
Approximating the Minimum Spanning Tree

Weight in Sublinear Time

Bernard Chazelle

�

Ronitt Rubinfeld

y

Lu
a Trevisan

z

Abstra
t

We present a probabilisti
 algorithm that, given a
onne
ted graph G

(represented by adja
en
y lists) of maximum degree d, with edge weights

in the set f1; : : : ; wg, and given a parameter 0 < " < 1=2, estimates in

time O(dw�

�2

log

w

�

) the weight of the minimum spanning tree of G with a

relative error of at most ". Note that the running time does not depend on

the number of verti
es in G. We also prove a nearly mat
hing lower bound

of
(dw�

�2

) on the probe and time
omplexity of any approximation

algorithm for MST weight.

The essential
omponent of our algorithm is a pro
edure for estimat-

ing in time O(d"

�2

log "

�1

) the number of
onne
ted
omponents of an

unweighted graph to within an additive error of �n. The time bound

is shown to be tight up to within the log "

�1

fa
tor. Our
onne
ted-

omponents algorithm pi
ks O(1=�

2

) verti
es in the graph and then grows

\lo
al spanning trees" whose sizes are spe
i�ed by a sto
hasti
 pro
ess.

From the lo
al information
olle
ted in this way, the algorithm is able

to infer, with high
on�den
e, an estimate of the number of
onne
ted

omponents. We then show how estimates on the number of
omponents

in various subgraphs of G
an be used to estimate the weight of its MST.

1 Introdu
tion

Traditionally, a linear time algorithm has been held as the gold standard of

eÆ
ien
y. In a wide variety of settings, however, large data sets have be
ome

in
reasingly
ommon, and it is often desirable and sometimes ne
essary to �nd

very fast algorithms whi
h
an assert nontrivial properties of the data in sub-

linear time.

One dire
tion of resear
h that has been suggested is that of property test-

ing [15, 8℄, whi
h relaxes the standard notion of a de
ision problem. Property

testing algorithms distinguish between inputs that have a
ertain property and

�

hazelle�
s.prin
eton.edu. Prin
eton University and NEC Resear
h Institute, Prin
e-

ton, NJ. Part of this resear
h was supported by NSF grant CCR-99817 and ARO Grant

DAAH04-96-1-0181.

y

ronitt�resear
h.nj.ne
.
om. NEC Resear
h Institute, Prin
eton, NJ.

z

lu
a�ee
s.berkeley.edu. U.C. Berkeley, Berkeley, CA.

1

those that are far (in terms of Hamming distan
e, or some other natural dis-

tan
e) from having the property. Sublinear and even
onstant time algorithms

have been designed for testing various algebrai
 and
ombinatorial properties

(see [14℄ for a survey). Property testing
an be viewed as a natural type of ap-

proximation problem and, in fa
t, many of the property testers have led to very

fast, even
onstant time, approximation s
hemes for the asso
iated problem (
f.

[8, 6, 7, 1℄). For example, one
an approximate the value of a maximum
ut in

a dense graph in time 2

O(�

�3

log 1=�)

, with relative error at most ", by looking at

only O(�

�7

log 1=�) lo
ations in the adja
en
y matrix [8℄. Note that typi
ally

su
h s
hemes approximate the value of the optimal solution, here the size of a

max
ut, without
omputing the stru
ture that a
hieves it, i.e., the a
tual
ut.

Sometimes, however, a solution
an also be
onstru
ted in linear or near-linear

time.

In this paper, we
onsider the problem of �nding the weight of the min-

imum spanning tree (MST) of a graph. Finding the MST of a graph has a

long and interesting history [3, 10, 12℄. Currently the best known deterministi

algorithm of Chazelle [2℄ runs in O(m�(m;n)) time, where n (resp. m) is the

number of verti
es (resp. edges) and � is inverse-A
kermann, and the random-

ized algorithm of Karger, Klein and Tarjan [11℄ runs in linear expe
ted time

(see also [5, 13℄ for alternative models).

In this paper, we show that there are
onditions under whi
h it is possible to

approximate the weight of the MST of a
onne
ted graph in time sublinear in the

number of edges. We give an algorithm whi
h approximates the MST of a graph

G to within a multipli
ative fa
tor of 1+ � and runs in time O(dw�

�2

log

w

�

) for

any G with max degree d and edge weights in the set f1; : : : ; wg. The relative

error " (0 < " < 1=2) is spe
i�ed as an input parameter. Note that if d and "

are
onstant and the ratios of the edge weights are bounded, then the algorithm

runs in
onstant time. We also extend our algorithm to the
ase where G has

nonintegral weights in the range [1; w℄, a
hieving a
omparable runtime with a

somewhat worse dependen
e on �.

Our algorithm
onsiders several auxiliary graphs: If G is the weighted graph,

let us denote by G

(i)

the subgraph of G that
ontains only edges of weight at

most i. We estimate the number of
onne
ted
omponents in ea
h G

(i)

. To do

so, we sample uniformly at random O(1=�

2

) verti
es in G

(i)

, and then estimate

the size of the
omponent that
ontains ea
h sampled vertex by
onstru
ting

\lo
al trees" of some appropriate size de�ned by a random pro
ess. Based

on information about these lo
al trees, we
an produ
e a good approximation

for the weight of the MST of G. Our algorithm for estimating the number of

onne
ted
omponents in a graph runs in time O(d"

�2

log "

�1

) and produ
es an

estimate that is within an additive error of �n of the true
ount. The method is

based on a similar prin
iple as the property tester for graph
onne
tivity given

by Goldrei
h and Ron [9℄.

We give a lower bound of
(dw=�

2

) on the time
omplexity of any algorithm

whi
h approximates the MST weight. In order to prove the lower bound, we give

two distributions on weighted graphs, where the support set of one distribution

2

ontains graphs with MST weight at least 1 + � times the MST weight of the

graphs in the support of the other distribution. We show that any algorithm that

reads o(dw=�

2

) weights from the input graph is unlikely to distinguish between

graphs from the two distributions. We also prove a lower bound of O(d="

2

)

on the running time of any approximation algorithm for
ounting
onne
ted

omponents.

2 Estimating the Number of Conne
ted Com-

ponents

We begin with the problem of estimating the number of
omponents in an

arbitrary graph G. We present an algorithm whi
h gives an additive estimate

of the number of
omponents in G to within �n in O(d�

�2

log �

�1

) time, for any

0 < " < 1=2. We later show how to use the ideas from our algorithm to aid in

estimating the weight of the MST of a graph.

Let
 be the number of
onne
ted
omponents in G. Let n

u

be the number

of verti
es in u's
omponent in G. Our algorithm is built around a simple

observation:

Fa
t 1 Given a graph with vertex set V , for every
onne
ted
omponent I � V ,

P

u2I

1

n

u

= 1 and

P

u2V

1

n

u

=
.

Our strategy is to estimate
 by approximating ea
h summand 1=n

u

. Com-

puting n

u

dire
tly
an take linear time, so we
onstru
t an estimator of the

quantity 1=n

u

that has the same expe
ted value. We approximate the number

of
onne
ted
omponents via the algorithm given in Figure 1. The parameter

W is a threshold value, whi
h is set to 2=" for
ounting
onne
ted
omponents

and somewhat higher for its use in MST weight estimation.

In the algorithm, doubling the number of verti
es does not in
lude dupli
ate

visits to the same verti
es; in other words, at ea
h step the number of new

verti
es visited is supposed to mat
h the number of verti
es already visited. In

our terminology, the �rst step of the BFS (shorthand for breadth �rst sear
h)

involves the visit of the single vertex u

i

. We now bound the expe
tation and

varian
e of the estimator �

i

for a �xed i. If the BFS from u

i

ompletes, the

number of
oin
ips asso
iated with it is dlogn

u

i

e and the number of distin
t

verti
es visited is n

u

i

. Let S denote the set of verti
es in
omponents of size

< W . If u

i

62 S, then �

i

= 0; otherwise, it is 2

dlogn

u

i

e

=n

u

i

with probability

2

�dlogn

u

i

e

and 0 otherwise. Sin
e �

i

< 2, the varian
e of �

i

is:

var�

i

� E�

2

i

� 2E�

i

=

2

n

X

u2S

1

n

u

�

2

n

:

Then the varian
e of
̂ is bounded by

var
̂ = var

�

n

r

X

i

�

i

�

=

n

2

r

2

� r � var �

i

�

2n

r

: (1)

3

approx-number-
onne
ted-
omponents(G; �;W)

uniformly
hoose r = O(1=�

2

) verti
es u

1

; : : : ; u

r

for ea
h vertex u

i

,

set �

i

= 0

take the first step of a BFS from u

i

(*) flip a
oin

if heads and number of verti
es visited in BFS < W

then resume BFS to double number of visited verti
es

if this allows BFS to
omplete

then set �

i

= 2

#
oinflips

=#verti
es visited in BFS

else go to (*)

output
̂ =

n

r

P

r

i=1

�

i

Figure 1: Estimating the number of
onne
ted
omponents

Sin
e the number of
omponents with verti
es not in S is at most n=W , we have

that

�

n

W

� E
̂ =

X

u2S

1

n

u

�
 :

If we set W = 2=�, then

�

�n

2

� E
̂ �
 (2)

and, by Chebyshev,

Prob[j
̂�E
̂j > �n=2 ℄ <

var
̂

(�n=2)

2

�

8

�

2

rn

: (3)

Choosing r = O(1=�

2

) ensures that with
onstant probability arbitrarily

lose to 1, our estimate
̂ of the number of
onne
ted
omponents deviates from

the a
tual value by at most �n.

The expe
ted number of verti
es visited in a given exe
ution of the \for

loop" is O(logW), and ea
h newly visited vertex in
urs a
ost of O(d), so the

algorithm runs in expe
ted time O(d�

�2

logW). For our setting of W , this is

O(d�

�2

log �

�1

). As stated, the algorithm's running time is randomized. How-

ever, one
an get a deterministi
 running time bound by stopping the algorithm

after Cd�

�2

log �

�1

steps and outputting 0 if the algorithm has not yet termi-

nated. This event o

urs with probability at most O(1=C), whi
h is a negligible

addition to the error probability. Thus we have the following theorem:

Theorem 2 Let
 be the number of
omponents in a graph with n verti
es. Then

Algorithm approx-number-
onne
ted-
omponents runs in time O(d�

�2

log �

�1

)

and with probability at least 3=4 outputs
̂ su
h that j
�
̂j � �n.

4

We
an improve the running time to O(("+
=n)d�

�2

log �

�1

), whi
h is mu
h

better for small values of
. First, run the algorithm for r = O(1="). By

Chebyshev and (1, 2),

Prob

h

j
̂�E
̂j >

E
̂+ �n

2

i

<

8n

r(
 + "n=2)

2

�

8n

r(
+ �n=2)

;

whi
h is arbitrarily small for r" large enough. Next, we use this approximation

̂ to \improve" the value of r. We set r = A=" + A
̂=("

2

n) for some large

enough
onstant A and we run the algorithm again, with the e�e
t of produ
ing

a se
ond estimate

�

. By (2, 3),

Prob[j

�

�E

�

j > �n=2 ℄ <

8

�

2

rn

�

16

A"n+AE
̂

�

16

A

;

and so with overwhelming probability, our se
ond estimate

�

of the number of

onne
ted
omponents deviates from
 by at most �n. The running time of this

new algorithm is O((" +
=n)d�

�2

log �

�1

).

3 Approximating the Weight of an MST

In this se
tion we present an algorithm for approximating the value of the MST

in bounded weight graphs. We are given a
onne
ted graph G with maximum

degree d and with ea
h edge is assigned an integer weight between 1 and w.

We assume that G is represented by adja
en
y lists or, for that matter, any

representation that allows one to a

ess all edges in
ident to a given vertex in

O(d) time. We show how to approximate the weight of the minimum spanning

tree of G with a relative error of at most �.

In Se
tion 3.1 we give a new way to
hara
terize the weight of the MST in

terms of the number of
onne
ted
omponents in subgraphs of G. In Se
tion

3.2 we give the main algorithm and its analysis. Finally, Se
tion 3.3 addresses

how to extend the algorithm to the
ase where G has nonintegral weights.

3.1 MST Weight and Conne
ted Components

We redu
e the
omputation of the MST weight to
ounting
onne
ted
ompo-

nents in various subgraphs of G. To motivate the new
hara
terization,
onsider

the spe
ial
ase when G has only edges of weight 1 or 2 (i.e., w = 2). Let G

(1)

be the subgraph of G
onsisting pre
isely of the edges of weight 1, and let n

1

be its number of
onne
ted
omponents. Then, any MST in G must
ontain

exa
tly n

1

� 1 edges of weight 2, with all the others being of weight 1. Thus,

the weight of the MST is exa
tly n�2+n

1

. We easily generalize this derivation

to any w.

For ea
h 0 � ` � w, let G

(`)

denote the subgraph of G
onsisting of all the

edges of weight at most `. De�ne

(`)

to be the number of
onne
ted
omponents

in G

(`)

(with

(0)

de�ned to be n). By our assumption on the weights,

(w)

= 1.

Let M(G) be the weight of the minimum spanning tree of G. Using the above

quantities, we give an alternate way of
omputing the value of M(G):

5

approx-MST-weight(G; �)

For i = 1; : : : ; w � 1

̂

(i)

= approx-number-
onne
ted-
omponents(G

(i)

; �; 2w=�)

output v̂ = n� w +

P

w�1

i=1

̂

(i)

Figure 2: Approximating the weight of the MST

Claim 3 For integer w � 2,

M(G) = n� w +

w�1

X

i=1

(i)

:

Proof: Let �

i

be the number of edges of weight i in an MST of G. (Note that �

i

is independent of whi
h MST we
hoose [4℄.) Observe that for all 0 � ` � w�1,

P

i>`

�

i

=

(`)

� 1, therefore

M(G) =

w

X

i=1

i�

i

=

w�1

X

`=0

w

X

i=`+1

�

i

= �w +

w�1

X

`=0

(`)

= n� w +

w�1

X

i=1

(i)

:

2

Thus,
omputing the number of
onne
ted
omponents allows us to
ompute

the weight of the MST of G.

3.2 The Main Algorithm

Our algorithm approximates the value of the MST by estimating ea
h of the

(`)

's. The algorithm is given in Figure 2.

Theorem 4 Let v be the weight of the MST of G. Algorithm approx-mst-weight

runs in time O(dw�

�2

log

w

�

) and outputs a value v̂ that, with probability at least

3/4, di�ers from v by at most "v.

Proof: Let
 =

P

w�1

i=1

(i)

. Sin
e we
all approx-number-
onne
ted-
omponents

with parameter W = 2w=�, (1, 2) be
ome

(i)

�

�n

2w

� E
̂

(i)

�

(i)

and var
̂

(i)

�

2n

(i)

r

:

By summing over i, it follows that
 � �n=2 � E
̂ �
 and var
̂ � 2n
=r.

Choosing r�

2

large enough, by Chebyshev we have

Prob[j
̂�E
̂j > (n� w +
)�=3 ℄ <

18n

r�

2

(n� w +
)

2

;

6

whi
h is arbitrarily small sin
e we may assume that w=n is suÆ
iently small

(else we might as well
ompute the MST expli
itly, whi
h
an be done in O(dn)

time [11℄). It follows that, with high probability, the error on the estimate

satis�es

jv � v̂j = j
�
̂j �

"n

2

+

"(n� w +
)

3

� "v:

Sin
e the expe
ted running time of ea
h
all to approx-number-
onne
ted-
ompo-

nents is O(dr logw=�), the total running time is O(dw�

�2

log

w

�

). As before, the

running time
an be made deterministi
 by stopping exe
ution of the algorithm

after Cdw�

�2

log

w

�

steps for some appropriately
hosen
onstant C. 2

3.3 Nonintegral Weights

Suppose the weights of G are all in the range [1; w℄, but are not ne
essarily

integral. To extend the algorithm to this
ase, one
an multiply all the weights

by 1=� and round ea
h weight to the nearest integer. Then one
an run the

above algorithm with error parameter �=2 and with a new range of weights

[1; dw=�e℄ to get a value v. Finally, output �v. The relative error introdu
ed by

the rounding is at most �=2 per edge in the MST, and hen
e "=2 for the whole

MST, whi
h gives a total relative error of at most ". The runtime of the above

algorithm is O(dw�

�3

log

w

"

).

4 Lower Bounds

We prove that our algorithms for estimating the MST weight and
ounting

onne
ted
omponents are essentially optimal.

Theorem 5 Any probabilisti
 algorithm for approximating, with relative er-

ror ", the MST weight of a
onne
ted graph with max degree d and weights in

f1; : : : ; wg requires
(dw�

�2

) edge weight lookups on average. It is assumed that

w > 1 and C

p

w=n < " < 1=2, for some large enough
onstant C.

We
an obviously assume that w > 1, otherwise the MST weight is always

n � 1 and no work is required. The lower bound on " is nonrestri
tive sin
e

we
an always
ompute the MST exa
tly in O(dn) time, whi
h is O(dw�

�2

) for

" = O(

p

w=n).

Theorem 6 Given a graph with n verti
es, any probabilisti
 algorithm for ap-

proximating the number of
onne
ted
omponents with an additive error of "n

requires
(d�

�2

) edge lookups on average. It is assumed that C=

p

n < " < 1=2,

for some large enough
onstant C.

Again, note that the lower bound on " is nonrestri
tive sin
e we
an always

solve the problem exa
tly in O(dn) time.

Both proofs revolve around the diÆ
ulty of distinguishing between two

nearby distributions. For any 0 < q < 1=2 and s = 0; 1, let D

s

q

denote the

7

distribution indu
ed by setting a 0/1 random variable to 1 with probability

q

s

= q(1 + (�1)

s

"). We de�ne a distribution D on n-bit strings as follows: (1)

pi
k s = 1 with probability 1=2 (and 0 else); (2) then draw a random string

from D

s

q

(by
hoosing ea
h b

i

from D

s

q

independently). Consider a probabilisti

algorithm that, given a

ess to su
h a random bit string, outputs an estimate

on the value of s. How well
an it do?

Lemma 7 Any probabilisti
 algorithm that
an guess the value of s with a prob-

ability of error below 1=4 requires
("

�2

=q) bit lookups on average.

Proof: By Yao's minimax prin
iple, we may assume that the algorithm is

deterministi
 and that the input is distributed a

ording to D. It is intuitively

obvious that any algorithm might as well s
an b

1

b

2

� � � until it de
ides it has

seen enough to produ
e an estimate of s. In other words, there is no need to be

adaptive in the
hoi
e of bit indi
es to probe (but the running time itself
an

be adaptive). To see why is easy. An algorithm
an be modeled as a binary

tree with a bit index at ea
h node and a 0=1 label at ea
h edge. An adaptive

algorithm may have an arbitrary set of bit indi
es at the nodes, although we

an assume that the same index does not appear twi
e along any path. Ea
h

leaf is naturally asso
iated with a probability, whi
h is that of a random input

from D following the path to that leaf. The performan
e of the algorithm is

entirely determined by these probabilities and the
orresponding estimates of s.

Be
ause of the independen
e of the random b

i

's, we
an relabel the tree so that

ea
h path is a pre�x of the same sequen
e of bit probes b

1

b

2

� � �. This oblivious

algorithm has the same performan
e as the adaptive one.

We
an go one step further and assume that the running time is the same for

all inputs. Let t

�

be the expe
ted number of probes, and let 0 < � < 1 be a small

onstant. With probability at most �, a random input takes time � t

def

= t

�

=�.

Suppose that the pre�x of bits examined by the algorithm is b

1

� � � b

u

. If u < t,

simply go on probing b

u+1

� � � b

t

without
hanging the out
ome. If u > t, then

stop at b

t

and output s = 1. Thus, by adding � to the probability of error, we

an assume that the algorithm
onsists of looking up b

1

� � � b

t

regardless of the

input string.

Let p

s

(b

1

� � � b

t

) be the probability that a random t-bit string
hosen from

D

s

q

is equal to b

1

� � � b

t

. The probability of error satis�es

p

err

�

1

2

X

b

1

���b

t

min

s

p

s

(b

1

� � � b

t

):

Obviously, p

s

(b

1

� � � b

t

) depends only on the number of ones in the string, so if

p

s

(k) denotes the probability that b

1

+ � � �+ b

t

= k, then

p

err

�

1

2

t

X

k=0

min

s

p

s

(k): (4)

By the normal approximation of the binomial distribution,

p

s

(k)!

1

p

2�tq

s

(1� q

s

)

e

�

(k�tq

s

)

2

2tq

s

(1�q

s

)

;

8

as t ! 1. This shows that p

s

(k) =
(1=

p

qt) over an interval I

s

of length

(

p

qt)
entered at tq

s

. If qt"

2

is smaller than a suitable
onstant

0

, then

jtq

0

� tq

1

j is small enough that I

0

\ I

1

is itself an interval of length
(

p

qt);

therefore p

err

=
(1). This shows that if the algorithm runs in expe
ted time

0

"

�2

=q, for some
onstant

0

> 0 small enough, then it will fail with probability

at least some absolute
onstant. By setting � small enough, we
an make that

onstant larger than 2�. This means that, prior to uniformizing the running

time, the algorithm must still fail with probability �.

Note that by
hoosing

0

small enough, we
an always assume that � > 1=4.

Indeed, suppose by
ontradi
tion that even for an extremely small

1

, there is

an algorithm that runs in time at most

1

"

�2

=q and fails with probability � 1=4.

Then run the algorithm many times and take a majority vote. In this way we

an bring the failure probability below � for a suitable

1

=

1

(�;

0

) <

0

, and

therefore rea
h a
ontradi
tion. This means that an expe
ted time lower than

"

�2

=q by a large enough
onstant fa
tor
auses a probability of error at least

1=4. 2

Proof (Theorem 6): Consider the graph G
onsisting of a simple
y
le of n

verti
es v

1

; : : : ; v

n

. Pi
k s 2 f0; 1g at random and take a random n-bit string

b

1

� � � b

n

with bits drawn independently from D

s

1=2

. Next, remove from G any

edge (v

i

; v

i+1 mod n

) if b

i

= 0. Be
ause " > C=

p

n, the standard deviation of

the number of
omponents, whi
h is �(

p

n), is suÆ
iently smaller than "n so

that with overwhelming probability any two graphs derived from D

0

1=2

and D

1

1=2

di�er by more than "n=2 in their numbers of
onne
ted
omponents. That

means that any probabilisti
 algorithm that estimates the number of
onne
ted

omponents with an additive error of "n=2
an be used to identify the
orre
t

s. By Lemma 7, this requires
("

�2

) edge probes into G on average. Repla
ing

" by 2" proves Theorem 6 for graphs of degree d = 2. For arbitrary d, we may

simply add d � 2 loops to ea
h vertex. Ea
h linked list thus
onsists of two

\
y
le" pointers and d�2 \loop" ones. If we pla
e the
y
le pointers at random

among the loop ones, then it takes
(d) probes on average to hit a
y
le pointer.

If we single out the probes involving
y
le pointers, it is not hard to argue that

the probes involving
y
le pointers are, alone, suÆ
ient to solve the
onne
ted

omponents problem on the graph deprived of its loops: one expe
ts at most

O(T=d) su
h probes and therefore T =
(d"

�2

). 2

Proof (Theorem 5): Again we begin with the
ase d = 2. The input graph G

is a simple path of n verti
es. Pi
k s 2 f0; 1g at random and take a random

(n � 1)-bit string b

1

� � � b

n�1

with bits drawn independently from D

s

q

, where

q = 1=w. Assign weight w (resp. 1) to the i-th edge along the path if b

i

= 1

(resp. 0). The MST of G has weight n�1+(w�1)

P

b

i

, and so its expe
tation

is �(n). Also, note that the di�eren
e � in expe
tations between drawing from

D

0

q

or D

1

q

is �("n).

Be
ause " > C

p

w=n, the standard deviation of the MST weight, whi
h is

�(

p

nw), is suÆ
iently smaller than � that with overwhelming probability any

9

two graphs derived from D

0

q

and D

1

q

di�er by more than �=2 in MST weight.

Therefore, any probabilisti
 algorithm that estimates the weight with a relative

error of "=D, for some large enough
onstant D,
an be used to identify the

orre
t s. By Lemma 7, this means that
(w"

�2

) probes into G are required

on average.

For d > 2, simply join ea
h vertex in the
y
le to d � 2 others (say, at

distan
e > 2 to avoid introdu
ing multiple edges) and, as usual, randomize the

ordering in ea
h linked list. Assign weight w + 1 to the new edges. (Allowing

the maximum weight to be w + 1 instead of w has no in
uen
e on the lower

bound we are aiming for.) Clearly none of the new edges are used in the MST,

so the problem is the same as before, ex
ept that we now have to �nd our way

amidst d� 2 spurious edges, whi
h takes the
omplexity to
(dw"

�2

). 2

5 Open Questions

It is natural to ask what
an be done if the max degree restri
tion is lifted. We

have made some progress on the
ase of graphs of bounded mean degree. Our

algorithm for the
ase of nonintegral weights requires extra time. Is this ne
-

essary? Can the ideas in this paper be extended to �nding maximum weighted

independent sets in general matroids? There are now a small number of exam-

ples of approximation problems that
an be solved in sublinear time; what other

problems lend themselves to sublinear approximation s
hemes? More generally,

it would be interesting to gain a more global understanding of what
an and

annot be approximated in sublinear time.

Referen
es

[1℄ Alon, N., Dar, S., Parnas, M., Ron, D., Testing of
lustering, Pro
. FOCS,

2000.

[2℄ Chazelle, B., A minimum spanning tree algorithm with inverse-A
kermann

type
omplexity, J. ACM, 47 (2000), 1028{1047.

[3℄ Chazelle, B., The Dis
repan
y Method: Randomness and Complexity, Cam-

bridge University Press, 2000.

[4℄ Eppstein, D., Representing all minimum spanning trees with appli
ations

to
ounting and generation, Te
h. Rep. 95-50, ICS, UCI, 1995.

[5℄ Fredman, M.L., Willard, D.E. Trans-di
hotomous algorithms for minimum

spanning trees and shortest paths, J. Comput. and System S
i., 48 (1993),

424{436.

[6℄ Frieze, A., Kannan, R. Qui
k approximation to matri
es and appli
ations,

Combinatori
a, 19 (1999).

10

[7℄ Frieze, A., Kannan, R., Vempala, S., Fast monte-
arlo algorithms for �nd-

ing low-rank approximations, Pro
. 39th FOCS (1998).

[8℄ Goldrei
h, O., Goldwasser, S., Ron, D., Property testing and its
onne
tion

to learning and approximation, Pro
. 37th FOCS (1996), 339{348.

[9℄ Goldrei
h, O., Ron, D., Property testing in bounded degree graphs, Pro
.

29th STOC (1997), 406{415.

[10℄ Graham, R.L., Hell, P. On the history of the minimum spanning tree prob-

lem, Ann. Hist. Comput. 7 (1985), 43{57.

[11℄ Karger, D.R., Klein, P.N, Tarjan, R.E., A randomized linear-time algorithm

to �nd minimum spanning trees, J. ACM, 42 (1995), 321{328.

[12℄ Ne�set�ril, J. A few remarks on the history of MST-problem, Ar
hivum Math-

emati
um, Brno 33 (1997), 15{22. Prelim. version in KAM Series, Charles

University, Prague, No. 97{338, 1997.

[13℄ Pettie, S., Rama
handran, V. An optimal minimum spanning tree algo-

rithm, Pro
. 27th ICALP (2000).

[14℄ Ron, D., Property testing (a tutorial), to appear in \Handbook on Ran-

domization."

[15℄ Rubinfeld, R., Sudan, M., Robust
hara
terizations of polynomials with

appli
ations to program testing, SIAM J. Comput. 25 (1996), 252{271.

11

