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Abstract computational assumption. Under the existence of one-way

functions we know how to prove the existence of univer-

We present lower bounds on the efficiency of construc-sal one-way hash functions and digital signatures [NY89,
tions for Pseudo-Random Generators (PRGs) and Univer-Rom90], pseudo-random generators [HILL99], pseudo-
sal One-Way Hash Functions (UOWHFs) based on black- random function ensembles [GGM86, HILL99] and com-
box access to one-way permutations. Our lower bounds aremitment schemes [Nao91, HILL99].
tight as they match the efficiency of known constructions. These constructions are very important from a theoret-

A PRG (resp. UOWHF) construction based on black- ical point of view because they are based on the minimal
box access is a machine that is given oracle access to acomplexity assumption required to have cryptography. On
permutation. Whenever the permutation is hard to invert, the other hand, however, their practical impact is very lim-
the construction is hard to break. In this paper we give ited because of their inefficiency. In practice, constautgi
lower bounds on the number of invocations to the oracle by based on stronger assumptions (such as the hardness of a

the construction. specific number-theoretic problem) might be much more at-
If S is the assumed security of the oracle permutation tractive from an efficiency point of view.
« (i.e. no adversary of siz8 can invertr on a fraction This trade-off between the efficiency of a cryptographic

larger than1/S of its inputs) then a PRG (resp. UOWHF) construction and the strength of the complexity assumption
construction that stretches (resp. compresses) its inpétb  on which it relies is one of the most interesting features in
bits must queryr in ¢ = Q(k/ log S) points. This matches modern cryptographic research. Attempts of improving the
known constructions. efficiency of known constructions based on general assump-

Our results are given in an extension of the Impagliazzo- tions have mostly failed. It is thus an interesting queston
Rudich model. That is, we prove that a proof of the existenceask: How efficient can cryptographic constructions be when
of PRG (resp. UOWHF) black-box constructions that beat based on general assumptions?

our lower bound would imply a proof of the unconditional  In this paper we focus on constructions for universal
existence of such construction (which would also indphf one-way hash functions and pseudo-random bit generation
NP). (UOWHF and PRG for short in the following). For these

primitives we provide lower-bounds on the efficiency of
general constructions that match the efficiency of known
1 Introduction schemes. Our lower bounds are expressed in the number of
required invocations of a one-wggermutation(since one-
way permutations ara fortiori also one-way functions our
lower bounds are stronger and clearly hold for functions as
well).

Since the seminal paper by Diffie and Hellman [DH78]
modern cryptography has been based on the concepiesf
way functions Informally a functionf : A — B is one-
way if giveny = f(x) for z chosen at random idl it is
hard to compute any preimage ¢f We do not know if 1.1 Our Results
one-way functions exists (their existence would imply that
P # N P) but there are some candidate functions based on Informally, we say that a one-way permutatian :
number-theoretic problems (like factoring and the diseret {0,1}™ — {0,1}™ has securitysS if any circuit A of size
logarithm) which are widely believed to be one-way. smaller thanS inverts = with probability less thanl/S

In the twenty-plus years since [DH78], one major direc- (for concreteness, one can think $fas a slightly super-
tion of research in cryptography has been to try to constructpolynomial function of:, such as!°&, but our results hold
cryptographic primitives based on the weakest possiblefor any choice ofS). For an integet, we also denote by,



the uniform distribution ovef0, 1}*. assumption which still allows for efficient schemes.

For the case of PRG's, for example, we know that we
can have efficient constructions if we assume the existence
of a one-way function wittf2(n) hard-core bits (an exam-
ple of such a function can be found in [HSS93]). Similarly,
we know that semantically secure encryption can be imple-
mented efficiently with a trapdoor permutation that hides
many bits (none of the “classic” trapdoor permutations has
this property, although recently [CGO00] present some can-
didates based on non-standard number theoretic problems).
But if we look at encryption schemes secure against ac-
tive attacks, we only know how to construct an efficient
scheme based on a specific number-theoretic assumption
(the Cramer-Shoup scheme [CS98] which is based on the
so-called Decisional Diffie-Hellman assumption).

An interesting question is to try to come up with an effi-
cient encryption scheme secure against active attacks base
UNIVERSAL ONE-WAY HASH FUNCTIONS. A UOWHF on a “generic” assumption on trapdoor functions (say a trap-
is a family of length-decreasing functions such that for any door permutation that hide3(n) bits). Another interesting
input z it is hard to find acollision with z for a function question would be to determine a lower bound on the num-
chosen randomly from the family. UOWHF's were intro- ber of invocations to any trapdoor permutation in order to
duced by Naor and Yung in [NY89] where they showed that achieve even simple semantic security.
they are sufficient to construct digital signature alganth
In [NY89] it is shown how to construct UOWHF's fromany 1.2 Overview of our techniques
one-way permutation. Later this was improved by Rompel

in [Rom90] to one-way functions. _ _ We prove our results in an extension of the model of Im-
Regarding efficiency, the constructions in [NY89, \aqliazzo and Rudich [IR89]. Informally (see Section 2 for
Rom90] require at least one invocation of the one-way per- 3 more detailed discussion on the models) Impagliazzo and
mutatlon/functlon for every bit o.f length decrease. Thatis R\ dich proved that a construction of secure key exchange
if we have a one-way permutation: {0,1}" — {0,1}" based solely on one-way functions must “contain” a proof

and we want to build a UOWHF familyh} where each 4t p £NP
. +k i i o ) :
h:{0,1}™7 — {0,1}™ then the construction requirés Similarly, we show that a secure construction of PRG (or
invocation tor. This can be easily improved @(k/ log S) UOWHF) that makes less than a certain number of queries
Invocations. o _ to a one-way permutation black box, must contain a proof
Here too, we prove that this is essentially the best thatyot p £ NP. Infact we prove an even stronger conse-
can be done. That is, we prove that any construction quuence: if a secure construction of PRG (resp. UOWHF)

PSEUDO-RANDOM GENERATORS A PRG is a determin-
istic length-increasing functio@ : {0,1}™ — {0, 1}m**
such thatG(U,, ) is computationally indistinguishable from
Unm+r- PRG’s were introduced by Blum and Micali [BM84]
and Yao [Yao82]. They proved that PRG’s can be con-
structed based on one-way permutations. This constryction
using a later improvement by Goldreich and Levin [GL89],
requiresO(k/ log S) invocations (see e.g. [Gol95, Section
2.5.3] for more details), which is the best known bound for
generic constructions.

We prove that this is essentially the best that can be
achieved. That is, we prove that any construction of PRG’s
that stretches its input by bits and is limited to black-box
access to a one-way permutatiomith securityS must in-
voke it2(k/ log S) times.

UOWHF's that compresses its input laybits and is lim- 5yeq Jess than the required number of queries, then PRG
ited to black-box access to a one-way permutationith (resp. UOWHF)exists unconditionallyi.e., can be con-
securityS must invoke it2(k/ log 5) times. structed without accessing a one-way function or permuta-

DISCUSSION AND REMAINING OPEN PROBLEMS. Our tion.
results indicate that assuming the mere existence of one- The proof hinges on a technical lemma stating that a
way functions, or even permutations, is too weak of a com- random permutation mapping bits into ¢ bits is, with
putational hypothesis to obtafficientcryptographic prim-  high probability, one-way with security ("), even against
itives. As it will be evident from our proof techniques, the non-uniform adversaries. For the related case of random
limitation stems from the fact that a permutatiomay still ~ functions, such aresult has been proved by Impagliazzo and
be one-way with securit§ even if it hides only very few,  Rudich [IR89] for the (much simpler) uniform case, and by
sayO(log S), bits of its input (actually we use such “patho- Impagliazzo [Imp96] in the non-uniform case.
logical” functions to prove our lower bounds). Then we start from a secure constructi@of a PRG (the
Thus when designing new schemes with an eye out tocase of UOWHF is similar although technically more com-
efficiency, it is important to use stronger computational as Plicated) with oracle access to a one-way permutation. We
sump_tlons th.at provide us with many .more “S.ecure” plts for 1One could derive our result from Impagliazzo’s proof andrfithe fact
each invocation of the one-way function. An interesting re- ihat 4 random function is indistinguishable from a randommeation.
search direction would be to try to find the most general Anyway, our proof is quite different from Impagliazzo's,da bit simpler.




run G with an oracle permutation that leaves- O(log S) 2 The Models
of its input bits unchanged, and it is a random permutation

on the remaining)(log S) bits. According to the above 1
lemma, a permutation chosen according to this distribution

is, with high probability, one-way with security, and thus

G is also secure.

We show that if the number of queriggo this oracle is
“small” (i.e. less thark/O(log S), wherek is the stretch
of the generatofr), then we can construct a different PRG
G', that takes as input the original see@nd ¢ (distinct)
random points in{0,1}°(°e5) and simulate<s' by using
the ¢ points to answefty’s queries to the oracleG’ is a
generator, because ¢fis “small”, then its input is shorter
than its output.G’ is secure because its output is the same
as(G and thus indistinguishable from random.

Impagliazzo-Rudich, Black Boxes and Ora-
cles

The fundamental paper about impossibility for crypto-
graphic constructions is [IR89], and it is useful to staptfr
there to motivate our definitions. The purpose of [IR89]
was to prove that a certain kind of cryptographic construc-
tion was impossible. In this paper we are concerned with
cryptographic constructions that are possible, and we are
interested in their efficiency, but the difficulties in forliza
ing the question are similar.

More specifically, [IR89] was concerned with the ques-
tion of whether key-exchange protocols based only on one-
Notice thatG" is unconditional, i.e., it does not need to ay functions exists. The difficulty in addressing this ques

access any one-way permutation. Thus we prove th@t if  tjon is in the way of formalizing the notion of “being based
makes a small number of queries, then we have a proof ofon one-way functions.” Intuitively, this should be formal-
the unconditional existence of PRG’s (a Corollary of which ized as the key exchange protoc0| being an oracle procedure
is that we have a proof thdt # N P). that is given oracle access to a function. If the function is
one-way then the protocol is secure. However if key ex-
change protocols exist, then there are key exchange proto-
1.3 Prior Related Work cols “based on one-way functions,” that simply ignore the
function given as an oracle (however, in order to prove the
security of such a construction, one has to prove the possi-

This research was motivated and inspired by recent workbility of key-exchange from scratch, which is beyond what
of Kim, Simon and Tetali [KST99], who essentially ini- we are able to prove with current techniques). So if one
tiated the study of efficiency limitations for cryptographi  wants to prove that there is no key-exchange protocol based
constructiong. on one-way functions, one has to give a more restrictive def-

Our lower bounds on the complexity of UOWHF con- inition, or to show that (a_s in_the case _above) the_only way
structions improves on [KST99], where a lower bound of to make such a constructl_on is by proving something that is
Q(VE/log S) on the number of invocations of a one-way Peyond our current techniques.
permutation is proven. Our result is also qualitatively-bet
ter, since it holds in a more general model (see Section 2
below for a discussion about the models in which such re-

sults can be stated). We do not know of any similar work g\, \yhenever the function given as an oracle is hard to
for PRG's. invert (even if it is also hard to compute, and so does not
Previous negative result had focused more on impossi-satisfy the definition of being one-way). Then, they assume
bility results for thesecurityof certain constructions rather that P=NP. Under these assumptions, they prove that when
than for their efficiency. Impagliazzo and Rudich in [IR89] a random function is used as an oracle in any key exchange
give strong evidence that black-box access to one-way perprotocol, then the protocol can be broken, even though a
mutations cannot yield secure key exchange. In [Sim98], random function is (with high probability) hard to invert.
Simon proves that one-way permutations are not sufficientit then follows that a proof of security of a “black-box”
to construct collision-resistant hash functions (whickais  construction of a key-exchange protocol based on one-way
stronger primitive than UOWHF’s). Finally a very recent functions must also contain a proof that/PNP, and so is
result [KSS00] shows that there is no construction of one- beyond the reach of current techniques.
way permutations based on one-way functions. As we briefly mentioned in the introduction, we extend
this model. But the proof methodology is basically identi-
2A somewhat different notion of efficiency was consideredieaby cal. \-Ne show thata “bIaCk-k-JOX” ConStr-UCtlon Of PRG which
Rudich [Rud91], who proved that for evekythere exists an oracle relative queries a rando.m permutatlon oracle in too feW places, may
to which secret key exchange can be doné irounds but not ink — 1 be transformed in a constructions thaver querlei;he ora-
rounds. cle at all. This yields the unconditional existence of PRG’s

The Impagliazzo-Rudich Approach. Impagliazzo and
Rudich first restrict to “black-box” constructions that are




which is a result beyond the reach of current techniques In particular, we will say thaty is a (S,, Sy,€) pseu-

(since it also implies B NP). dorandom generator construction if for every permutation
m that is S,-one way we have tha™(Up,) is (Sg,€)-

Relativizations. In computational complexity theory indistinguishable from uniform.

there is a canonical way of showing that a certain resultis  The counterpositive is th&t is a(Sy, S, €)-generator if

seemingly beyond reach of current techniques, namely tofor everym such that there exists a circuitof size< 5,

show that the opposite result holds relative to an oracle. Im Ssatisfying

pagliazzo and Rudich observe that their result can also be

interpreted in this setting. | Pr[I7 () = 1] = Pr[T™(G"(s)) = 1]| > €

Comparison. The Impagliazzo-Rudich approach pro- there exists an oracle circuit of size< S, satisfying

vides a black-box one-way function (in their case, a ran-

dom function) and an adversary that breaks the construction Pr[A(n(z)) = 2] > 1/5),

when it uses the primitive. The adversary is implementable

in polynomial time if B=NP. If one uses an oracle relative to  In Section 4 we show that if there i 4,,, S, ¢) pseudoran-

which P=NP (e.g. an oracle for a PSPACE-complete prob- dom generator construction that uses less thahlog S,

lem), and one augments this oracle with the above black-accesses into the permutation, thenitis possible to agetstr

box one-way function, one gets an oracle relative to which a unconditionally a polynomial-time computable pseudoran-

one-way function exist, yet the construction can be broken.dom generator whose output {§,, ¢)-indistinguishable

Typically, then, an impossibility result in the Impagliazz ~ from uniform. This means that, in particulasZRP (as in

Rudich setting implies a relativized impossibility ressio ~ the Impagliazzo-Rudich setting).

that the Impagliazzo-Rudich setting is more general. It should be noted that our consequence is not only

Among previous impossibility results, a very recent re- stronger than NP, but it is a “tight” consequence: it says

sult showing that there is no construction of one-way per- that the only way to construct a pseudorandom generator

mutations based on one-way functions [Rud88, KSS00] isbased on a generic one-way permutation and that makes

in the Impagliazzo-Rudich model, while other results are o(k/log S) accesses into the permutation is to prove un-

based on relativizations [Rud91, Sim98, KST99]. conditionally that a pseudorandom generator can be con-
structed, thus dispensing with the use of one-way permuta-

2.2 Model for Pseudorandom Generator Con- tionsaltogether. Itis as Impagliazzo and Rudich had proved

structions that if there is a key-agreement protocol that uses a one-
way function, then there is an unconditionally secure key-
We say that a permutation : {0,1}" — {0,1}" is agreement protocol.

(S, €)-one way if for every circuitd of size< S we have _ _
2.3 Model for Universal One-Way Hash Function

Pr[A(n(z)) =x] <e Constructions

To reduce the number of parameters, we will also say thata Roughly speaking, a family of universal one way hash
function is S-one way (orone-way with security) if it is functions (abbreviated UOWHF) is a family of functions
(S,1/5)-one way. having the same range and the same domain (the domain

We say that a random variahlé,, ranging ovef0,1}™ being smaller than the range) such that when we pick at
is (S, €)-indistinguishable from uniform if for every circuit  random a functior from# and a point: from the domain,
T of size< S we have it is hard, givenh andz, to find a pointz’ # x such that

h(z) = h(z').
|x£’Ur [T(z)=1] - z£§ [T(z)=1]| <e Formally, a family {hs}seq0,13» Of functions h,

{0,1}m*k — {0, 1}™is (S, €)-universal one way hash (ab-
A pseudorandom generator construction is an oracle pro-breviated(S, ¢) —UOWH) if for every circuitA of size< S

cedureG") : {0,1}™ — {0,1}** that expects as an ora- we have

cle a permutatiom : {0,1}" — {0,1}". We are interested

in constructions wheré' is computable in time polynomial ~ Pr[A(z, s, hs(z)) = a' i x # o’ andhg(a') = hs(x)] < €

in m,n, k and where the output of the generator is indistin-

guishable from uniform whenever the oracle permutation is It will be convenient to represent such a family as a sin-

a fixed one-way permutation, and the input of the generatorgle functionH : {0,1}" x {0,1}™** — {0,1}™ where

is randomly generated. H(s,z) = hs(z).



A construction of UOWHF from one-way permutations
is an oracle procedurH ) (-, -) such thatH expects as an
oracle a permutation : {0,1}" — {0,1}", and is given an
input seeds € {0,1}" and an input string: € {0, 1}™**.
The output isH™(s,z) € {0,1}™. Such a construction
iS (Sp, Sh,€)-UOWH if for everyr that isS,-one way we
have that ™ (-, -) is (Sh, €)-UOWH (even when the adver-
sary is given oracle access to the permutatipnwe show
in section 5 that if there is &S, Si, €)-UOWH construc-
tion that makes less thaty'5 log S,, invocations to the per-
mutation, then there exists, unconditionally, a polyndmia
time construction that i€Sy,, €)-UOWH. As a consequence,
P#£ANP. Once more, our result falls in the Impagliazzo-
Rudich setting, but it has a stronger, and “tight,” conse-
guence.

3 The Hardness of Inverting Random Per-
mutations

In this section we prove that a random permutation is,
with high probability, one-way with exponential security,
even against non-uniform circuits.

Lemma 1 Let A be an oracle procedure that makes at most
g queries into the oracle. Let : [N] — [N] such that

> €

Pr{A" () = ()

Thenr can be described usir{log (%)) +log((NV — a)!)
bits of information, givem, wherea = eN/(¢q + 1).

PrRoOOF. Consider the sef of eN points on whichA is
able to invertr, after making at mosj queries intor. We
want to to argue that there exists a subset [ such that
|S| > eN/(q + 1) and such that the value af-! in all the
points of S is totally determined once we are giveln the
setsS andwr—!(S) and the value of-—! in all the points in
[N]—S.

We defineS by the following process. Initial\S is
empty, and all elements df are candidates for being an
element ofS. We take the lexicographically first element
out of I, and we put it intaS. We simulate the computation
A™(z), and let us callky,...,z, the queries made by
(we assume wlog that they are different), and. . . , y, the
answers (i.ey; = w(x;)). If  is none of the answers, then
we removey, . ..,y, from I. If z is one of the answers,
sayy;, then we removey,...,y;—1 from I. Then we take
the lexicographically smallest of the remaining elemeifits o
I, we putitintoS, etc. At any step of the construction 8f
we add one element t§ and we remove at mogtelements
from 1. Sincel has initiallye/NV elements, in the enfl has
atleastN/(¢q + 1) elements.

(Note: a way to picture the previous argument is to draw
a directed graph with [N] nodes, where there is an edge

(z,y) if A™(z) makes a query’ such thatr(z') = y.

In this graph, every vertex has out-degree at ngostVe
mark all vertices corresponding to elementd ofe want

to find a subsef of I such that the only edges among el-
ements ofS go from nodes of higher lex order to nodes of
lower lex order. A greedy algorithm will find afi such that
151> 111/q)

We now claim that given descriptions of the sStand
7~1(S), and given the values of on [N] — 7~1(S), and
given 4, it is possible to compute (or invert)everywhere.

It is enough to show that it is possible to invertevery-
where. The values of ! () for z ¢ S are explicitly given.
The values ofr~!(z) for z € S can be reconstructed as
follows (we should do the following reconstruction sequen-
tially, for all z € S in lexicographic order). We simulate the
computation ofA™ (z). By construction ofS, A™(z) will
make queries either in points notir ! (S), or it will query

7 1(z") wherez' € S butz’ precedes in lexicographic
order, or, otherwised is queryingr—* () itself. In the first

two cases, we have enough information to continue the sim-
ulation. In the last case, it means that the current query is
7~ 1(z). In all possible cases, we have enough information
to reconstructr ! (z).

In order to describ&, =1 (S), andr restricted tqN] —
7=1(S), we needog (V) + log () + log(N — a)! bits,
wherea = |S|. This completes the proof. O

As a consequence, we have

Theorem 2 For sufficiently larget, if we pick at random a

permutationr : {0,1}t — {0,1}¢, there is a probability

at leastl — 2-2""% that the permutation is one-way with
security2t/5,

We note that it would be possible to prove that with com-
parably high probability the permutation has security abou
(2.34) - 2t/%. The weaker expressia@¥/® is easier to use in
our application, so we did not try to optimize.

PROOF. Let A be an oracle circuit of siz6 = 2t/>. The
circuit will not access the oracle permutation more than
2t/5 times. Let us callV = 2¢. From Lemma 1, we have
that the fraction of permutations: {0,1}* — {0, 1}’ such
that

I;r[A"(W(a:)) =] > 275
is at most
(M*(N = a)!
N!

wherea = 27/5N/(q + 1) = N/NY3(N'/5 +1) >
N3/%/2. The above expression can be simplified to

@)

al



and using the inequalitiea! < (a/e)* and (V) >
(eN/a)®, the expression is upper bounded by

a
(&) <(
for sufficiently largeN.

There are at mostStloe S = 25N"/°(os V) pracle cir-
cuits of sizeS = 2!/, and so, by a union bound, the prob-
ability over the choice of a randomthat there is one such
circuit such that

4e?
N1/5

e’N

I;r[A”(W(a:)) =] > 275

is at moss V' (los NP =N*?/2 - 9=N'"* for sufficiently
largeN. a

For each parameter< n we denote withI, ,, the follow-
ing subset of the family of permutations ovebits:

S Htm |ff
w(a,b) = (7(a),b) for some
#:{0,1}* — {0,1}*

A corollary to Theorem 2 is that if = 5log.S,, then for
anyn > t, # €r Il , is one-way with securitys, with
very high probability.

Corollary 3 For sufficiently larget, for anyn > t, if we

pick a random permutation : {0,1}" — {0,1}™in II; ,,

then with probability bigger than — 2-2"* the permuta-
tion 7 is one-way with securitg*/®.

4 Lower Bound for Pseudo-Random Genera-
tors

In this section we show our lower bound for PRG con-
structions. We start from such a PRG constructisin (-)
that expects as an oracle a permutation {0,1}" —
{0,1}". We assume thati stretches amn-bit seed into
an(m + k)-bit output.

Suppose tha¥ is a provable construction such thatifs
Sp-hard then is secure; we prove that unleSsqueriesr
in at least2(k/ log S,) places, it is possible to derive from
G an unconditional pseudorandom generator.

The basic idea of the proof is as follows. df queries
only few points in the oracle we can encode the answers in
the seed of a new PRG : {0,1}™ — {0,1}™t*, which
will be able to “simulate” a computation @ when it is
fed with a random permutation oracle. Notice thdtdoes
not use any oracle at all. We then use Theorem 2 to claim
that a random permutation oracle is indeed hard to invert by
a circuit of sizeS, even when its range is= O(log S,).

Thus with this oracle the outputs ¢f and consequently
G' are indistinguishable from random. The desired bound
comes from the fact that’ is still a “stretching” generator
provided thatn' is smaller thann + k. Butm' < gt +m
sinceqt bounds the number of bits needed to encodethe
bits answers taz’s ¢ questions, plus one needs bits to
encode the original seed 6f.

Theorem4 Let G : {0,1}™ — {0,1}™** be a
(Sp,Sg,€) PRG construction that makeg queries into
the permutation oracle and suppose> 2~ 5. If ¢ <
k/5log S, then there is &S,, 2¢) PRGG’ : {0,1}™ —
{0, 1}k (with m’ < m + k) without access to a permu-
tation oracle.

PROOF If GU) is a(S,, Sy, €) PRG, it means that if :
{0,1}™ — {0, 1}™is Sp-hard then, for any statistical teBt
of size< S, we have that

[Pr(T(x) = 1] - Pr(T(G7(s) = 1]l < ¢

Fix a testT” of sizeS,. Lett = 5log S,. From Corollary
3 we know that a random permutatianc g II; ,, is Sp-

hard with probability larger thah — 2-2""? Recall thatr
operates only on the firgtinput bits, i.e. = is defined as
7w(a,b) = (#(a),b) wheres is a random permutation over
{0,1}!. Thus in other words

Pr

mells n

(| Pr[T(z) = 1] = Pr[T(G"(s)) = 1]| < ¢] >

>1-22""51-2%>1_¢

By an averaging argument this yields that

=1]- Pr

LBr 1@ () = 1] < 2¢

| Pr(Z(x) =
T

Without loss of generality we may assume now tvaal-
ways queriesr € II., with strings that have distinat
prefixes. Indeed notice that queriesb) to = are answered
by (7 (a),b). Thus for each “generic(7 that asks arbitrary
queries, one can construct(a with essentially the same
running time as, such that wheneve¥ asks(a, b) where
a was the prefix of a query asked before, it will “skip” the
query tor and take as answéfi(a), b). In general the be-
havior of G is much different thad’s, but when we restrict
m € 1l , they are equivalent. So assume w.l.o.g. tHat
always make queries with distinct prefixes.

Now we use the fact th&#(") queries its oracle only <
k/t times. Consider the following PRG'. It takes as input

a seeds’ of lengthm' = log (2;) +s<qgt+m<m+
k. It uses the firstog (2;) bits to selecy distinct elements
Y1,-.-,Yg in {0,1}" and then define

G (y1,...,Yq 8) = G¥r¥a(s)



where with the notatiod:¥1-+~¥%(s) we mean the compu-
tation of G on inputs and when itsg oracle queries are
answered using theprefixesyi, . .., y,. More precisely, if
theit" query byG is z; = (a;,b;) where|a;| = t, thenG’
answers it with(y;, b;) (here is where we use the fact that
w.l.o.g all thea;’s are distinct).

Clearly the distribution of G'(s')} is identically dis-
tributed to{G" (s) } scpi, ,.;s thus:

|Pr(T(z) = 1] - Pr{T(G'(s))) = 1]| < 2

which ends the proof. m|

5 Lower Bound for One Way Hash Functions

In this section we show our lower bound for UOWHF
constructions. The proof outline is similar to the one for
the case of PRG's. We start from a UOWHF construc-
tion H()(-,-) that expects as an oracle a permutation
{0,1}™ — {0,1}". We assume thatl takes as input a-
bit key and compresses + k-bit inputs intom-bit outputs.

If the construction makes a numhgof accesses into the
permutation such that < k/5log S (whereS is the secu-
rity of the permutation), then we show that it is possible to
derive an unconditionally secure construction of UOWHF.

As in the case of PRG, we observe tlftis uncondi-
tionally secure when the permutatiaris chosen so that it
randomly permutes the firstlog S bits of the inputs, while

leaving the remaining bits unchanged. We then show thatwherez,, .

this idealized setting can be realized by putting answars fo
the ¢ queries into the key (one needs abbgtog S bits to
specify such answers, since only the relevahig S bits

Let us defing = 5log S,. For an element € {0,1}", we
call the string made up by the firsbits of 2 the ¢-prefix of
Z.

We will now define a stronger notion of collision for
H. We say that' is astrong collisionfor z with seeds
and permutationr if z' # z, H™(s,z) = H™(s,z') and
thet-prefixes of the; queries made during the computation
of H™ (s, z) are the same as theprefixes of the; queries
made during the computation &f” (s, z'). Clearly, for any
adversaryA of size< Sy, and any permutation of secu-
rity .S, we have
E’r[A”(z,s,H“(s,z)) =z

2" is strong collision for: with respect tos andn] < e

After making a restriction on the definition of success, we
now also make a restriction on the class of adversaries: in-
stead of considering an adversatythat can access ar-
bitrarily, we consider adversaries that do not have oracle
access tor, but are given the-prefixes of the queries and
answers during the computation®f (s, z). Since such re-
stricted adversaries can be simulated by general advessari
with no overhead, we also have that for every permutation
w of securityS, and everyA of size< Sy,

]s?zr[A(z, s, H™(s,2),x1, - .

)

!

ST Y1, Yg) =2

2" is strong collision for: with respect tas andn] < e

.., x4 are thet-prefixes of they; queries made to
7 during the computation ol " (s, z), andyi, ..., y, are
thet-prefixes of the respective answers.

Let now A be a fixed circuit of size< Sy, and let us

of each answer have to be specified). Furthermore, we putsample a random permutatianfrom the sefll, ,, (which

in the outputof our new hash function the queries (or
rather, the first log S bits of each such query) done dur-
ing the computation. 1§ < k/5log S we are still getting

a length-decreasing function, and we are able to show that

if an adversary can find collision in this new construction,

then there is an adversary that finds collisions in the ideal-

ized setting, which we know is impossible. So we get an
unconditionally secure construction of UOWHF.

Theorem 5 Let H() : {0,1}" x {0,1}™*k — {0,1}™
be a(S,, Sk, ) UOWHF construction that makesqueries
into the permutation oracle, suppose> 2. If ¢ <
k/5log S, then there is &Sy, 2¢) UOWHH' : {0,1}" x
0,1}k 5 {0,1}™ (withm' < m + k) without access
to a permutation oracle.
PROOF. If HU)(-,+) is (S,, Sy, €)-UOWH, it means that if
m:{0,1}"* — {0,1}" is Sp-hard then, for any collision
finding adversaryl of sizeS;, we have that
E’g[A"(z,s,H"(s,z)) =z :2#z%z and

H™(s,2) = Hﬂ(sazl)] <e

we shorten witHI in the following). With high probability,
7 is one-way with security, (see Corollary 3), and in fact
we have:

Pr [ Pr[A(z,s,H"(s,2),x1, ..

r
8,2

reln .,xq,yl,..

LYg) =2
2" is strong collision for] > €] < ¢
which implies

ﬂE%?S,Z[A(Z7 S, H (sz)vmla e

!

'7quy1v"'qu) =z

2" is strong collision for] < 2¢

By the same argument in the proof of Theorem 4 we can as-
sume w.l.0.g. thall queriesr only on points with distinct
t-prefixes.

Consider now the hash function#’ : {0,1}" x
{0,1}m*k — {0,1}™ wherer’ = 1+ gt andm' = m+qt
defined as follow&

H'((8,y1,--,Yq),2) = (HYY4(s,2),21,...,2,)

3As in the case of the PRG less tha@hrandom bits are actually used
to sampley distinct random elementg # ... # yq in {0, 1}¢




where by HY1-¥%i(s,z) we mean the computation of [Gol95]
H() (s, z) when thet-prefix of the answer to thith query

is y; (and the remaining bits of the answer are equal to

the remaining bits of the query); and where we denote by

O. Goldreich. Foundations of cryptography —
fragments of a book. Unpublished Monograph,
1995.

x1,...,r, thet-prefixes of the; queries made during such [HILL99] J. Hastad, R. Impagliazzo, L. Levin, and

computation.

Notice that if¢ < k/t thenm' < m + k, i.e. thisis a
length-decreasing function. Now clearly for any adversary
A of size S}, we have that [HSS93]

Pr[A(s',2,H'(s',2)) = 2’ : 2 # 2" and

H'(s',z) =H'(s',2')] = Pr
w€ell,s,z
A™(2,8, H™(8,2), 1,y Tg, Y1y -+, Yg) = 2 : [Imp9e]

2" is strong collision for] < 2¢

which means thati’ is (Sj, 2¢)-UOWH. Notice lastly that  [IR89]
H' does not invoke any oracle. O
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