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Abstrat

We desribe a deterministi algorithm that, for onstant k, given a k-DNF or k-

CNF formula ' and a parameter ", runs in time linear in the size of ' and polynomial in

1=" (but doubly exponential in k) and returns an estimate of the fration of satisfying

assignments for ' up to an additive error ". This improves over previous polynomial

(but super-linear) time algorithms. The algorithm uses a simple reursive proedure

and it is not based on derandomization tehniques. It is similar to an algorithm by

Hirsh for the related problem of solving k-SAT under the promise that an "-fration of

the assignments are satisfying. Our analysis is di�erent from (and somewhat simpler

than) Hirsh's.

We also show that every k-CNF is \foolead" by every Æ-biased distribution, with

Æ = 1=2

O(k2

k

)

. A result of Ajtai and Wigderson implied that the same was true with

the weaker bound 1=2

k

O(k

2

)

.

1 Introdution

We onsider the following problem: given a k-CNF formula ' and a parameter ", approx-

imate within an additive error " the fration of satisfying assignments for '.

1

The problem is easy to solve using randomization: just generate O(1="

2

) assignments

at random and then output the fration of assignments in the sample that satis�es ', and

the question is whether eÆient deterministi algorithms exist.

We also onsider the related problem of �nding a satisfying assignment for ' under

the promise that an " fration of assignments are satisfying. Again, we are interested

in deterministi algorithms, and the problem is easy to solve probabilistially, sine after

piking O(1=") assignments at random it is likely that one of them satis�es the formula.

One an onsider the approximate ounting problem as the problem of derandomizing

two-sided error algorithms implemented by depth-two iruits. The problem of �nding

a satisfying assignment for ' under the promise that that there is a large number of

suh assignments an be seen as the problem of derandomizing one-sided error algorithms

implemented by depth-two iruits.

�
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Note that an algorithm ahieving additive approximation " for k-CNF immediately implies an algo-

rithm ahieving the same additive approximation for k-DNF. Also, ahieving multipliative approximation

(1 + ") for k-DNF redues to ahieving additive approximation "2

�k

, sine a satis�able k-DNF is satis�ed

by at least a 1=2

k

fration of assignments.
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These problems were �rst studied by Ajtai and Wigderson [AW89℄. Using deran-

domization tehniques (spei�ally, t-wise independene) they give an algorithm for the

ounting problem running in time O(n

k

2

+ 2

(log(1="))

2

k

) and an algorithm for the satis-

�ability problem running in time O(n

k2

k

log(1=")

). They also give sub-exponential time

algorithm for the ounting problem for funtions omputed by AC

0

iruits.

2

The algorithm of Ajtai and Wigderson for k-CNF ould be improved by using almost t-

wise independent distributions, for example the small bias distributions of [NN93℄, instead

of distributions that are perfetly t-wise independent. For onstant ", this would improve

the running time to roughly n � (log n)

O(1)

� 2

k

O(k

2

)

for both the approximate ounting

problem and the satis�ability problem. Almost t-wise independent distributions were

introdued after the publiation of [AW89℄.

Nisan [Nis91℄ and Nisan and Wigderson [NW94℄ onstrut a pseudorandom genera-

tor that fools onstant-depth iruits and that has poly-logarithmi seed length. As a

onsequene, they ahieve n

(log n)

O(1)

time algorithms for the ounting and satis�ability

problems for AC

0

iruits.

Luby, Velikovi and Wigderson [LVW93℄ optimize the onstrutions of Nisan and

Wigderson [Nis91, NW94℄ to the ase of depth-2 iruits, thus solving the ounting and

satis�ability problem in time n

O((log n)

3

)

for general CNF and DNF. Luby and Velikovi

[LV96℄ show how to redue arbitrary CNF and DNF to formula in a simpli�ed format,

and show that the ounting and satis�ability problems an be solved in polynomial time

for k-CNF even if k = O((log n)

1=8

) is more than a onstant. The redution in [LV96℄

also gives an improved derandomization of general CNF and DNF that runs in slightly

super-polynomial time n

O(2

p

log log n

)

.

Hirsh [Hir98℄ shows how to solve the satis�ability problem for k-CNF in time

O(Lk(2=")

B(k)

), where L � nk is the size of the formula and B(k) is a funtion for

whih a losed formula is not given, but that seems to grow exponentially in k. Hirsh's

algorithm does not use derandomization tehniques.

In this paper, we show how to solve the approximate ounting problem and the satis-

�ability problem in time O(L(1=")

(ln 4)k2

k

).

Our algorithm is based on the following simple observation: given a k-CNF ', then

for every �xed , either we an eÆiently �nd a set of � k variables that hits all the

lauses, or we an eÆiently �nd >  lauses over disjoint sets of variables. In the former

ase, we an try all assignments to those variables, and reurse on eah assignment, thus

reduing our problem to 2

k

problems on (k � 1)-CNF instanes; in the latter ase, less

than a (1 � 1=2

k

)



fration of assignments an satisfy ', and thus 0 is an approximation

within an additive error (1� 1=2

k

)



of the fration of satisfying assignments for '. Fixing

 to be 2

k

ln 1=" gives us the main result.

We also revisit the relation between almost t-wise independent distributions and k-

CNF. Using the same reursive approah adopted in our algorithm, we show that every

k-CNF is well approximated, in a ertain tehnial sense, by a deision tree of depth

t = O(k2

k

), and it is well known that funtions that are well approximated (in the above

tehnial sense) by a deision tree of depth t annot distinguish the uniform distribution

from a distribution that is approximately t-wise independent. This leads to the proof that

no k-CNF an distinguish an approximately O(k2

k

)-wise independent distribution from

2

An AC

0

iruit is a iruit of onstant depth and polynomial size with unbounded fan-in AND and

OR gates. A CNF formula is a depth-two AC

0

iruit, and so is a DNF formula.
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the uniform distribution.

2 The Reursive Algorithm

We desribe the algorithm only for the ase of k-CNF. As disussed in the introdution,

an algorithm for k-DNF is an immediate orollary of the algorithm for k-CNF.

We use the following simple fat.

Lemma 1 There is an algorithm that, on input a k-CNF formula ' and a parameter t,

runs in time linear in the size of ' and then it returns either a set of t lauses over disjoint

sets of variables, or a set S of at most k(t � 1) variables suh that every lause in the

formula ontains at least one variable from S.

Proof: (Sketh) Consider the k-uniform hypergraphH that has a vertex for every variable

and an hyperedge for every lause. It is easy to �nd a maximal mathing in H in linear

time, that is, a set S of lauses over disjoint sets of variables and suh that every other

lause in ' shares some variables with some lause in S. If jSj � t, then we return t of

the lauses in S. Otherwise, we return the set of � k � jSj � k(t� 1) variables that our

in the lauses of S. Suh a set of variables learly \hits" all the lauses of '. 2

The algorithm works as follows: given ' and ",

� If ' is a 1-CNF, that is, it is just an AND of literals, then we output 0 if there are

two inonsistent literals and 2

�

where  is the number of distint literals, otherwise.

This proedure is exat and an be implemented in linear time.

� Otherwise, we let t be the smallest integer suh that (1 � 1=2

k

)

t+1

< ", so that

t � 2

k

(ln 1="), and we run the algorithm of Lemma 1 on ' with parameter t+ 1.

{ If the algorithm of Lemma 1 �nds t+ 1 lauses C

1

; : : : ; C

t+1

over disjoint sets

of variables, then it is lear that the probability that ' is satis�ed by random

assignment is at most ", and we return the value 0 as our approximation.

{ If the algorithm of Lemma 1 �nds a set V of at most tk � k2

k

ln(1=") variables

that hit all the lauses, then, for every assignment a to the variables V , de�ne

'

a

to be the formula obtained from ' by substituting the assigment into the

variables. Note that '

a

is a (k � 1)-CNF formula. We reurse on eah of the

'

a

with parameter ", and take the average of the results. Assuming that eah

reursive all returns an " additive approximation, the algorithm returns an "

additive approximation.

If we denote by T (L; k) the running time of the algorithm for a k-CNF instane of size

L, then we have

T (L; 1) = O(L)

and

T (L; k) � O(L) + 2

k(ln(1="))2

k

T (L; k � 1)

whih solves to T (L; k) = O(L � 2

2k(ln 1=")2

k

) = O(L(1=")

(ln 4)k2

k

).

For the promise problem of �nding a satisfying assignment under the promise that an

" fration of assignments are satis�able, we essentially use the same reursive algorithm.
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When we are down to 1-CNF, we �nd a satisfying assignment or fail if the instane is

unsatis�able. (Indeed, we an stop at 2-CNF.) In the reursive step, we fail if t is suh

that (1� 1=2

k

)

t

< ". The analysis of the running time is the same, and it is lear that at

least one of the reursive branhes produes a satisfying assignment.

Hirsh's algorithm is similar to the above sketh of the algorithm for the satis�ability

promise problem, exept that a di�erent greedy strategy is used to pik the variables in

V . The analysis is slightly di�erent and somewhat more diÆult.

3 Pseudorandomness Against k-CNF Formulae

3.1 Some Tehnial Preliminaries

We begin this setion with a few tehnial de�nitions.

We denote by U

n

the uniform distribution over f0; 1g

n

. If f : f0; 1g

n

! f0; 1g is a

funtion and X is a distribution over f0; 1g

n

, then we say that X "-fools f if

jPr[f(U

n

) = 1℄�Pr[f(X) = 1℄j � "

If F is a olletion of funtions, then we say that a distribution X "-fools F if X "-fools

every funtion f 2 F .

Our goal will be to �nd a distributionX that "-fools the lass of k-CNF formulae over n

variables, and that is uniform over an eÆiently onstrutable support of polynomial size.

Then, given a k-CNF formula f , we an approximate Pr[f(U

n

) = 1℄ by omputing the

lose value Pr[f(X) = 1℄, and we ompute the latter by enumerating all the polynomially

many elements in the support of X, and applying f() to eah of them. We will show that

"-biased distributions, de�ned below, an be used towards suh goal.

We say that a distribution X over f0; 1g

n

is "-biased [NN93℄ if for every subset S �

f1; : : : ; ng we have

1

2

� " � Pr

"

M

i2S

x

i

= 1

#

�

1

2

+ "

Equivalently, we an say that a distribution is "-biased if it "-fools every linear funtion.

(Where, of ourse, we mean linear over the �eld GF (2).)

Theorem 2 ([NN93, AGHP92℄) For every ", and n, there is an "-biased distribution

over f0; 1g

n

that is uniform over a support of size polynomial in n and 1=". Furthermore,

the support an be onstruted in time polynomial in n and 1=".

We say that a distribution X = (X

1

� � �X

n

) over f0; 1g

n

, where eah X

i

is unbiased, is

k-wise independent if every k of the random variables X

1

; : : : ;X

n

are mutually indepen-

dent. Equivalently, a distribution is k-wise independent if it 0-fools the lass of funtions

that depend only on k or fewer input variables.

We say that X is "-lose to k-wise independent if for every funtion g : f0; 1g

n

! f0; 1g

that depends on k or fewer inputs we have

jPr[g(U

n

) = 1℄�Pr[g(X) = 1℄j � "

that is, if X "-fools the lass of funtions that depend on at most k inputs.
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We say that X is "-lose to k-wise independent in `

1

norm if for every t � k, for every

t indies i

1

; : : : ; i

t

in f1; : : : ; ng and for every t values a

1

; : : : ; a

t

2 f0; 1g we have

1

2

t

� " � Pr[X

i

1

= a

1

^ � � � ^X

i

t

= a

t

℄ �

1

2

t

+ "

that is, if X "-fools the lass of funtions that an be expressed as heking that a subset

of at most k bits of the input equals a partiular sequene of values.

The following onnetion between the notions that we have desribed is well known.

Lemma 3 Let X be an "-biased distribution over f0; 1g

n

. Then, for every k, X is " �2

k=2

-

lose to k-wise independent, and also 2"-lose to k-wise independent in `

1

norm.

3.2 "-Biased Distribution and k-CNF Fomulae

The main result of this setion is the following theorem.

Theorem 4 There are funtions t(k; ") = O(k � 2

k

� log(1=")) and Æ(k; ") =

1=2

O(k�2

k

�log(1="))

suh that the following happens.

Let f : f0; 1g

n

! f0; 1g be a funtion de�ned by a k-CNF formula and let X be

a distribution over f0; 1g

n

that is Æ(k; ")-lose to t(k; ")-wise independent in `

1

norm.

Then X "-fools f .

The appliation of Theorem 4 to "-biased distributions is immediate.

Corollary 5 There is a funtion Æ

0

(k; ") = 1=2

O(k�2

k

�log(1="))

suh that if X is a Æ

0

(k; ")-

biased distributions, then X "-fools every funtion omputed by a k-CNF formula.

The rest of this setion is devoted to the proof of Theorem 4.

Let f : f0; 1g

n

! f0; 1g be a funtion de�ned by a k-CNF formula ' over variables

x

1

; : : : ; x

n

, and onsider a deision tree over the variables x

1

; : : : ; x

n

. Every leaf of the

deision tree (indeed, every node of the deision tree) de�nes a restrition, that is, an

assignment to a subset of the variables x

1

; : : : ; x

n

. If a leaf v is at distane t from the

root, then it de�nes an assignment to t variables; if we pik a random assignment and

then apply the deision tree to it, there is a probability 1=2

t

that we reah the leaf v. In

general, for a vertex v at distane t from the root we de�ne the probability of v to be 1=2

t

,

and for a set of verties suh that none of them is an anestor of any other we de�ne the

probability of the set as the sum of the probabilities of the individual verties.

Lemma 6 Let f : f0; 1g

n

! f0; 1g be the funtion de�ned by a k-CNF formula ' and

" > 0. Let t be an integer suh that (1 � 1=2

k

)

t

� ". Then there is a deision tree of

depth at most tk suh that: either (i) all the leaves de�ne restritions relative to whih f

is a onstant, or (ii) all the leaves, exept possibly a set of probability at most ", de�ne

restritions relative to whih ' beomes a (k � 1)-CNF.

Proof: We apply Lemma 1 to ' with parameter t. Then we either �nd t lauses over

disjoint variables or k(t� 1) variables that hit all the lauses.

In the former ase, onsider the deision tree that reads all the � kt variables that

our in the t lauses. All but an " fration of the leafs of the deision tree orrespond to

restritions relative to whih ' is zero, and, in partiular, is onstant.

5



In the latter ase, onsider the deision tree that reads all the � kt variables returned

by the algorithm. All the leafes of the deision tree orrespond to restritions relative to

whih ' is a (k � 1)-CNF. 2

We now ompose the onstrution.

Lemma 7 There is a funtion t(k; ") = O(k2

k

ln(1=")) suh that for every f : f0; 1g

n

!

f0; 1g de�ned by a k-CNF formula and for every " > 0 there is a deision tree of depth at

most t(k; ") suh that all the leaves, exept possibly a subset of probability ", orrespond to

a restrition relative to whih f is a onstant.

Proof: We prove the theorem by indution. Lemma 6 proves the theorem for k = 1 and

t(1; ") = log

2

1=". For general k, start by onstruting the deision tree for f as in Lemma

6. If all but an " fration of the leaves of the tree make f beome a onstant, then we

are done. Otherwise, every leaf of the tree de�nes a restrition relative to whih f is a

(k � 1)-CNF, and we an apply the indution hypothesis to get deision trees for eah of

these (k � 1)-CNF.

This argument proves the theorem for every funtion t() that satis�es t(1; ") = log

2

1="

and t(k; ") � k2

k

ln(1=") + t(k � 1; "). In partiular, the theorem is true for t(k; ") =

2k2

k

ln(1="). 2

To prove Theorem 4 we now only need the following simple last step, whih is well

known.

Lemma 8 Let f : f0; 1g

n

! f0; 1g be a funtion and T be a deision tree of depth t suh

that all but an " fration of the leaves of T de�ne a restrition relative to whih f is a

onstant. Let X be a distribution that is Æ-lose to t-wise independent in `

1

norm. Then

jPr[f(U

n

) = 1℄�Pr[f(X) = 1℄j � "+ Æ � 2

t

Proof: We may assume withouth loss of generality that T has 2

t

leaves, all at distane

t from the root. (Otherwise, from leaves that are loser to the root, we read additional

variables until we reah distane t. This does not hange the properties of T assumed in

the Lemma.) Let S be the set of leaves of T that de�ne a restrition relative to whih f

is the onstant 1. Then we have

Pr[f(U

n

) = 1℄ �

jSj

2

t

+ "

If we sample an assignment aording to X, we see that for eah leaf of T there is a

probability at least 1=2

t

� Æ that the assignment is onsistent with the leaf. In eah of

these event, f evaluates to one and, moreover, all these events are disjoint. We dedue

Pr[f(X) = 1℄ �

jZj

2

t

� Æ � jZj

and

Pr[f(U

n

) = 1℄�Pr[f(X) = 1℄ � "+ Æ � 2

t

Similarly, we an prove

Pr[f(X) = 1℄�Pr[f(U

n

) = 1℄ � "+ Æ � 2

t

2

Ajtai and Wigderson [AW89℄ prove a result that is similar to Lemma 7 but that has a

weaker appliation to "-biased distributions.

6



Theorem 9 ([AW89℄) There is a onstant " > 0 and a funtion t(k) = k

O(k

2

)

) suh that

the following is true. For every k-CNF funtion f there is a subset V of t(k) variables of

f suh that, if we pik at random a restrition to the variables in V , there is a probability

at least 1� " that f is a onstant relative to the restrition.

Our result, like the result of Ajtai and Wigderson, de�nes a distribution over restri-

tions suh that with high probability the resulting restrition makes f onstant. In our

proof, the restrition assigns values to O(k2

k

) variables, in the result of Ajtai and Wigder-

son the restrition assigns values to k

O(k

2

)

variables.

4 Perspetive

The urrent body of work on derandomization (see [Kab02℄ for a survey) strongly suggests

that every problem (inluding searh problems and promise problems) that is solvable

probabilistially in polynomial time an also be solved deterministially in polynomial

time. It is then a natural researh program to look for deterministi polynomial time

algorithms for all the interesting problems for whih only probabilisti polynomial time

algorithms are known.

After the disovery of a deterministi polynomial time algorithm for testing primality

[AKS02℄, the most interesting algorithms to derandomize are now the identity test for

low-degree polynomials and the approximate ounting algorithms based on the Markov-

Chain Monte-Carlo approah. Kabanets and Impagliazzo [KI03℄ show that derandomizing

the polynomial identity test algorithm for general arithmeti iruits implies the proof of

iruit lower bounds that may be beyond our urrent proof tehniques. It is not lear

whether there are similar inherent diÆulties in derandomizing approximate ounting

algorithms suh as, say, the Permanent approximation algorithm of [JSV01℄.

The problem of approximately ounting the number of satisfying assignments for a

given iruit up to a small additive error is learly preisely the same problem as de-

randomizing every promise-BPP problem. (In partiular, suh an approximate ounting

algorithm would imply that NEXP 6� P=poly.) It seems possible, however, to derandom-

ize at least bounded-depth iruits, and, at the very least, depth-two iruits in polynomial

time using urrent tehniques. In this paper we note that a speial ase of this problem

an be solved by a simple divide-and-onquer algorithm, without using derandomization

tehniques. We also presented some improvement to the appliation of derandomization

tehniques to the problem.

Referenes

[AGHP92℄ N. Alon, O. Goldreih, J. H�astad, and R. Peralta. Simple onstrutions of

almost k-wise independent random variables. Random Strutures and Algo-

rithms, 3(3):289{304, 1992.

[AKS02℄ Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in P.

Manusript, 2002.

[AW89℄ Miklos Ajtai and Avi Wigderson. Deterministi simulation of probabilisti

onstand-depth iruits. Advanes in Computing Researh - Randomness and

Computation, 5:199{223, 1989. Preliminary version in Pro. of FOCS'85.

7



[Hir98℄ Edward A. Hirsh. A fast deterministi algorithm for formulas that have many

satisfying assignments. Journal of the IGPL, 6(1):59{71, 1998.

[JSV01℄ M. Jerrum, A. Sinlair, and E. Vigoda. A polynomial time approximation algo-

rithm for the permanent of a matrix with non-negative entries. In Proeedings

of the 33rd ACM Symposium on Theory of Computing, pages 712{721, 2001.

[Kab02℄ Valentine Kabanets. Derandomization: A brief overview. Bulletin of the Eu-

ropean Assoiation for Theoretial Computer Siene, 76:88{103, 2002.

[KI03℄ Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial iden-

tity tests means proving iruit lower bounds. In Proeedings of the 35th ACM

Symposium on Theory of Computing, pages 355{364, 2003.

[LV96℄ Mihael Luby and Boban Velikovi. On deterministi approximation of DNF.

Algorithmia, 16(4/5):415{ 433, 1996.

[LVW93℄ Mihael Luby, Boban Velikovi, and Avi Wigderson. Deterministi approx-

imate ounting of depth-2 iruits. In Proeedings of the 2nd ISTCS, pages

18{24, 1993.

[Nis91℄ N. Nisan. Pseudorandom bits for onstant depth iruits. Combinatoria,

12(4):63{70, 1991.

[NN93℄ J. Naor and M. Naor. Small-bias probability spaes: eÆient onstrutions

and appliations. SIAM Journal on Computing, 22(4):838{856, 1993.

[NW94℄ N. Nisan and A. Wigderson. Hardness vs randomness. Journal of Com-

puter and System Sienes, 49:149{167, 1994. Preliminary version in Pro.

of FOCS'88.

8


