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Abstra
t

We des
ribe a deterministi
 algorithm that, for 
onstant k, given a k-DNF or k-

CNF formula ' and a parameter ", runs in time linear in the size of ' and polynomial in

1=" (but doubly exponential in k) and returns an estimate of the fra
tion of satisfying

assignments for ' up to an additive error ". This improves over previous polynomial

(but super-linear) time algorithms. The algorithm uses a simple re
ursive pro
edure

and it is not based on derandomization te
hniques. It is similar to an algorithm by

Hirs
h for the related problem of solving k-SAT under the promise that an "-fra
tion of

the assignments are satisfying. Our analysis is di�erent from (and somewhat simpler

than) Hirs
h's.

We also show that every k-CNF is \foolead" by every Æ-biased distribution, with

Æ = 1=2

O(k2

k

)

. A result of Ajtai and Wigderson implied that the same was true with

the weaker bound 1=2

k

O(k

2

)

.

1 Introdu
tion

We 
onsider the following problem: given a k-CNF formula ' and a parameter ", approx-

imate within an additive error " the fra
tion of satisfying assignments for '.

1

The problem is easy to solve using randomization: just generate O(1="

2

) assignments

at random and then output the fra
tion of assignments in the sample that satis�es ', and

the question is whether eÆ
ient deterministi
 algorithms exist.

We also 
onsider the related problem of �nding a satisfying assignment for ' under

the promise that an " fra
tion of assignments are satisfying. Again, we are interested

in deterministi
 algorithms, and the problem is easy to solve probabilisti
ally, sin
e after

pi
king O(1=") assignments at random it is likely that one of them satis�es the formula.

One 
an 
onsider the approximate 
ounting problem as the problem of derandomizing

two-sided error algorithms implemented by depth-two 
ir
uits. The problem of �nding

a satisfying assignment for ' under the promise that that there is a large number of

su
h assignments 
an be seen as the problem of derandomizing one-sided error algorithms

implemented by depth-two 
ir
uits.
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Note that an algorithm a
hieving additive approximation " for k-CNF immediately implies an algo-

rithm a
hieving the same additive approximation for k-DNF. Also, a
hieving multipli
ative approximation

(1 + ") for k-DNF redu
es to a
hieving additive approximation "2

�k

, sin
e a satis�able k-DNF is satis�ed

by at least a 1=2

k

fra
tion of assignments.
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These problems were �rst studied by Ajtai and Wigderson [AW89℄. Using deran-

domization te
hniques (spe
i�
ally, t-wise independen
e) they give an algorithm for the


ounting problem running in time O(n

k

2

+ 2

(log(1="))

2

k

) and an algorithm for the satis-

�ability problem running in time O(n

k2

k

log(1=")

). They also give sub-exponential time

algorithm for the 
ounting problem for fun
tions 
omputed by AC

0


ir
uits.

2

The algorithm of Ajtai and Wigderson for k-CNF 
ould be improved by using almost t-

wise independent distributions, for example the small bias distributions of [NN93℄, instead

of distributions that are perfe
tly t-wise independent. For 
onstant ", this would improve

the running time to roughly n � (log n)

O(1)

� 2

k

O(k

2

)

for both the approximate 
ounting

problem and the satis�ability problem. Almost t-wise independent distributions were

introdu
ed after the publi
ation of [AW89℄.

Nisan [Nis91℄ and Nisan and Wigderson [NW94℄ 
onstru
t a pseudorandom genera-

tor that fools 
onstant-depth 
ir
uits and that has poly-logarithmi
 seed length. As a


onsequen
e, they a
hieve n

(log n)

O(1)

time algorithms for the 
ounting and satis�ability

problems for AC

0


ir
uits.

Luby, Veli
kovi
 and Wigderson [LVW93℄ optimize the 
onstru
tions of Nisan and

Wigderson [Nis91, NW94℄ to the 
ase of depth-2 
ir
uits, thus solving the 
ounting and

satis�ability problem in time n

O((log n)

3

)

for general CNF and DNF. Luby and Veli
kovi


[LV96℄ show how to redu
e arbitrary CNF and DNF to formula in a simpli�ed format,

and show that the 
ounting and satis�ability problems 
an be solved in polynomial time

for k-CNF even if k = O((log n)

1=8

) is more than a 
onstant. The redu
tion in [LV96℄

also gives an improved derandomization of general CNF and DNF that runs in slightly

super-polynomial time n

O(2

p

log log n

)

.

Hirs
h [Hir98℄ shows how to solve the satis�ability problem for k-CNF in time

O(Lk(2=")

B(k)

), where L � nk is the size of the formula and B(k) is a fun
tion for

whi
h a 
losed formula is not given, but that seems to grow exponentially in k. Hirs
h's

algorithm does not use derandomization te
hniques.

In this paper, we show how to solve the approximate 
ounting problem and the satis-

�ability problem in time O(L(1=")

(ln 4)k2

k

).

Our algorithm is based on the following simple observation: given a k-CNF ', then

for every �xed 
, either we 
an eÆ
iently �nd a set of � k
 variables that hits all the


lauses, or we 
an eÆ
iently �nd > 
 
lauses over disjoint sets of variables. In the former


ase, we 
an try all assignments to those variables, and re
urse on ea
h assignment, thus

redu
ing our problem to 2

k


problems on (k � 1)-CNF instan
es; in the latter 
ase, less

than a (1 � 1=2

k

)




fra
tion of assignments 
an satisfy ', and thus 0 is an approximation

within an additive error (1� 1=2

k

)




of the fra
tion of satisfying assignments for '. Fixing


 to be 2

k

ln 1=" gives us the main result.

We also revisit the relation between almost t-wise independent distributions and k-

CNF. Using the same re
ursive approa
h adopted in our algorithm, we show that every

k-CNF is well approximated, in a 
ertain te
hni
al sense, by a de
ision tree of depth

t = O(k2

k

), and it is well known that fun
tions that are well approximated (in the above

te
hni
al sense) by a de
ision tree of depth t 
annot distinguish the uniform distribution

from a distribution that is approximately t-wise independent. This leads to the proof that

no k-CNF 
an distinguish an approximately O(k2

k

)-wise independent distribution from

2

An AC

0


ir
uit is a 
ir
uit of 
onstant depth and polynomial size with unbounded fan-in AND and

OR gates. A CNF formula is a depth-two AC

0


ir
uit, and so is a DNF formula.

2



the uniform distribution.

2 The Re
ursive Algorithm

We des
ribe the algorithm only for the 
ase of k-CNF. As dis
ussed in the introdu
tion,

an algorithm for k-DNF is an immediate 
orollary of the algorithm for k-CNF.

We use the following simple fa
t.

Lemma 1 There is an algorithm that, on input a k-CNF formula ' and a parameter t,

runs in time linear in the size of ' and then it returns either a set of t 
lauses over disjoint

sets of variables, or a set S of at most k(t � 1) variables su
h that every 
lause in the

formula 
ontains at least one variable from S.

Proof: (Sket
h) Consider the k-uniform hypergraphH that has a vertex for every variable

and an hyperedge for every 
lause. It is easy to �nd a maximal mat
hing in H in linear

time, that is, a set S of 
lauses over disjoint sets of variables and su
h that every other


lause in ' shares some variables with some 
lause in S. If jSj � t, then we return t of

the 
lauses in S. Otherwise, we return the set of � k � jSj � k(t� 1) variables that o

ur

in the 
lauses of S. Su
h a set of variables 
learly \hits" all the 
lauses of '. 2

The algorithm works as follows: given ' and ",

� If ' is a 1-CNF, that is, it is just an AND of literals, then we output 0 if there are

two in
onsistent literals and 2

�


where 
 is the number of distin
t literals, otherwise.

This pro
edure is exa
t and 
an be implemented in linear time.

� Otherwise, we let t be the smallest integer su
h that (1 � 1=2

k

)

t+1

< ", so that

t � 2

k

(ln 1="), and we run the algorithm of Lemma 1 on ' with parameter t+ 1.

{ If the algorithm of Lemma 1 �nds t+ 1 
lauses C

1

; : : : ; C

t+1

over disjoint sets

of variables, then it is 
lear that the probability that ' is satis�ed by random

assignment is at most ", and we return the value 0 as our approximation.

{ If the algorithm of Lemma 1 �nds a set V of at most tk � k2

k

ln(1=") variables

that hit all the 
lauses, then, for every assignment a to the variables V , de�ne

'

a

to be the formula obtained from ' by substituting the assigment into the

variables. Note that '

a

is a (k � 1)-CNF formula. We re
urse on ea
h of the

'

a

with parameter ", and take the average of the results. Assuming that ea
h

re
ursive 
all returns an " additive approximation, the algorithm returns an "

additive approximation.

If we denote by T (L; k) the running time of the algorithm for a k-CNF instan
e of size

L, then we have

T (L; 1) = O(L)

and

T (L; k) � O(L) + 2

k(ln(1="))2

k

T (L; k � 1)

whi
h solves to T (L; k) = O(L � 2

2k(ln 1=")2

k

) = O(L(1=")

(ln 4)k2

k

).

For the promise problem of �nding a satisfying assignment under the promise that an

" fra
tion of assignments are satis�able, we essentially use the same re
ursive algorithm.
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When we are down to 1-CNF, we �nd a satisfying assignment or fail if the instan
e is

unsatis�able. (Indeed, we 
an stop at 2-CNF.) In the re
ursive step, we fail if t is su
h

that (1� 1=2

k

)

t

< ". The analysis of the running time is the same, and it is 
lear that at

least one of the re
ursive bran
hes produ
es a satisfying assignment.

Hirs
h's algorithm is similar to the above sket
h of the algorithm for the satis�ability

promise problem, ex
ept that a di�erent greedy strategy is used to pi
k the variables in

V . The analysis is slightly di�erent and somewhat more diÆ
ult.

3 Pseudorandomness Against k-CNF Formulae

3.1 Some Te
hni
al Preliminaries

We begin this se
tion with a few te
hni
al de�nitions.

We denote by U

n

the uniform distribution over f0; 1g

n

. If f : f0; 1g

n

! f0; 1g is a

fun
tion and X is a distribution over f0; 1g

n

, then we say that X "-fools f if

jPr[f(U

n

) = 1℄�Pr[f(X) = 1℄j � "

If F is a 
olle
tion of fun
tions, then we say that a distribution X "-fools F if X "-fools

every fun
tion f 2 F .

Our goal will be to �nd a distributionX that "-fools the 
lass of k-CNF formulae over n

variables, and that is uniform over an eÆ
iently 
onstru
table support of polynomial size.

Then, given a k-CNF formula f , we 
an approximate Pr[f(U

n

) = 1℄ by 
omputing the


lose value Pr[f(X) = 1℄, and we 
ompute the latter by enumerating all the polynomially

many elements in the support of X, and applying f() to ea
h of them. We will show that

"-biased distributions, de�ned below, 
an be used towards su
h goal.

We say that a distribution X over f0; 1g

n

is "-biased [NN93℄ if for every subset S �

f1; : : : ; ng we have

1

2

� " � Pr

"

M

i2S

x

i

= 1

#

�

1

2

+ "

Equivalently, we 
an say that a distribution is "-biased if it "-fools every linear fun
tion.

(Where, of 
ourse, we mean linear over the �eld GF (2).)

Theorem 2 ([NN93, AGHP92℄) For every ", and n, there is an "-biased distribution

over f0; 1g

n

that is uniform over a support of size polynomial in n and 1=". Furthermore,

the support 
an be 
onstru
ted in time polynomial in n and 1=".

We say that a distribution X = (X

1

� � �X

n

) over f0; 1g

n

, where ea
h X

i

is unbiased, is

k-wise independent if every k of the random variables X

1

; : : : ;X

n

are mutually indepen-

dent. Equivalently, a distribution is k-wise independent if it 0-fools the 
lass of fun
tions

that depend only on k or fewer input variables.

We say that X is "-
lose to k-wise independent if for every fun
tion g : f0; 1g

n

! f0; 1g

that depends on k or fewer inputs we have

jPr[g(U

n

) = 1℄�Pr[g(X) = 1℄j � "

that is, if X "-fools the 
lass of fun
tions that depend on at most k inputs.
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We say that X is "-
lose to k-wise independent in `

1

norm if for every t � k, for every

t indi
es i

1

; : : : ; i

t

in f1; : : : ; ng and for every t values a

1

; : : : ; a

t

2 f0; 1g we have

1

2

t

� " � Pr[X

i

1

= a

1

^ � � � ^X

i

t

= a

t

℄ �

1

2

t

+ "

that is, if X "-fools the 
lass of fun
tions that 
an be expressed as 
he
king that a subset

of at most k bits of the input equals a parti
ular sequen
e of values.

The following 
onne
tion between the notions that we have des
ribed is well known.

Lemma 3 Let X be an "-biased distribution over f0; 1g

n

. Then, for every k, X is " �2

k=2

-


lose to k-wise independent, and also 2"-
lose to k-wise independent in `

1

norm.

3.2 "-Biased Distribution and k-CNF Fomulae

The main result of this se
tion is the following theorem.

Theorem 4 There are fun
tions t(k; ") = O(k � 2

k

� log(1=")) and Æ(k; ") =

1=2

O(k�2

k

�log(1="))

su
h that the following happens.

Let f : f0; 1g

n

! f0; 1g be a fun
tion de�ned by a k-CNF formula and let X be

a distribution over f0; 1g

n

that is Æ(k; ")-
lose to t(k; ")-wise independent in `

1

norm.

Then X "-fools f .

The appli
ation of Theorem 4 to "-biased distributions is immediate.

Corollary 5 There is a fun
tion Æ

0

(k; ") = 1=2

O(k�2

k

�log(1="))

su
h that if X is a Æ

0

(k; ")-

biased distributions, then X "-fools every fun
tion 
omputed by a k-CNF formula.

The rest of this se
tion is devoted to the proof of Theorem 4.

Let f : f0; 1g

n

! f0; 1g be a fun
tion de�ned by a k-CNF formula ' over variables

x

1

; : : : ; x

n

, and 
onsider a de
ision tree over the variables x

1

; : : : ; x

n

. Every leaf of the

de
ision tree (indeed, every node of the de
ision tree) de�nes a restri
tion, that is, an

assignment to a subset of the variables x

1

; : : : ; x

n

. If a leaf v is at distan
e t from the

root, then it de�nes an assignment to t variables; if we pi
k a random assignment and

then apply the de
ision tree to it, there is a probability 1=2

t

that we rea
h the leaf v. In

general, for a vertex v at distan
e t from the root we de�ne the probability of v to be 1=2

t

,

and for a set of verti
es su
h that none of them is an an
estor of any other we de�ne the

probability of the set as the sum of the probabilities of the individual verti
es.

Lemma 6 Let f : f0; 1g

n

! f0; 1g be the fun
tion de�ned by a k-CNF formula ' and

" > 0. Let t be an integer su
h that (1 � 1=2

k

)

t

� ". Then there is a de
ision tree of

depth at most tk su
h that: either (i) all the leaves de�ne restri
tions relative to whi
h f

is a 
onstant, or (ii) all the leaves, ex
ept possibly a set of probability at most ", de�ne

restri
tions relative to whi
h ' be
omes a (k � 1)-CNF.

Proof: We apply Lemma 1 to ' with parameter t. Then we either �nd t 
lauses over

disjoint variables or k(t� 1) variables that hit all the 
lauses.

In the former 
ase, 
onsider the de
ision tree that reads all the � kt variables that

o

ur in the t 
lauses. All but an " fra
tion of the leafs of the de
ision tree 
orrespond to

restri
tions relative to whi
h ' is zero, and, in parti
ular, is 
onstant.
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In the latter 
ase, 
onsider the de
ision tree that reads all the � kt variables returned

by the algorithm. All the leafes of the de
ision tree 
orrespond to restri
tions relative to

whi
h ' is a (k � 1)-CNF. 2

We now 
ompose the 
onstru
tion.

Lemma 7 There is a fun
tion t(k; ") = O(k2

k

ln(1=")) su
h that for every f : f0; 1g

n

!

f0; 1g de�ned by a k-CNF formula and for every " > 0 there is a de
ision tree of depth at

most t(k; ") su
h that all the leaves, ex
ept possibly a subset of probability ", 
orrespond to

a restri
tion relative to whi
h f is a 
onstant.

Proof: We prove the theorem by indu
tion. Lemma 6 proves the theorem for k = 1 and

t(1; ") = log

2

1=". For general k, start by 
onstru
ting the de
ision tree for f as in Lemma

6. If all but an " fra
tion of the leaves of the tree make f be
ome a 
onstant, then we

are done. Otherwise, every leaf of the tree de�nes a restri
tion relative to whi
h f is a

(k � 1)-CNF, and we 
an apply the indu
tion hypothesis to get de
ision trees for ea
h of

these (k � 1)-CNF.

This argument proves the theorem for every fun
tion t() that satis�es t(1; ") = log

2

1="

and t(k; ") � k2

k

ln(1=") + t(k � 1; "). In parti
ular, the theorem is true for t(k; ") =

2k2

k

ln(1="). 2

To prove Theorem 4 we now only need the following simple last step, whi
h is well

known.

Lemma 8 Let f : f0; 1g

n

! f0; 1g be a fun
tion and T be a de
ision tree of depth t su
h

that all but an " fra
tion of the leaves of T de�ne a restri
tion relative to whi
h f is a


onstant. Let X be a distribution that is Æ-
lose to t-wise independent in `

1

norm. Then

jPr[f(U

n

) = 1℄�Pr[f(X) = 1℄j � "+ Æ � 2

t

Proof: We may assume withouth loss of generality that T has 2

t

leaves, all at distan
e

t from the root. (Otherwise, from leaves that are 
loser to the root, we read additional

variables until we rea
h distan
e t. This does not 
hange the properties of T assumed in

the Lemma.) Let S be the set of leaves of T that de�ne a restri
tion relative to whi
h f

is the 
onstant 1. Then we have

Pr[f(U

n

) = 1℄ �

jSj

2

t

+ "

If we sample an assignment a

ording to X, we see that for ea
h leaf of T there is a

probability at least 1=2

t

� Æ that the assignment is 
onsistent with the leaf. In ea
h of

these event, f evaluates to one and, moreover, all these events are disjoint. We dedu
e

Pr[f(X) = 1℄ �

jZj

2

t

� Æ � jZj

and

Pr[f(U

n

) = 1℄�Pr[f(X) = 1℄ � "+ Æ � 2

t

Similarly, we 
an prove

Pr[f(X) = 1℄�Pr[f(U

n

) = 1℄ � "+ Æ � 2

t

2

Ajtai and Wigderson [AW89℄ prove a result that is similar to Lemma 7 but that has a

weaker appli
ation to "-biased distributions.
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Theorem 9 ([AW89℄) There is a 
onstant " > 0 and a fun
tion t(k) = k

O(k

2

)

) su
h that

the following is true. For every k-CNF fun
tion f there is a subset V of t(k) variables of

f su
h that, if we pi
k at random a restri
tion to the variables in V , there is a probability

at least 1� " that f is a 
onstant relative to the restri
tion.

Our result, like the result of Ajtai and Wigderson, de�nes a distribution over restri
-

tions su
h that with high probability the resulting restri
tion makes f 
onstant. In our

proof, the restri
tion assigns values to O(k2

k

) variables, in the result of Ajtai and Wigder-

son the restri
tion assigns values to k

O(k

2

)

variables.

4 Perspe
tive

The 
urrent body of work on derandomization (see [Kab02℄ for a survey) strongly suggests

that every problem (in
luding sear
h problems and promise problems) that is solvable

probabilisti
ally in polynomial time 
an also be solved deterministi
ally in polynomial

time. It is then a natural resear
h program to look for deterministi
 polynomial time

algorithms for all the interesting problems for whi
h only probabilisti
 polynomial time

algorithms are known.

After the dis
overy of a deterministi
 polynomial time algorithm for testing primality

[AKS02℄, the most interesting algorithms to derandomize are now the identity test for

low-degree polynomials and the approximate 
ounting algorithms based on the Markov-

Chain Monte-Carlo approa
h. Kabanets and Impagliazzo [KI03℄ show that derandomizing

the polynomial identity test algorithm for general arithmeti
 
ir
uits implies the proof of


ir
uit lower bounds that may be beyond our 
urrent proof te
hniques. It is not 
lear

whether there are similar inherent diÆ
ulties in derandomizing approximate 
ounting

algorithms su
h as, say, the Permanent approximation algorithm of [JSV01℄.

The problem of approximately 
ounting the number of satisfying assignments for a

given 
ir
uit up to a small additive error is 
learly pre
isely the same problem as de-

randomizing every promise-BPP problem. (In parti
ular, su
h an approximate 
ounting

algorithm would imply that NEXP 6� P=poly.) It seems possible, however, to derandom-

ize at least bounded-depth 
ir
uits, and, at the very least, depth-two 
ir
uits in polynomial

time using 
urrent te
hniques. In this paper we note that a spe
ial 
ase of this problem


an be solved by a simple divide-and-
onquer algorithm, without using derandomization

te
hniques. We also presented some improvement to the appli
ation of derandomization

te
hniques to the problem.
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