

: x

i

1

W

� � �

W

x

i

k

; for k � B ! z

j

+ y

i

1

+ � � �+ y

i

k

� 1

C

j

: :x

i

1

W

x

i

2

! z

j

+ (1� y

i

1

) + y

i

2

� 1

C

j

: :x

i

1

! z

j

+ (1� y

i

1

) � 1

In addition we add the constraints 0 � z

j

; y

i

� 1 for every i; j. It may be veri�ed that any integer

solution to the above LP corresponds to an assignment to the Min CSP problem with the variable

z

j

set to 1 if the constraint C

j

is not satis�ed. Thus the objective function for the LP is to minimize

P

j

w

j

z

j

.

Given any feasible solution vector y

1

; : : : ; y

n

; z

1

; : : : ; z

m

to the LP above, we show how to obtain a

0=1 vector y

00

1

; : : : ; y

00

n

; z

00

1

; : : : ; z

00

m

that is also feasible such that

P

j

w

j

z

00

j

� (B + 1)

P

j

w

j

z

j

.

First we set y

0

i

= minf1; (B+1)y

i

g and z

0

j

= minf1; (B+1)z

j

g. Observe that the vector y

0

1

; : : : ; y

0

n

;

z

0

1

; : : : ; z

0

m

is also feasible and gives a solution of value at most (B+ 1)

P

j

w

j

z

j

. We now show how

to get an integral solution whose value is at most (B +1)

P

j

w

j

z

0

j

. For this part we �rst set y

00

i

= 1

if y

0

i

= 1 and z

00

j

= 1 if z

0

i

= 1. Now we remove every constraint in the LP that is made redundant.

Notice in particular that every constraint of type (1) is now redundant (either z

00

j

or one of the

y

00

i

's has already been set to 1 and hence the constraint will be satis�ed by any assignment to the

remaining variables). We now observe that, on the remaining variables, the LP constructed above

reduces to the following

Minimize

P

j

w

j

z

j

Subjectto y

i

2

� y

i

1

+ z

j

� 0

y

i

2

+ z

j

� 1

�y

i

1

+ z

j

� 0

with the y

0

i

's and z

0

j

's forming a feasible solution to the above LP. Notice further that every z

j

occurs

in at most one constraint above. Thus the above LP represents a s-t min cut problem, and therefore

has an optimal integral solution. We set z

00

j

's and y

00

i

to such an integral and optimal solution. Notice

that the so obtained solution is integral and satis�es

P

j

w

j

z

00

j

�

P

j

w

j

z

0

j

� (B + 1)

P

j

w

j

z

j

. 2

Lemma 7.4 For any family F � F

2A

, Weighted Min CSP(F) A-reduces to Min CSP(XOR).

Proof: First we will argue that the family F

0

= fXOR; T; Fg perfectly implements F . By Propo-

sition 3.3 it su�ces to implement the basic width-2 a�ne functions: namely, the functions XOR,

XNOR, T and F . Every function except XOR is already present in F

0

and by Proposition 3.2 XOR

perfectly implements XNOR.

We conclude by observing that the family fXORg is neither 0-valid nor 1-valid and hence, by

Lemma 5.7, Weighted Min CSP(F

0

) A-reduces to Weighted Min CSP(XOR). Finally the

weights can be removed using Proposition 7.2. 2
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The following lemmas show reducibility toMin 2CNF Deletion, Nearest Codeword andMin

Horn Deletion.

Lemma 7.5 For any family F � F

2CNF

, the family fOR;NANDg perfectly implements every

function in F and hence Weighted Min CSP(F)�

A

Min 2CNF Deletion.

Proof: Again it su�ces to consider the basic constraints of F and this is some subset of

fOR

2;0

;OR

2;1

;OR

2;2

; T; Fg:

The family 2CNF contains the �rst and the third function. Since it contains a non 0-valid function,

a non 1-valid function and a non C-closed function, it can also implement T and F (by Lemma 4.6.

This leaves the function OR

2;1

which is implemented by the constraints NAND(x; z

Aux

) and

OR(y; z

Aux

) (on the variables x and y). The A-reduction now follows from Lemma 3.9. 2

Lemma 7.6 For any family F � F

A

, the family fXOR

3

;XNOR

3

g perfectly implements every

function in F . and thus Weighted Min CSP(F) �

A

Nearest Codeword.

Proof: It su�ces to show implementation of the basic a�ne constraints, namely, constraints of

the form XNOR

p

and XOR

q

for every p; q � 1. We focus on the former type as the imple-

mentation of the latter is analogous. First, we observe that the constraint XNOR(x

1

; x

2

) is per-

fectly implemented by the constraints fXNOR

3

(x

1

; x

2

; z

1

);XNOR

3

(x

1

; x

2

; z

2

);XNOR

3

(x

1

; x

2

; z

3

);

XNOR

3

(z

1

; z

2

; z

3

)g Next, the constraint F (x

1

) can be perfectly implemented by fXNOR(x

1

; z

1

);

XNOR(x

1

; z

2

);XNOR(x

1

; z

3

);XNOR

3

(z

1

; z

2

; z

3

)g Finally, the constraint XNOR

p

(x

1

; : : : ; x

p

) for

any p > 3 can be implemented as follows. We introduce the following set of constraints using

the auxiliary variables z

1

; z

2

; :::; z

p�2

and the set of constraints:

fXNOR

3

(x

1

; x

2

; z

1

);XNOR

3

(z

1

; x

3

; z

2

);XNOR

3

(z

2

; x

4

; z

3

); : : : ;XNOR

3

(z

p�2

; x

p�1

; x

p

)g

2

Lemma 7.7 For any family F � F

WP

, the family fOR

3;1

; T; Fg) perfectly implements every func-

tion in F and thus Weighted Min CSP(F) �

A

Min Horn Deletion.

Proof: As usual it su�ces to perfectly implement every function in the basis fOR

k

g [ fOR

k;1

g.

The constraint OR(x; y) is implemented by the constraints OR

3;1

(a; x; y) and T (a). OR

2;1

(x; y)

is implemented by OR

3;1

(x; y; a) and F (a). The implementation of OR

3

(x; y; z) is OR(x; a) and

OR

3;1

(a; y; z) (the constraint (a

W

x), in turn, may be implemented with the already shown method).

Thus every k-ary constraint, for k � 3 can be perfectly implemented by the family fOR

3;1

; T; Fg).

For k � 4, we use the textbook reduction from Sat to 3Sat (see e.g. [19, Page 49]) and we observe

that when applied to k-ary weakly positive constraints it yields a perfect implementation using

only 3-ary weakly positive constraints. 2

To conclude this section we describe the trivial approximation algorithms forNearest Codeword

andMin Horn Deletion. They follow easily from Proposition 7.2 and the fact that both families

are decidable.

Corollary 7.8 (to Proposition 7.2) Min Horn Deletion and Nearest Codeword are in

poly-APX.
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7.3 Hardness Results (Reductions) for Min CSP

Lemma 7.9 (APX-hardness) If F 6� F

0

, for F

0

2 fF

0

;F

1

;F

2M

g, and F � F

HS

then Min

CSP(F) is APX-hard.

Proof: The proof essentially follows from Lemma 5.8 in combination with Proposition 3.6. We

show that for every F Max CSP(F) AP-reduces to Min CSP(F). Let I be an instance of Max

CSP(F) on n variables and m constraints. Let ~x

0

be a solution satisfying m=k constraints that

can be found in polynomial time (by Proposition 3.6). Let ~x

00

be an r-approximate solution to

the same instance I viewed as an instance of Min CSP(F). If opt is the optimum solution

to the maximization problem I, then ~x

00

satis�es at least m � r(m � opt) = ropt � (r � 1)m

constraints. Thus the better of the two solutions is an r

0

-approximate solution to the instance I of

Max CSP(F), where

r

0

�

opt

maxfm=k; ropt� (r � 1)mg

�

((r� 1)k + 1)opt

(r � 1)k(m=k) + ropt� (r � 1)m

=

1 + (r� 1)k

r

� 1 + (r� 1)k

Thus Max CSP(F) AP-reduces to Min CSP(F). The lemma follows from the APX-hardnes of

Max CSP(F) (Lemma 5.8). 2

Lemma 7.10 (Min UnCut-hardness) If F 6� F

0

, for F

0

2 fF

0

;F

1

;F

2M

;F

HS

g, and F � F

2A

then Min CSP(F) is Min UnCut-hard.

Proof: Recall that Min UnCut-hardness requires that Min CSP(XOR) be A-reducible to Min

CSP(F).

Consider (all) the minimally dependent sets of f . By Lemma 4.22 all such sets are of cardinality

at most 2. For a minimally dependent set fi; jg let

f

i;j

(x

i

; x

j

)

def

= 9x

1

; : : : ; x

i�1

; x

i+1

; : : : ; x

j�1

; x

j+1

; : : : ; x

k

s.t. f(x

1

; : : : ; x

k

):

By Lemma 4.17 all the f

i;j

's are a�ne and thus must be one of the functions T (x

i

), F (x

i

)

XOR(x

i

; x

j

) or XNOR(x

i

; x

j

). Furthermore f can be expressed as the conjunction of f

i;j

's over

all the minimally dependent sets. It follows that some f

i;j

must be the function XOR(x

i

; x

j

) since

otherwise f would be in F

HS

. Thus we conclude that f implements XOR and by Lemma 3.9 we

conclude that Min CSP(XOR) is A-reducible to Min CSP(F) as desired. 2

For the Min 2CNF Deletion-hardness proof, we need the following three simple lemmas.

Lemma 7.11 If f is a 2CNF function which is not width-2 a�ne, then f implements OR

2;l

for

some l 2 f0; 1; 2g.

Proof: For i; j 2 [k], let

f

i;j

(x

i

; x

j

)

def

= 9x

1

; : : : ; x

i�1

; x

i+1

; : : : ; x

j�1

; x

j+1

; : : : ; x

k

s.t. f(x

1

; : : : ; x

k

):
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Recall that f can be expressed as the conjunction of f

i:j

's over all its maxterms and by Lemma 4.21,

all the maxterms of f 's have at most 2 literals in them. Thus f(x

1

; : : : ; x

k

) can be expressed as

V

i;j2[k]

f

i;j

(x

i

; x

j

). It follows that some f

i;j

must be one of the functions OR

2;0

, OR

2;1

or OR

2;2

(all other functions on 2 variables are a�ne). Thus existentially quantifying over all variables other

than x

i

and x

j

, f implements OR

2;l

for some l 2 f0; 1; 2g. 2

Lemma 7.12 If f 2 F

2CNF

is not in IHS-B, then f implements XOR.

Proof: Once again we use the fact that f can be expressed as

V

i;j2[k]

f

i;j

(x

i

; x

j

), where f

i;j

is the

function obtained from f by existentially quantifying over all variables other than x

i

and x

j

. It

follows that one of the f

i;j

's must be NAND or XOR, since all the other functions on two variables

are in IHS-B+. In the latter case we are done, else we use the fact that f is not in IHS-B� to

conclude that f implements OR or XOR. In the latter case again we are done else we use the fact

that f implements both the functions NAND and OR, and that NAND(x; y) and OR(x; y) perfectly

implement XOR(x; y), to conclude that in this case too, the function f perfectly implements XOR.

2

Lemma 7.13 If f is the function OR

2;l

for some l 2 f0; 1; 2g then the family ff;XORg perfectly

implements both the functions OR and NAND.

Proof: The lemma follows from the fact that the function XOR essentially allows us to negate

literals. For example, given the function OR

2;1

(x; y) and XOR, the applications OR

2;1

(x; z

Aux

) and

XOR(z

Aux

; y) perfectly and strictly implement the function NAND(x; y). Other implementations

are obtained similarly. 2

Lemma 7.14 (Min 2CNF Deletion-hardness) If F 6� F

0

, for F

0

2 fF

0

;F

1

;F

2M

;F

HS

;F

2A

g,

and F � F

2CNF

then Min CSP(F) is Min 2CNF Deletion-hard.

Proof: By Lemmas 7.11 and 7.12, F implements one of the functions OR

2;l

for l 2 f0; 1; 2g and

the function XOR. By Lemma 7.13 this su�ces to implement the family fNAND;ORg. Thus by

Lemma 3.9 we conclude that Min CSP(fOR;NANDg) A-reduces to Min CSP(F). 2

Lemma 7.15 If F � F

A

but F 6� F

0

for any F

0

2 fF

0

;F

1

;F

2M

;F

HS

;F

2A

g, then Min CSP(F) is

Nearest Codeword-hard.

Proof: By Lemma 4.18 we know that in this case F perfectly implements the constraint x

1

�� � ��

x

p

= b for some p � 3 and some b 2 f0; 1g. Thus the family F [ fT; Fg implements the functions

x�y�z = 0; x�y�z = 1. Thus Nearest Codeword =Min CSP(fx�y�z = 0; x�y�z = 1g is

A-reducible toMin CSP(F[fF; Tg). Since F is neither 0-valid nor 1-valid, we can use Lemma 5.7

to conlude that Min CSP(F) is Nearest Codeword-hard. 2

The next lemma describes the best known hardness of approximation for theNearest Codeword

problem. The result relies on an assumption stronger than NP 6= P.

Lemma 7.16 ([2]) For every � > 0, Nearest Codeword is hard to approximate to within a

factor of 
(2

log

1��

n

), unless NP has deterministic algorithms running in time n

log

O(1)

n

.

Proof: The required hardness of the nearest codeword problem is shown by Arora et al. [2]. The

nearest codeword problem, as de�ned in Arora et al., works with the following problem: Given a

m � n matrix A and a m-dimensional vector b, �nd an n-dimensional vector x which minimizes

the Hamming distance between Ax and b. Thus this problem can be expressed as a Min CSP
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problem with m a�ne constraints over n-variables. The only technical point to be noted is that

these constraints have unbounded arity. In order to get rid of such long constraints, we replace a

constraint of the form x

1

� � � � � x

l

= 0 into l � 2 constraints x

1

� x

2

� z

1

= 0, z

1

� x

3

� z

2

= 0,

etc. on auxiliary variables z

1

; : : : ; z

l�3

. (The same implementation was used in Lemma 7.6.) This

increases the number of constraints by a factor of at most n, but does not change the objective

function. Thus if M represents the number of constraints in the new instance of the problem, then

the approximation hardness which is 2

log

1��

m

can be expressed as 2

1

2

log

1��

M

which is still growing

faster than, say, 2

log

1�2�

M

. Since the result of [2] holds for every positive �, we still get the desired

result claimed above. 2

It remains to see the Min Horn Deletion-hard case. We will have to draw some non-trivial

consequences from the fact that a family is not IHS-B.

Lemma 7.17 Assume F 6� F

HS

and either F � F

WP

or F � F

WN

. Then F contains a function

that is not C-closed.

Proof: Let f be a C-closed function in F

WP

(F

WN

). We claim that all of f 's maxterms must be

of the form T (x

i

), F (x

i

) or OR

2;1

(x

i

; x

j

). If not, then since f is C-closed, the maxterm involving

the complementary literals is also a maxterm of f , but the complementary maxterm is not weakly

positive (and by Lemma 4.20 every maxterm of f must be weakly positive). But if all of f 's

maxterms are of the form T (x

i

), F (x

i

) or OR

2;1

(x

i

; x

j

), then f is in IHS-B . The lemma follows

from the fact that F 6� F

HS

. 2

Lemma 7.18 If f is a weakly positive function not expressible as IHS-B+, then ff; T; Fg perfectly

implements the function OR

3;1

. If f is a weakly negative function not expressible as IHS-B-, then

ff; T; Fg can perfectly implement the function OR

3;2

.

Proof: Let f be a weakly positive function. By Lemma 4.20 all maxterms of f are weakly positive.

Since f is not IHS-B+, f must have a maxterm of the form (:x

1

W

x

2

W

� � �

W

x

p

). We �rst show

that f can perfectly implement the functions XNOR and OR. To get the former, consider the

function

f

1

(x

1

; x

2

)

def

= 9x

p+1

; : : : ; x

k

s.t. f(x

1

; x

2

; 0

p�2

; x

p+1

; : : : ; x

k

):

The function f

1

satis�es the properties f

1

(10) = 0, f

1

(00) = f

1

(11) = 1. Thus f

1

is either the

function XNOR or OR

2;1

. Notice that the constraints f(x

1

; : : : ; x

k

) and F (x

i

), i 2 f4; : : : ; pg

perfectly implement f

1

. Thus ff; Fg perfectly implement either the function XNOR or OR

2;1

.

In the former case, we have the claim and in the latter case we use the fact that the constraints

OR

2;1

(x; y) and OR

2;1

(y; x) perfectly implement XNOR(x; y).

We next show how the family ff; T; F;XNORg (and hence f) can perfectly implement OR

2;1

. To

do so, we consider the function

f

2

(x

1

; x

2

; x

3

)

def

= 9x

p+1

; : : : ; x

k

s.t. f(x

1

; x

2

; x

3

; 0

p�3

; x

p+1

; : : : ; x

k

):

Again ff; Fg implement f

2

perfectly. By the de�nition of a maxterm, we �nd that f

2

satis�es

the following properties: f

2

(100) = 0 and f

2

(000) = f

2

(110) = f

2

(101) = 1. Figure 3 gives the

truth table for f

2

, where the unknown values are denoted by A, B, C and D. If C = 0 then

restricting x

1

= 1 gives the constraint XOR(x

2

; x

3

). But notice that XOR is not a weakly positive

function and by Lemma 4.19 every function obtained by setting some of the variables in a weakly

positive function to constants and existentially quantifying over some other subset of variables is a

weakly positive function. Thus C = 1. If A = 1, we implement the function OR

2;1

(x

2

; x

1

) by the
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BA

0 1

D

yz
x 00      01      11     10

C1

1

1

0

Figure 3: Truth-table of the constraint f

2

constraints f

2

(x

1

; x

2

; x

3

) and F (x

3

). Similarly if A = 0, we implement the function OR

2;1

(x

3

; x

1

)

by the constraints f

2

(x

1

; x

2

; x

3

) and F (x

2

). Else we have the case A = 0 and D = 0. Now if B = 0,

we again get OR

2;1

(x

2

; x

1

) by existentially quantifying over x

3

. Finally if B = 1, the constraints

f

2

(x

1

; x

2

; x

3

) and XNOR(x

1

; x

3

) implement the constraint OR

2;1

(x

2

; x

1

).

Finally we conclude by observing that the constraints f

2

(x; z

1

Aux

; z

2

Aux

), OR

2;1

(z

1

Aux

; y) and

OR

2;1

(z

2

Aux

; z), perfectly implement the constraint OR

3;1

(x; y; z).

This completes the proof for the �rst part. The proof if f is weakly negative is similar. 2

Lemma 7.19 (The Min Horn Deletion-hard Case) If F 6� F

0

, for any F

0

2 fF

0

;F

1

;F

2M

;

F

HS

;F

2A

;F

2CNF

g, and either F � F

WP

or F � F

WN

, then Weighted Min CSP(F) is Min

Horn Deletion-hard.

Proof: From Lemma 7.18 we have that eitherMin CSP(fOR

3;1

; T; Fg orMin CSP(fOR

3;2

; T; Fg

is A-reducible to Min CSP(F). Furthermore, since F is not 0-valid or 1-valid we have that

Min CSP(F [ fT; Fg) is A-reducible to Min CSP(F). The lemma follows by an application

of Proposition 7.1 which shows that the problems Min CSP(fOR

3;1

; T; Fg) A-reduces to Min

CSP(fOR

3;2

; T; Fg). 2

To show the hardness of Min Horn Deletion we de�ne a variant of the \label cover" problem.

The original de�nition from [2] used a di�erent objective function. Our variant is similar to one

used by Amaldi and Kann [1] under the name Total Label Cover.

De�nition 7.20 (Total Label Cover

p

)

Instance: An instance is decribed by sets R, Q and A and by p functions (given by their tables)

Q

1

; : : : ; Q

p

: R! Q and a function Acc : R� (A)

p

! f0; 1g.

Feasible solutions: A solution is a collection of p functions A

1

; : : : ; A

p

: Q ! 2

A

. The so-

lution is feasible if for every R 2 R, there exists a

1

2 A

1

(Q

1

(R)); : : : ; a

p

2 A

p

(Q

p

(R)) such that

Acc(R; a

1

; : : : ; a

p

) = 1.

Objective: The objective is to minimize

P

p

i=1

P

q2Q

jQ

i

(q)j.

In the appendix, we show how results from interactive proofs imply the hardness of approximating

Min Label-Cover to within a factor of 2

log

1��

n

. We now use this result to show that hardness

of Min Horn Deletion.

Lemma 7.21 For every � > 0, Min Horn Deletion is NP-hard to approximate to within a

factor of 2

log

1��

n

.

Proof: Let p be such that Min Label-Cover

p

is NP-hard to approximate to within a factor of

2

log

1��

n

. (By Lemma A.3 such a p exists.) We now reduce Min Label-Cover

p

to Min Horn

Deletion.
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Let (Q

1

; : : : ; Q

p

;Acc) be an instance of Min Label-Cover

p

, where Q

i

: R ! Q and Acc :

R� (A)

p

! f0; 1g. For any R 2 R, we de�ne Acc(R) = f(a

1

; : : : ; a

p

) : V (R; a

1

; : : : ; a

p

) = 1g.

We now describe the reduction. For any R 2 R, a

1

; : : : ; a

p

2 A, we have a variable v

R;a

1

;:::;a

p

whose intended meaning is the value of Acc(R; a

1

; : : : ; a

p

). Moreover, for every i 2 [p], Q 2 Q, and

a 2 A

i

we have a variable x

i;Q;a

, with the intended meaning being that its value is 1 if and only

if a 2 A

i

(Q). For any x

i;Q;a

we have the weight-one constraint :x

i;q;a

. The following constraints

(each with weight (p � jQj � jAj)) enforce the variables to have their intended meaning. Due to

their weight, it is never convenient to contradict them.

8R 2 R :

W

(a

1

;:::;a

p

)2Acc(R)

v

R;a

1

;:::;a

p

8R 2 R; a

1

; : : : ; a

p

2 A; i 2 [p] : v

R;a

1

;:::;a

p

) x

i;Q

i

(R);a

i

The constraints of the �rst kind can be perfectly implemented with OR

3

and OR

3;1

(see Lemma 7.7).

It can be checked that this is an AP-reduction fromMin Label-Cover

p

toMin Horn Deletion

and thus the lemma follows. 2

8 Min Ones Classi�cation

8.1 Preliminaries: Min Ones vs. Min CSP

We start with the following easy relation between Min CSP and Min Ones problems. Recall that

a family F is decidable if membership in Sat(F) is decidable in polynomial time.

Proposition 8.1 For any decidable constraint family F, Weighted Min Ones(F) AP-reduces

to Weighted Min CSP(F [ fFg).

Proof: Let I be an instance of Weighted Min Ones(F) over variables x

1

; : : : ; x

n

with weights

w

1

; : : : ; w

n

. Let w

max

be the largest weight. We construct an instance I

0

of Weighted Min

CSP(F [ fFg) by leaving the constraints of I (each with weight nw

max

), and adding a constraint

F (x

i

) of weight w

i

for any i = 1; : : : ; n. Notice that whenever I is feasible, the optimum value for

I equals the optimum value for I

0

. Given a r-approximate solution to ~x to I

0

, we check to see if I

is feasible and if so �nd any feasible solution ~x

0

and output solution (from among ~x and ~x

0

) that

achieves a lower objective. It is clear that the solution is at least an r-approximate solution if I is

feasible. 2

Reducing a Min CSP problem to a Min Ones problem is slightly less general.

Proposition 8.2 For any function f , let f

0

and f

00

denote the functions f

0

(~x; y) = OR(f(~x); y)

and f

00

(~x; y) = XOR(f(vecx); y) respectively. If constraint families F and F

0

are such that for

every f 2 F, f

0

or f

00

is in F

0

, then Weighted Min CSP(F) AP-reduces to Weighted Min

Ones(F

0

).

Proof: Given an instance I of Weighted Min CSP(F) we create an instance I

0

of Weighted

Min Ones(F

0

) as follows: For every constraint C

j

we introduce an auxiliary variable y

j

. The

variable takes the same weight as the constraint C

j

in I. The original variables are retained with

weight zero. If the constraint C

j

(~x)

W

y

j

is a constraint of F

0

we apply that constraint, else we

apply the constraint C

j

(~x) � y = 1. Given an assignment to the variables of I, notice that by
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setting y

j

= :C

j

, we get a feasible solution to I

0

with the same objective value; conversely, a

feasible solution to I

0

when projected onto the variables ~x gives a solution with the same value to

the objective function of I. This shows that the optimum value to I

0

equals that of I and that an

r-approximate solution to I

0

projects to give an r-approximate solution to I. 2

Finally the following easy proposition is invoked at a few places.

Proposition 8.3 If F implements f , then F

�

implements f

�

.

8.2 Containment Results for Min Ones

Lemma 8.4 (PO containment) If F � F

0

for some F

0

2 fF

0

;F

WN

;F

2A

g, thenWeighted Min

Ones(F) is solvable exactly in polynomial time.

Proof: Follows from Lemma 6.5 and from the observation that for any family F , solvingWeighted

Min Ones(F) to optimality reduces to solving Weighted Max Ones(F

�

) to optimality. 2

Lemma 8.5 If F � F

0

for F

0

2 fF

2CNF

;F

HS

g, then Weighted Min Ones(F) is in APX.

Proof: For the case F � F

2CNF

, a 2-approximate algorithm is given by Hochbaum et al. [25].

Consider now the case F � F

HS

. From Proposition 3.3 it is su�cient to consider only basic

IHS-B constraints. Since IHS-B� constraints are weakly negative, we will restrict to basic IHS-B+

constraints. We use linear-programming relaxations and deterministic rounding. Let k be the

maximum arity of a function in F , we will give a k-approximate algorithm. Let � = fC

1

; : : : ; C

m

g

be an instance of Weighted Min Ones(F) over variable set X = fx

1

; : : : ; x

n

g with weights

w

1

; : : : ; w

n

. The following is an integer linear programming formulation of �nding the minimum

weight satisfying assigment for �.

Minimize

P

i

w

i

y

i

Subject to

y

i

1

+ : : :+ y

i

h

� 1 8(x

i

1

W

: : :

W

x

i

h

) 2 �

y

i

1

� y

i

2

� 0 8(x

i

1

W

:x

i

2

) 2 �

y

i

= 0 8:x

i

2 �

y

i

= 1 8x

i

2 �

y

i

2 f0; 1g 8i 2 f1; : : : ; ng

(SCB)

Consider now the linear programming relaxation obtained by relaxing the y

i

2 f0; 1g constrains

into 0 � y

i

� 1. We �rst �nd an optimum solution y

�

for the relaxation, and then we de�ne a 0/1

solution by setting y

i

= 0 if y

�

i

< 1=k, and y

i

= 1 if y

�

i

� 1=k. It is easy to see that this rounding

increases the cost of the solution at most k times and that the obtained solution is feasible for

(SCB). 2

Lemma 8.6 For any F � F

A

,Weighted Min Ones(F) is A-reducible to Nearest Codeword.

Proof: From Lemmas 7.6 and 3.8 we have that Weighted Min Ones(F) is A-reducible to

Weighted Min Ones(fXNOR

3

;XOR

3

g). From Proposition 8.1, we have that Weighted Min

Ones(F) A-reduces toWeighted Min CSP(fXOR

3

;XNOR

3

; Fg). Notice further that the family

fXNOR

3

;XOR

3

g can implement F (by Lemma 4.6). Thus we have that we have that Weighted

Min Ones(F) A-reduces to Weighted Min CSP(fXOR

3

;XNOR

3

; g) = Nearest Codeword.

2

50



Lemma 8.7 For any F � F

WP

, Weighted Min Ones(F) A-reduces to Min Horn Deletion.

Proof: Follows from the following sequence of assertions:

(1) fOR

3;1

; T; Fg perfectly implements F (Lemma 7.7).

(2) Weighted Min Ones(F) A-reduces toWeighted Min Ones(fOR

3;1

; T; Fg) (Lemma 3.8).

(3) Weighted Min Ones(fOR

3;1

; T; Fg) AP-reduces to Weighted Min CSP(fOR

3;1

; T; Fg)

= Min Horn Deletion (Proposition 8.1).

2

Proposition 8.8 If F is decidable then Min Ones(F) is in poly-APX.

Proof: The proposition follows immediately from the fact that in this case it is easy to determine

if the input instance is feasible and if so, if the optimum value is zero. If so we output the

~

0 as the

solution, else we output any feasible solution. Since the objective is at least 1 and the solution has

value at most n, this is an n-approximate solution. 2

8.3 Hardness Results for Min Ones

We start by considering the hardest problems �rst. The case when F is not decidable is immediate.

We move to the case where F may be 1-valid, but not in any other of Schaefer's easy classes.

Lemma 8.9 If F 6� F

0

for any F

0

2 fF

0

;F

2CNF

;F

A

;F

WP

;F

WN

g, thenWeighted Min Ones(F)

is hard to approximate to within any factor, and Min Ones(F) is poly-APX-hard.

Proof: We �rst show how to handle the weighted case. The hardness for the unweighted case will

follow easily. Consider a function f 2 F which is not weakly positive. For such an f , there exists

assignments ~a and

~

b such that f(~a) = 1 and f(

~

b) = 0 and ~a is zero in every coordinate where

~

b is

zero. (Such a input pair exists for every non-monotone function f and every monotone function

is also weakly positive.) Now let f

0

be the constraint obtained from f by restricting it to inputs

where

~

b is one, and setting all other inputs to zero. Then f

0

is a satis�able function which is not

1-valid. We can now apply Schaefer's theorem [41] to conclude that Sat(F[ff

0

g) is hard to decide.

We now reduce an instance of deciding Sat(F [ff

0

g) to approximating Weighted Min CSP(F).

Given an instance I of Sat(F [ ff

0

g) we create an instance which has some auxiliary variables

W

1

; : : : ;W

k

which are all supposed to be zero. This in enforced by giving them very large weights.

We now replace every occurence of the constraint f

0

in I by the constraint f on the corresponding

variables with the W

i

's in place which were set to zero in f to obtain f

0

. It is clear that if a \small"

weight solution exists to the resulting Weighted Min CSP problem, then I is satis�able, else it is

not. Thus we conclude it is NP-hard to approximateWeighted Min CSP to within any bounded

factors.

For the unweighted case, it su�ces to observe that by using polynomially bounded weights above,

we get a poly-APX hardness. Further one can get rid of weights entirely by replicating variables.

2

We may now restrict our attention to function families F that are 2CNF or a�ne or weakly positive

or weakly negative or 0-valid. In particular, by the containment results shown in the previous

section, in all such cases the problem Weighted Min Ones(F) is in poly-APX. We now give a

weight-removing lemma which allow us to focus on showing the hardness of the weighted problems.
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Lemma 8.10 If F � F

0

for some F

0

2 fF

2CNF

;F

A

;F

WP

;F

WN

;F

0

g, then Weighted Min

Ones(F) AP-reduces to Min Ones(F).

Proof: By Lemma 3.10 it su�ces to verify that Weighted Min Ones(F) is in poly-APX

in all cases. If F is weakly negative or 0-valid, then this follows from Lemma 8.4. If F is

2CNF then this follows from Lemma 8.5. If F is a�ne or weakly positive, then it A-reduces

to Nearest Codeword or MinHornDeletion respectively which are in poly-APX by Corol-

lary 7.8.

2

Before dealing with the remaining cases, we prove one more lemma that is useful in dealing with

Min Ones problems.

Lemma 8.11 For every constraint set F such that F[fFg is decidable,Weighted Min Ones(F[

fFg) AP-reduces to Weighted Min Ones(F).

Proof: Given an instance I of Weighted Min Ones(F [ fFg) on n variables x

1

; : : : ; x

n

with

weights w

1

; : : : ; w

n

we create an instance I

0

ofWeighted Min Ones(F), on the variables x

1

; : : : ; x

n

using all the constraints of I that are from F ; and for every variable variable x

i

such that F (x

i

) is

a constraint of I, we increase the weight of the variable x

i

to nw

max

where w

max

is the maximum

of the weights w

1

; : : : ; w

n

. As in Lemma 8.1 we observe that if I is feasible, then the optima for I

and I

0

are equal and given an r-approximate solution to I

0

we can �nd an r-approximate solution

to I. Furthermore, since F [ fFg is decidable, we can decide whether or not I is feasible. 2

We now deal with the a�ne problems.

Lemma 8.12 If F is a�ne but not width-2 a�ne or 0-valid then Min Ones(XOR

3

) is AP-

reducible to Weighted Min Ones(F).

Proof: Notice that since F is a�ne, so is F

�

. Furthermore, F

�

is neither width-2 a�ne nor

1-valid. Thus by Lemma 6.10 F

�

perfectly implements either the family fXNOR

3

g or the family

fXOR;XNOR

4

g. Thus, by applying Proposition 8.3, we get that F implements either XOR

3

or the

family fXOR;XNOR

4

g. In the former case, we are done (by Lemma 3.8). In the latter case, notice

that the constraints XNOR

4

(x

1

; x

2

; x

3

; x

5

) and XOR(x

4

; x

5

) perfectly implement the constraint

XOR

4

(x

1

; x

2

; x

3

; x

5

). Thus we conclude that Weighted Min Ones(XOR

4

) is AP-reducible to

Weighted Min Ones(F). Finally we use Lemma 8.11 to conclude that the family Weighted

Min Ones(F)(fXORgj

0

) is AP-reducible to Weighted Min Ones(F). The lemma follows from

the fact that XOR

3

2 fXOR

4

gj

0

. 2

Lemma 8.13 If F is a�ne but not width-2 a�ne or 0-valid then, for every � > 0, Min Ones(F)

is Nearest Codeword-hard and hard to approximate to within a factor of 
(2

log

�

n

).

Proof: Follows from the following sequence of reductions:

Nearest Codeword

= Weighted Min CSP(fXOR

3

;XNOR

3

g)

�

AP

Weighted Min Ones(fXOR

4

;XNOR

4

g) (using Proposition 8.2)

�

AP

Weighted Min Ones(fXOR

3

;XORg) (see below)

�

AP

Weighted Min Ones(XOR

3

) (using Lemma 8.11)

�

AP

Weighted Min Ones(F) (using Lemmas 8.12 and 3.8)

�

AP

Min Ones(F) (using Lemma 8.10.)
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The second reduction above follows by combining Lemma 3.8 with the observation that the family

fXOR

3

;XORg perfectly implement the functions XOR

4

and XNOR

4

as shown next. The con-

straints XOR

3

(u; v; w) and XOR

3

(w; x; y) perfectly implement the constraint XNOR

4

(u; v; x; y);

the constraints XOR

4

(u; v; w; x) and XOR(w; y) perfectly implement XOR

4

(u; v; x; y). The hard-

ness of approximation of Nearest CodewordLemma 7.16. 2

Lemma 8.14 If F is weakly positive and not IHS-B (nor 0-valid) then Min Ones(F) is Min

Horn Deletion-hard, and hence hard to approximate within 2

log

1��

n

for any � > 0.

Proof: Follows from the following sequence of reductions:

Min Horn Deletion

= Weighted Min CSP(fOR

3;1

; T; Fg

�

AP

Weighted Min Ones(fOR

4;1

;OR

2

;OR

2;1

g) (Using Proposition 8.2.)

�

AP

Weighted Min Ones(fOR

3;1

; T; Fg) (Using Lemmas 7.7 and 3.8.)

�

AP

Weighted Min Ones(F [ fT; Fg) (Using Lemmas 7.18 and 3.8.)

�

AP

Weighted Min Ones(F [ fFg) (Using Lemma 4.6 to perfectly implement T .)

�

AP

Weighted Min Ones(F) (Using Lemma 8.11.)

�

AP

Min Ones(F) (Using Lemma 8.10.)

The hardness of approximation follows from Lemma 7.21. 2

Lemma 8.15 Min Ones(OR) is APX-hard.

Proof: We reduceVertex Cover toMinOnes(OR). Given a graphG on n vertices, we construct

an instance of Min Ones(OR) on n variables x

1

; : : : ; x

n

. For every edge between vertex i and j of

G, we create a constraint OR(x

i

; x

j

). We notice that there is a one-to-one correspondence between

an assignment to the variables and vertex covers in G (with variables assigned 1 corresponding

to vertices in the cover) and the minimum vertex cover minimizes the sum of the variables. The

lemma follows from the fact that Vertex Cover is APX-hard [38, 3]. 2

Lemma 8.16 (APX-hardness) If F 6� F

0

for any F

0

2 fF

0

;F

WN

;F

2A

g, then Min Ones(F) is

APX-hard.

Proof: We mimic the proof of Lemma 6.14. We assume that F is not a�ne { the case where F is

a�ne will be shown to be Nearest Codeword-hard in Lemma 8.13. By Lemma 8.10 it su�ces

to show that Weighted Min Ones(F) is APX-hard; and by Lemma 8.11 it su�ces to show that

Weighted Min Ones(F [ fFg) is APX-hard. Since F [ fFg is not 0-valid or 1-valid or C-closed

it implements every function in F [ fT; Fg and thus every function in Fj

0;1

. We now shift focus

on to the family (Fj

0;1

)

�

. Furthermore (Fj

0;1

)

�

is neither weakly positive nor a�ne and thus by

Lemmas 6.20 and 6.21 it implements NAND. Using Proposition 8.3 we get that F

0;1

implements

OR. Using Lemma 8.15 we get that Weighted Min Ones(OR) is APX-hard. Thus we conclude

that Weighted Min Ones(F) is APX-hard. 2
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A Hardness of Total Label Cover

De�nition A.1 L 2MIP

c;s

[p; r; q; a] if there exists a polynomial time bounded probabilistic oracle

machine V (veri�er) such that on input x 2 f0; 1g

n

, the veri�er picks a random string R 2 f0; 1g

r(n)

coins and generates p queries Q

1

= Q

1

(x;R); : : : ; Q

p

= Q

p

(x;R) 2 f0; 1g

q(n)

and sends query Q

i

to prover �

i

and recieves from prover �

i

an answer A

i

= A

i

(Q

i

) 2 f0; 1g

a(n)

and then computes a

verdict Acc(x;R;A

1

; : : : ; A

p

) 2 f0; 1g with the following properties:

Completeness: x 2 L) 9A

1

(�); : : : ; A

p

(�) such that E

R

[Acc(x;R;A

1

; : : : ; A

p

)] � c(n).

Soundness: x 62 L) 8A

1

(�); : : : ; A

p

(�), E

R

[Acc(x;R;A

1

; : : : ; A

p

)] < s(n).

We say V is uniform if for every x and i, there exists d

x;i

, s.t. for every question Q

i

2 f0; 1g

q(n)

,

jfR 2 f0; 1g

r(n)

jQ

i

(R) = Q

i

gj = d

x;i

. We say L is in uniform-MIP

c;s

[p; r; q; a] if there exists a

uniform veri�er V which places L in MIP

c;s

[p; r; q; a].

We use a recent result of Raz and Safra [40] (see also [5] for an alternate proof) which provides a

strong uniform-MIP containment result for NP.

Lemma A.2 ([40, 5]) For every � > 0, there exist constants p; c

1

; c

2

and c

3

such that

NP � uniform-MIP

1;2

� log

1��

n

[p; c

1

logn; c

2

logn; c

3

log n]:

Remark:

(1) The result shown by [40, 5] actually has smaller answer sizes, but this turns out to be irrelevant

to our application below, so we don't mention their stronger result.

(2) The uniformity property is not mentioned explicitly in the above papers. However it can be

veri�ed from their proofs that this property does hold for the veri�er constructed there.

The following reduction is essentially from [35, 7, 2].

Lemma A.3 For every � > 0, there exists a p = p

�

such that Total Label Cover

p

is NP-hard to

approximate to within a factor of 2

log

1��

n

.

Proof: We use Lemma A.2. Let L be an NP-complete language and for � > 0, let p; c

1

; c

2

; c

3

be

such that L 2 uniform-MIP

1;2

� log

1��=2

n

[p; c

1

logn; c

2

logn; c

3

logn] and let V be the veri�er that

shows this containment. Given an instance x 2 f0; 1g

n

of L with a we create an instance of Total

Label Cover

p

as follows: Set Q

i

(R) to be the query generated by V to prover �

i

on input x and

random string R. For every R; a

1

; : : : ; a

p

Acc(R; a

1

; : : : ; a

p

) is 1 if V accepts the answers a

1

; : : : ; a

p

on random string R.

If x 2 L, it is clear that there exists a feasible solution A

1

; : : : ; A

p

such that for every q 2 Q,

jA

i

(q)j = 1 and thus the value of the optimum solution is at most pjQj.

Now we claim for a given x, if the mapped instance of Total Label Cover has a solution of size KpjQj

then there exist provers �

1

; : : : ;�

p

such that V accepts with probability at least K

�1=p

=(p+1)

p+1

.
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To see this let �

i

(q) be a random element of A

i

(q). If n

i;q

denotes the cardinality of A

i

(q), then

the probability that V accepts the provers response is given by

1

jRj

X

R2R

Y

i

1=n

i;Q

i

(R)

:

De�ne R

i

to be fR 2 Rjn

i;Q

i

(R)

� (p + 1)Kg. By Markov's inequality and the uniformity of the

protocol jR

i

j=jRj � 1=(p+ 1).

Let R

0

= R�R

1

�R

2

� � � � � R

p

. Then jR

0

j=jRj � 1=(p+ 1).

We go back to bounding the probability above:

1

jRj

X

R2R

Y

i

1=n

i;Q

i

(R)

�

1

jRj

X

R2R

0

Y

i

1=n

i;Q

i

(R)

�

1

jRj

X

R2R

0

Y

i

1=n

i;Q

i

(R)

�

1

jRj

X

R2R

0

(1=((p+ 1)K)

p

)

� K

�1=p

=(p+ 1)

p+1

:

It follows that if K = K(n) is less than 2

log

1��

n

, then for su�ciently large n, K

�1=p

=(p+ 1)

p+1

is

greater than 2

log

1��=2

n

. Thus a K-approximation algorithm for Total Label Cover

p

can be used to

decide L. Thus Total Label Cover

p

is NP-hard to approximate to within a factor of 2

log

1��

n

. 2

B Schematic Representations of the Classi�cation Theorems

B.1 The Max CSP Classi�cation

F

+

0-valid or 1-valid or

2-monotone?

-

Yes

In PO (Lemmas 5.1 and 5.2)

?

No

APX-complete

(Proposition 5.5 and

Lemma 5.8)
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B.2 The Max Ones Classi�cation

F

+

1-valid or weakly positive or

width-2 a�ne?

-

Yes

In PO (Lemma 6.5)

?

No

A�ne?

-

Yes

APX-complete (Lemmas 6.6 and

6.13)

?

No

Strongly 0-valid or weakly

negative or 2CNF?

-

Yes

poly-APX-complete (Proposition 6.7

and Lemma 6.14)

?

No

0-valid?

-

Yes

Not approximable (Lemma 6.23)

?

No

Feasibility is NP-hard [41]
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B.3 The Min CSP Classi�cation

F

+

0-valid or 1-valid or

2-monotone?

-

Yes

In PO (Lemmas 5.1 and 5.2)

?

No

IHS-B?

-

Yes

APX-complete (Lemmas 7.3 and 7.9)

?

No

Width-2 a�ne?

-

Yes

Min UnCut-complete (Lemmas 7.4

and 7.10)

?

No

2CNF?

-

Yes

Min 2CNF Deletion-complete

(Lemmas 7.5 and 7.14)

?

No

A�ne?

-

Yes

Nearest Codeword-complete

(Lemmas 7.6 and 7.15)

?

No

Horn?

-

Yes

Min Horn Deletion-complete

(Lemmas 7.7 and 7.19)

?

No

Not approximable [41]

60



B.4 The Min Ones Classi�cation

F

+

0-valid or weakly negative or

width-2 a�ne?

-

Yes

in PO (Lemma 8.4)

?

No

2CNF or IHS?

-

Yes

APX-complete (Lemmas 8.5 and

8.16)

?

No

A�ne?

-

Yes

Nearest Codeword-complete

(Lemmas 8.6 and 8.12)

?

No

Weakly positive?

-

Yes

Min Horn Deletion-complete

(Lemmas 8.7 and 8.14)

?

No

1-valid?

-

Yes

poly-APX-complete (Proposition 8.8

and Lemma 8.9)

?

No

Feasibility is NP-hard [41]

61


