Approximating the Minimum Spanning Tree
Weight in Sublinear Time

Bernard Chazelle * Ronitt Rubinfeld Luca Trevisan ¥

Abstract

We present a probabilistic algorithm that, given a connected graph G
(represented by adjacency lists) of maximum degree d, with edge weights
in the set {1,...,w}, and given a parameter 0 < € < 1/2, estimates in
time O(dwe™? log %) the weight of the minimum spanning tree of G with a
relative error of at most €. Note that the running time does not depend on
the number of vertices in G. We also prove a nearly matching lower bound
of Q(dwe™?) on the probe and time complexity of any approximation
algorithm for MST weight.

The essential component of our algorithm is a procedure for estimat-
ing in time O(de"?loge™!) the number of connected components of an
unweighted graph to within an additive error of en. The time bound
is shown to be tight up to within the loge™" factor. Our connected-
components algorithm picks O(1/¢?) vertices in the graph and then grows
“local spanning trees” whose sizes are specified by a stochastic process.
From the local information collected in this way, the algorithm is able
to infer, with high confidence, an estimate of the number of connected
components. We then show how estimates on the number of components
in various subgraphs of G' can be used to estimate the weight of its MST.

1 Introduction

Traditionally, a linear time algorithm has been held as the gold standard of
efficiency. In a wide variety of settings, however, large data sets have become
increasingly common, and it is often desirable and sometimes necessary to find
very fast algorithms which can assert nontrivial properties of the data in sub-
linear time.

One direction of research that has been suggested is that of property test-
ing [15, 8], which relaxes the standard notion of a decision problem. Property
testing algorithms distinguish between inputs that have a certain property and

*chazelle@cs.princeton.edu. Princeton University and NEC Research Institute, Prince-
ton, NJ. Part of this research was supported by NSF grant CCR-99817 and ARO Grant
DAAHO04-96-1-0181.

fronitt@research.nj .nec.com. NEC Research Institute, Princeton, NJ.

fluca@eecs.berkeley.edu. U.C. Berkeley, Berkeley, CA.

those that are far (in terms of Hamming distance, or some other natural dis-
tance) from having the property. Sublinear and even constant time algorithms
have been designed for testing various algebraic and combinatorial properties
(see [14] for a survey). Property testing can be viewed as a natural type of ap-
proximation problem and, in fact, many of the property testers have led to very
fast, even constant time, approximation schemes for the associated problem (cf.
[8, 6, 7, 1]). For example, one can approximate the value of a maximum cut in
a dense graph in time 20(c ™" log 1/¢) | with relative error at most e, by looking at
only O(e~"log1/€) locations in the adjacency matrix [8]. Note that typically
such schemes approximate the value of the optimal solution, here the size of a
maxcut, without computing the structure that achieves it, i.e., the actual cut.
Sometimes, however, a solution can also be constructed in linear or near-linear
time.

In this paper, we consider the problem of finding the weight of the min-
imum spanning tree (MST) of a graph. Finding the MST of a graph has a
long and interesting history [3, 10, 12]. Currently the best known deterministic
algorithm of Chazelle [2] runs in O(ma(m,n)) time, where n (resp. m) is the
number of vertices (resp. edges) and « is inverse-Ackermann, and the random-
ized algorithm of Karger, Klein and Tarjan [11] runs in linear expected time
(see also [5, 13] for alternative models).

In this paper, we show that there are conditions under which it is possible to
approximate the weight of the MST of a connected graph in time sublinear in the
number of edges. We give an algorithm which approximates the MST of a graph
G to within a multiplicative factor of 1+ € and runs in time O(dwe ?log %) for
any G with max degree d and edge weights in the set {1,...,w}. The relative
error € (0 < € < 1/2) is specified as an input parameter. Note that if d and e
are constant and the ratios of the edge weights are bounded, then the algorithm
runs in constant time. We also extend our algorithm to the case where G has
nonintegral weights in the range [1,w], achieving a comparable runtime with a
somewhat worse dependence on €.

Our algorithm considers several auxiliary graphs: If G is the weighted graph,
let us denote by G9 the subgraph of G that contains only edges of weight at
most i. We estimate the number of connected components in each G, To do
so, we sample uniformly at random O(1/€?) vertices in G¥), and then estimate
the size of the component that contains each sampled vertex by constructing
“local trees” of some appropriate size defined by a random process. Based
on information about these local trees, we can produce a good approximation
for the weight of the MST of G. Our algorithm for estimating the number of
connected components in a graph runs in time O(de 2 loge~!) and produces an
estimate that is within an additive error of en of the true count. The method is
based on a similar principle as the property tester for graph connectivity given
by Goldreich and Ron [9].

We give a lower bound of Q(dw/€?) on the time complexity of any algorithm
which approximates the MST weight. In order to prove the lower bound, we give
two distributions on weighted graphs, where the support set of one distribution

contains graphs with MST weight at least 1 + € times the MST weight of the
graphs in the support of the other distribution. We show that any algorithm that
reads o(dw/€?) weights from the input graph is unlikely to distinguish between
graphs from the two distributions. We also prove a lower bound of O(d/e?)
on the running time of any approximation algorithm for counting connected
components.

2 Estimating the Number of Connected Com-
ponents

We begin with the problem of estimating the number of components in an
arbitrary graph G. We present an algorithm which gives an additive estimate
of the number of components in G to within en in O(de=? loge™!) time, for any
0 < e < 1/2. We later show how to use the ideas from our algorithm to aid in
estimating the weight of the MST of a graph.

Let ¢ be the number of connected components in G. Let n, be the number
of vertices in u’s component in G. Our algorithm is built around a simple
observation:

Fact 1 Given a graph with vertex set V, for every connected component [CV,
Zuel % =1 and ZuGV nl—u =c.

Our strategy is to estimate ¢ by approximating each summand 1/n,,. Com-
puting n,, directly can take linear time, so we construct an estimator of the
quantity 1/n, that has the same expected value. We approximate the number
of connected components via the algorithm given in Figure 1. The parameter
W is a threshold value, which is set to 2/e for counting connected components
and somewhat higher for its use in MST weight estimation.

In the algorithm, doubling the number of vertices does not include duplicate
visits to the same vertices; in other words, at each step the number of new
vertices visited is supposed to match the number of vertices already visited. In
our terminology, the first step of the BFS (shorthand for breadth first search)
involves the visit of the single vertex w;. We now bound the expectation and
variance of the estimator f; for a fixed ¢. If the BFS from w; completes, the
number of coin flips associated with it is [logn,;| and the number of distinct
vertices visited is n,;. Let S denote the set of vertices in components of size
< W. If u; ¢ S, then 3; = 0; otherwise, it is 2[1°8"u:1/p,, . with probability
2~ Mognw; 1 and 0 otherwise. Since §; < 2, the variance of ; is:

. 2 1 2
varf; <Ef} <2Ef =~y — < .
Wies w1

Then the variance of ¢ is bounded by

2nc

2
. n n
varc:var(;;ﬁi):T—2-r-varﬁi§7. (1)

approx-number-connected-components(G, €, W)

uniformly choose 7 = O(1/€e?) vertices uy,...,u,
for each vertex u;,
set 5, =0

take the first step of a BFS from u;
() flip a coin
if heads and number of vertices visited in BFS < W
then resume BFS to double number of visited vertices
if this allows BFS to complete
then set f3; = 2#coinflivs /dyertices visited in BFS
else go to (*)

output ¢= 1 Sy B

Figure 1: Estimating the number of connected components

Since the number of components with vertices not in S is at most n/W, we have
that

n . 1
C—WSEC:Z—<C.

u€eS M
If we set W = 2/e, then
c— % <Eé¢<ec (2)
and, by Chebyshev,
Probl|é — B¢ > en/2] < VC o 8¢ 3)

(en/2)? — €rn’

Choosing r = O(1/€?) ensures that with constant probability arbitrarily
close to 1, our estimate ¢ of the number of connected components deviates from
the actual value by at most en.

The expected number of vertices visited in a given execution of the “for
loop” is O(log W), and each newly visited vertex incurs a cost of O(d), so the
algorithm runs in expected time O(de 2 logW). For our setting of W, this is
O(de 2loge™!). As stated, the algorithm’s running time is randomized. How-
ever, one can get a deterministic running time bound by stopping the algorithm
after Cde 2loge™! steps and outputting 0 if the algorithm has not yet termi-
nated. This event occurs with probability at most O(1/C'), which is a negligible
addition to the error probability. Thus we have the following theorem:

Theorem 2 Let ¢ be the number of components in a graph with n vertices. Then
Algorithm approx-number-connected-components runs in time O(de=?loge™?)
and with probability at least 3/4 outputs ¢ such that |c — ¢| < en.

We can improve the running time to O((e 4+ ¢/n)de? loge!), which is much
better for small values of c¢. First, run the algorithm for r = O(1/e). By
Chebyshev and (1, 2),

Ec+en < 8nc < 8n
2 r(c+en/2)? = r(c+en/2)’

which is arbitrarily small for re large enough. Next, we use this approximation
¢ to “improve” the value of r. We set r = A/e + Aé/(*n) for some large
enough constant A and we run the algorithm again, with the effect of producing
a second estimate ¢*. By (2, 3),

Prob| ¢ —E¢| >

8c 16¢ 16
Prob||¢* — B ¢* 2 < <
roblle” =B > en/2] < F S o AR S A

and so with overwhelming probability, our second estimate ¢* of the number of
connected components deviates from ¢ by at most en. The running time of this
new algorithm is O((e + ¢/n)de ?loge1).

3 Approximating the Weight of an MST

In this section we present an algorithm for approximating the value of the MST
in bounded weight graphs. We are given a connected graph G with maximum
degree d and with each edge is assigned an integer weight between 1 and w.
We assume that G is represented by adjacency lists or, for that matter, any
representation that allows one to access all edges incident to a given vertex in
O(d) time. We show how to approximate the weight of the minimum spanning
tree of G with a relative error of at most e.

In Section 3.1 we give a new way to characterize the weight of the MST in
terms of the number of connected components in subgraphs of G. In Section
3.2 we give the main algorithm and its analysis. Finally, Section 3.3 addresses
how to extend the algorithm to the case where G' has nonintegral weights.

3.1 MST Weight and Connected Components

We reduce the computation of the MST weight to counting connected compo-
nents in various subgraphs of G. To motivate the new characterization, consider
the special case when G has only edges of weight 1 or 2 (i.e., w = 2). Let G(!)
be the subgraph of G consisting precisely of the edges of weight 1, and let n;
be its number of connected components. Then, any MST in G must contain
exactly ny — 1 edges of weight 2, with all the others being of weight 1. Thus,
the weight of the MST is exactly n —2+n;. We easily generalize this derivation
to any w.

For each 0 < ¢ < w, let G denote the subgraph of G consisting of all the
edges of weight at most £. Define ¢(© to be the number of connected components
in G (with c(®) defined to be n). By our assumption on the weights, cw =1,
Let M(G) be the weight of the minimum spanning tree of G. Using the above
quantities, we give an alternate way of computing the value of M (G):

approx-MST-weight(G, ¢)
For i=1,...,w—1
¢ = approx-number-connected-components(G¥, ¢, 2w /¢)
output ¥ =n —w + YU el

Figure 2: Approximating the weight of the MST
Claim 3 For integer w > 2,
w—1
M(G) :n—w—}—Zc(z).
i=1

Proof: Let «; be the number of edges of weight ¢ in an MST of G. (Note that «;
is independent of which MST we choose [4].) Observe that for all0 < ¢ < w—1,
D X = el — 1, therefore

w w—1 w w—1 w—1
EEDITED M) SETEEED SPLEVEES 3
=1 =0 i=(+1 (=0 i—1

Thus, computing the number of connected components allows us to compute
the weight of the MST of G.

3.2 The Main Algorithm

Our algorithm approximates the value of the MST by estimating each of the
¢’s. The algorithm is given in Figure 2.

Theorem 4 Let v be the weight of the MST of G. Algorithm approx-mst-weight
runs in time O(dwe? log) and outputs a value 0 that, with probability at least
3/4, differs from v by at most cv.

Proof: Let c = Z;‘;l ¢, Since we call approx-number-connected-components
with parameter W = 2w/e, (1, 2) become

W — o < Eé® <) and var é(%) < 2net?
2w T

By summing over 4, it follows that ¢ — en/2 < E¢ < ¢ and varé < 2nc/r.
Choosing re? large enough, by Chebyshev we have

18nc

Prob[|¢ — Eé| > (n — i —w o2
rob[[¢ —E¢[> (n —w +c)e/3] < re2(n —w + c)?’

which is arbitrarily small since we may assume that w/n is sufficiently small
(else we might as well compute the MST explicitly, which can be done in O(dn)
time [11]). It follows that, with high probability, the error on the estimate
satisfies
[v—10] =]c—¢ < E—H—f—w < ev.
2 3

Since the expected running time of each call to approx-number-connected-compo-
nents is O(dr logw/e), the total running time is O(dwe * log ¥). As before, the
running time can be made deterministic by stopping execution of the algorithm
after Cdwe? log ¢ steps for some appropriately chosen constant C. O

3.3 Nonintegral Weights

Suppose the weights of G are all in the range [1,w], but are not necessarily
integral. To extend the algorithm to this case, one can multiply all the weights
by 1/e and round each weight to the nearest integer. Then one can run the
above algorithm with error parameter ¢/2 and with a new range of weights
[1, [w/€]] to get a value v. Finally, output ev. The relative error introduced by
the rounding is at most €/2 per edge in the MST, and hence ¢/2 for the whole
MST, which gives a total relative error of at most €. The runtime of the above
algorithm is O(dwe? log £).

4 Lower Bounds

We prove that our algorithms for estimating the MST weight and counting
connected components are essentially optimal.

Theorem 5 Any probabilistic algorithm for approximating, with relative er-
ror €, the MST weight of a connected graph with max degree d and weights in
{1,...,w} requires Q(dwe?) edge weight lookups on average. It is assumed that
w>1 and Cy/w/n < e <1/2, for some large enough constant C.

We can obviously assume that w > 1, otherwise the MST weight is always
n — 1 and no work is required. The lower bound on ¢ is nonrestrictive since
we can always compute the MST exactly in O(dn) time, which is O(dwe™?) for

e =0(y/w/n).

Theorem 6 Given a graph with n vertices, any probabilistic algorithm for ap-
proximating the number of connected components with an additive error of en
requires Q(de?) edge lookups on average. It is assumed that C/\/n <e < 1/2,
for some large enough constant C'.

Again, note that the lower bound on ¢ is nonrestrictive since we can always
solve the problem exactly in O(dn) time.

Both proofs revolve around the difficulty of distinguishing between two
nearby distributions. For any 0 < ¢ < 1/2 and s = 0,1, let D; denote the

distribution induced by setting a 0/1 random variable to 1 with probability
gs = q(1 + (—1)%ec). We define a distribution D on n-bit strings as follows: (1)
pick s = 1 with probability 1/2 (and 0 else); (2) then draw a random string
from D; (by choosing each b; from Dj independently). Consider a probabilistic
algorithm that, given access to such a random bit string, outputs an estimate
on the value of s. How well can it do?

Lemma 7 Any probabilistic algorithm that can guess the value of s with a prob-
ability of error below 1/4 requires Q(e~2/q) bit lookups on average.

Proof: By Yao’s minimax principle, we may assume that the algorithm is
deterministic and that the input is distributed according to D. It is intuitively
obvious that any algorithm might as well scan bibs - - until it decides it has
seen enough to produce an estimate of s. In other words, there is no need to be
adaptive in the choice of bit indices to probe (but the running time itself can
be adaptive). To see why is easy. An algorithm can be modeled as a binary
tree with a bit index at each node and a 0/1 label at each edge. An adaptive
algorithm may have an arbitrary set of bit indices at the nodes, although we
can assume that the same index does not appear twice along any path. Each
leaf is naturally associated with a probability, which is that of a random input
from D following the path to that leaf. The performance of the algorithm is
entirely determined by these probabilities and the corresponding estimates of s.
Because of the independence of the random b;’s, we can relabel the tree so that
each path is a prefix of the same sequence of bit probes b;bs - - . This oblivious
algorithm has the same performance as the adaptive one.

We can go one step further and assume that the running time is the same for

all inputs. Let t* be the expected number of probes, and let 0 < a < 1 be a small

constant. With probability at most «, a random input takes time > £ 9o 4 /a.

Suppose that the prefix of bits examined by the algorithm is by -+ - b,. If u < ¢,
simply go on probing by1 - -+ b; without changing the outcome. If u > t, then
stop at by and output s = 1. Thus, by adding « to the probability of error, we
can assume that the algorithm consists of looking up by - - - by regardless of the
input string.

Let pg(by - -- by) be the probability that a random ¢-bit string chosen from
Dy is equal to by - - - by. The probability of error satisfies

Perr 2> 5 min ps(bl T bt)
s

Obviously, ps(by - - - b;) depends only on the number of ones in the string, so if
ps(k) denotes the probability that by + --- + b, = k, then

t

1 .
Perr Z 5 ; msln ps(k)' (4)

By the normal approximation of the binomial distribution,

—tqs)?
ps(k) — ; e 25];s(t1q*t)zs) ,
27tqs(1 — gs)

as t — oo. This shows that ps(k) = Q(1/+/gt) over an interval I, of length
Q(y/qt) centered at tgs. If gte? is smaller than a suitable constant o, then
|tgo — tqi| is small enough that Iy N I; is itself an interval of length Q(\/qt);
therefore perr = 2(1). This shows that if the algorithm runs in expected time
y0e 2 /q, for some constant v > 0 small enough, then it will fail with probability
at least some absolute constant. By setting a small enough, we can make that
constant larger than 2«. This means that, prior to uniformizing the running
time, the algorithm must still fail with probability «.

Note that by choosing o small enough, we can always assume that o > 1/4.
Indeed, suppose by contradiction that even for an extremely small -7, there is
an algorithm that runs in time at most ;6 2/q and fails with probability < 1/4.
Then run the algorithm many times and take a majority vote. In this way we
can bring the failure probability below « for a suitable v; = v1(,v) < Y0, and
therefore reach a contradiction. This means that an expected time lower than
€72?/q by a large enough constant factor causes a probability of error at least
1/4. O

Proof (Theorem 6): Consider the graph G consisting of a simple cycle of n

vertices vy, ...,v,. Pick s € {0,1} at random and take a random n-bit string
by -+ - b, with bits drawn independently from D] /2 Next, remove from G any

edge (vi,Vi+1 modn) if b; = 0. Because € > C/+/n, the standard deviation of
the number of components, which is ©(y/n), is sufficiently smaller than en so
that with overwhelming probability any two graphs derived from D(l) /2 and D% /2
differ by more than en/2 in their numbers of connected components. That
means that any probabilistic algorithm that estimates the number of connected
components with an additive error of en/2 can be used to identify the correct
s. By Lemma, 7, this requires Q(¢~2) edge probes into G on average. Replacing
€ by 2e proves Theorem 6 for graphs of degree d = 2. For arbitrary d, we may
simply add d — 2 loops to each vertex. Each linked list thus consists of two
“cycle” pointers and d — 2 “loop” ones. If we place the cycle pointers at random
among the loop ones, then it takes £2(d) probes on average to hit a cycle pointer.
If we single out the probes involving cycle pointers, it is not hard to argue that
the probes involving cycle pointers are, alone, sufficient to solve the connected
components problem on the graph deprived of its loops: one expects at most
O(T'/d) such probes and therefore T' = Q(de~?). O

Proof (Theorem 5): Again we begin with the case d = 2. The input graph G
is a simple path of n vertices. Pick s € {0,1} at random and take a random
(n — 1)-bit string by ---b,—1 with bits drawn independently from Dy, where
g = 1/w. Assign weight w (resp. 1) to the i-th edge along the path if b; =1
(resp. 0). The MST of G has weight n —1+ (w—1) Y b;, and so its expectation
is ©(n). Also, note that the difference A in expectations between drawing from
DY or Dy is O(en).

Because € > C'y/w/n, the standard deviation of the MST weight, which is
O©(y/nw), is sufficiently smaller than A that with overwhelming probability any

two graphs derived from DY and D} differ by more than A/2 in MST weight.
Therefore, any probabilistic algorithm that estimates the weight with a relative
error of €/D, for some large enough constant D, can be used to identify the
correct s. By Lemma 7, this means that Q(we=2) probes into G are required
on average.

For d > 2, simply join each vertex in the cycle to d — 2 others (say, at
distance > 2 to avoid introducing multiple edges) and, as usual, randomize the
ordering in each linked list. Assign weight w + 1 to the new edges. (Allowing
the maximum weight to be w + 1 instead of w has no influence on the lower
bound we are aiming for.) Clearly none of the new edges are used in the MST,
so the problem is the same as before, except that we now have to find our way
amidst d — 2 spurious edges, which takes the complexity to Q(dwe~?2). O

5 Open Questions

It is natural to ask what can be done if the max degree restriction is lifted. We
have made some progress on the case of graphs of bounded mean degree. Our
algorithm for the case of nonintegral weights requires extra time. Is this nec-
essary? Can the ideas in this paper be extended to finding maximum weighted
independent sets in general matroids? There are now a small number of exam-
ples of approximation problems that can be solved in sublinear time; what other
problems lend themselves to sublinear approximation schemes? More generally,
it would be interesting to gain a more global understanding of what can and
cannot be approximated in sublinear time.

References

[1] Alon, N., Dar, S., Parnas, M., Ron, D., Testing of clustering, Proc. FOCS,
2000.

[2] Chazelle, B., A minimum spanning tree algorithm with inverse-Ackermann
type complexity, J. ACM, 47 (2000), 1028-1047.

[3] Chazelle, B., The Discrepancy Method: Randomness and Complexity, Cam-
bridge University Press, 2000.

[4] Eppstein, D., Representing all minimum spanning trees with applications
to counting and generation, Tech. Rep. 95-50, ICS, UCI, 1995.

[5] Fredman, M.L., Willard, D.E. Trans-dichotomous algorithms for minimum
spanning trees and shortest paths, J. Comput. and System Sci., 48 (1993),
424-436.

[6] Frieze, A., Kannan, R. Quick approzimation to matrices and applications,
Combinatorica, 19 (1999).

10

[7]

[13]

[14]

[15]

Frieze, A., Kannan, R., Vempala, S., Fast monte-carlo algorithms for find-
ing low-rank approzimations, Proc. 39th FOCS (1998).

Goldreich, O., Goldwasser, S., Ron, D., Property testing and its connection
to learning and approximation, Proc. 37th FOCS (1996), 339-348.

Goldreich, O., Ron, D., Property testing in bounded degree graphs, Proc.
29th STOC (1997), 406-415.

Graham, R.L., Hell, P. On the history of the minimum spanning tree prob-
lem, Ann. Hist. Comput. 7 (1985), 43-57.

Karger, D.R., Klein, P.N, Tarjan, R.E., A randomized linear-time algorithm
to find minimum spanning trees, J. ACM, 42 (1995), 321-328.

Nesetiil, J. A few remarks on the history of MST-problem, Archivum Math-
ematicum, Brno 33 (1997), 15-22. Prelim. version in KAM Series, Charles
University, Prague, No. 97-338, 1997.

Pettie, S., Ramachandran, V. An optimal minimum spanning tree algo-
rithm, Proc. 27th ICALP (2000).

Ron, D., Property testing (a tutorial), to appear in “Handbook on Ran-
domization.”

Rubinfeld, R., Sudan, M., Robust characterizations of polynomials with
applications to program testing, SIAM J. Comput. 25 (1996), 252-271.

11

