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Abstract

We present lower bounds on the efficiency of construc-
tions for Pseudo-Random Generators (PRGs) and Univer-
sal One-Way Hash Functions (UOWHFs) based on black-
box access to one-way permutations. Our lower bounds are
tight as they match the efficiency of known constructions.

A PRG (resp. UOWHF) construction based on black-
box access is a machine that is given oracle access to a
permutation. Whenever the permutation is hard to invert,
the construction is hard to break. In this paper we give
lower bounds on the number of invocations to the oracle by
the construction.

If S is the assumed security of the oracle permutation
� (i.e. no adversary of sizeS can invert� on a fraction
larger than1=S of its inputs) then a PRG (resp. UOWHF)
construction that stretches (resp. compresses) its input by k
bits must query� in q = 
(k= logS) points. This matches
known constructions.

Our results are given in an extension of the Impagliazzo-
Rudich model. That is, we prove that a proof of the existence
of PRG (resp. UOWHF) black-box constructions that beat
our lower bound would imply a proof of the unconditional
existence of such construction (which would also implyP 6=

NP ).

1 Introduction

Since the seminal paper by Diffie and Hellman [DH78]
modern cryptography has been based on the concept ofone-
way functions. Informally a functionf : A ! B is one-
way if given y = f(x) for x chosen at random inA it is
hard to compute any preimage ofy. We do not know if
one-way functions exists (their existence would imply that
P 6= NP ) but there are some candidate functions based on
number-theoretic problems (like factoring and the discrete
logarithm) which are widely believed to be one-way.

In the twenty-plus years since [DH78], one major direc-
tion of research in cryptography has been to try to construct
cryptographic primitives based on the weakest possible

computational assumption. Under the existence of one-way
functions we know how to prove the existence of univer-
sal one-way hash functions and digital signatures [NY89,
Rom90], pseudo-random generators [HILL99], pseudo-
random function ensembles [GGM86, HILL99] and com-
mitment schemes [Nao91, HILL99].

These constructions are very important from a theoret-
ical point of view because they are based on the minimal
complexity assumption required to have cryptography. On
the other hand, however, their practical impact is very lim-
ited because of their inefficiency. In practice, constructions
based on stronger assumptions (such as the hardness of a
specific number-theoretic problem) might be much more at-
tractive from an efficiency point of view.

This trade-off between the efficiency of a cryptographic
construction and the strength of the complexity assumption
on which it relies is one of the most interesting features in
modern cryptographic research. Attempts of improving the
efficiency of known constructions based on general assump-
tions have mostly failed. It is thus an interesting questionto
ask:How efficient can cryptographic constructions be when
based on general assumptions?

In this paper we focus on constructions for universal
one-way hash functions and pseudo-random bit generation
(UOWHF and PRG for short in the following). For these
primitives we provide lower-bounds on the efficiency of
general constructions that match the efficiency of known
schemes. Our lower bounds are expressed in the number of
required invocations of a one-waypermutation(since one-
way permutations area fortiori also one-way functions our
lower bounds are stronger and clearly hold for functions as
well).

1.1 Our Results

Informally, we say that a one-way permutation� :

f0; 1g

n

! f0; 1g

n has securityS if any circuitA of size
smaller thanS inverts � with probability less than1=S
(for concreteness, one can think ofS as a slightly super-
polynomial function ofn, such asnlogn, but our results hold
for any choice ofS). For an integerl, we also denote byU

l



the uniform distribution overf0; 1gl.

PSEUDO-RANDOM GENERATORS. A PRG is a determin-
istic length-increasing functionG : f0; 1g

m

! f0; 1g

m+k

such thatG(U

m

) is computationally indistinguishable from
U

m+k

. PRG’s were introduced by Blum and Micali [BM84]
and Yao [Yao82]. They proved that PRG’s can be con-
structed based on one-way permutations. This construction,
using a later improvement by Goldreich and Levin [GL89],
requiresO(k= logS) invocations (see e.g. [Gol95, Section
2.5.3] for more details), which is the best known bound for
generic constructions.

We prove that this is essentially the best that can be
achieved. That is, we prove that any construction of PRG’s
that stretches its input byk bits and is limited to black-box
access to a one-way permutation� with securityS must in-
voke it
(k= logS) times.

UNIVERSAL ONE-WAY HASH FUNCTIONS. A UOWHF
is a family of length-decreasing functions such that for any
input x it is hard to find acollision with x for a function
chosen randomly from the family. UOWHF’s were intro-
duced by Naor and Yung in [NY89] where they showed that
they are sufficient to construct digital signature algorithm.
In [NY89] it is shown how to construct UOWHF’s from any
one-way permutation. Later this was improved by Rompel
in [Rom90] to one-way functions.

Regarding efficiency, the constructions in [NY89,
Rom90] require at least one invocation of the one-way per-
mutation/function for every bit of length decrease. That is,
if we have a one-way permutation� : f0; 1g

n

! f0; 1g

n

and we want to build a UOWHF familyfhg where each
h : f0; 1g

m+k

! f0; 1g

m then the construction requiresk
invocation to�. This can be easily improved toO(k= logS)

invocations.
Here too, we prove that this is essentially the best that

can be done. That is, we prove that any construction of
UOWHF’s that compresses its input byk bits and is lim-
ited to black-box access to a one-way permutation� with
securityS must invoke it
(k= logS) times.

DISCUSSION AND REMAINING OPEN PROBLEMS. Our
results indicate that assuming the mere existence of one-
way functions, or even permutations, is too weak of a com-
putational hypothesis to obtainefficientcryptographic prim-
itives. As it will be evident from our proof techniques, the
limitation stems from the fact that a permutation� may still
be one-way with securityS even if it hides only very few,
sayO(logS), bits of its input (actually we use such “patho-
logical” functions to prove our lower bounds).

Thus when designing new schemes with an eye out to
efficiency, it is important to use stronger computational as-
sumptions that provide us with many more “secure” bits for
each invocation of the one-way function. An interesting re-
search direction would be to try to find the most general

assumption which still allows for efficient schemes.
For the case of PRG’s, for example, we know that we

can have efficient constructions if we assume the existence
of a one-way function with
(n) hard-core bits (an exam-
ple of such a function can be found in [HSS93]). Similarly,
we know that semantically secure encryption can be imple-
mented efficiently with a trapdoor permutation that hides
many bits (none of the “classic” trapdoor permutations has
this property, although recently [CG00] present some can-
didates based on non-standard number theoretic problems).
But if we look at encryption schemes secure against ac-
tive attacks, we only know how to construct an efficient
scheme based on a specific number-theoretic assumption
(the Cramer-Shoup scheme [CS98] which is based on the
so-called Decisional Diffie-Hellman assumption).

An interesting question is to try to come up with an effi-
cient encryption scheme secure against active attacks based
on a “generic” assumption on trapdoor functions (say a trap-
door permutation that hides
(n) bits). Another interesting
question would be to determine a lower bound on the num-
ber of invocations to any trapdoor permutation in order to
achieve even simple semantic security.

1.2 Overview of our techniques

We prove our results in an extension of the model of Im-
pagliazzo and Rudich [IR89]. Informally (see Section 2 for
a more detailed discussion on the models) Impagliazzo and
Rudich proved that a construction of secure key exchange
based solely on one-way functions must “contain” a proof
thatP 6= NP .

Similarly, we show that a secure construction of PRG (or
UOWHF) that makes less than a certain number of queries
to a one-way permutation black box, must contain a proof
thatP 6= NP . In fact we prove an even stronger conse-
quence: if a secure construction of PRG (resp. UOWHF)
makes less than the required number of queries, then PRG
(resp. UOWHF)exists unconditionally, i.e., can be con-
structed without accessing a one-way function or permuta-
tion.

The proof hinges on a technical lemma stating that a
random permutation mappingt bits into t bits is, with
high probability, one-way with security2�
(t), even against
non-uniform adversaries. For the related case of random
functions, such a result has been proved by Impagliazzo and
Rudich [IR89] for the (much simpler) uniform case, and by
Impagliazzo [Imp96] in the non-uniform case.1

Then we start from a secure constructionG of a PRG (the
case of UOWHF is similar although technically more com-
plicated) with oracle access to a one-way permutation. We

1One could derive our result from Impagliazzo’s proof and from the fact
that a random function is indistinguishable from a random permutation.
Anyway, our proof is quite different from Impagliazzo’s, and a bit simpler.



runG with an oracle permutation that leavesn�O(logS)

of its input bits unchanged, and it is a random permutation
on the remainingO(logS) bits. According to the above
lemma, a permutation chosen according to this distribution
is, with high probability, one-way with securityS, and thus
G is also secure.

We show that if the number of queriesq to this oracle is
“small” (i.e. less thank=O(logS), wherek is the stretch
of the generatorG), then we can construct a different PRG
G

0, that takes as input the original seeds andq (distinct)
random points inf0; 1gO(logS) and simulatesG by using
the q points to answerG’s queries to the oracle.G0 is a
generator, because ifq is “small”, then its input is shorter
than its output.G0 is secure because its output is the same
asG and thus indistinguishable from random.

Notice thatG0 is unconditional, i.e., it does not need to
access any one-way permutation. Thus we prove that ifG

makes a small number of queries, then we have a proof of
the unconditional existence of PRG’s (a corollary of which
is that we have a proof thatP 6= NP ).

1.3 Prior Related Work

This research was motivated and inspired by recent work
of Kim, Simon and Tetali [KST99], who essentially ini-
tiated the study of efficiency limitations for cryptographic
constructions.2

Our lower bounds on the complexity of UOWHF con-
structions improves on [KST99], where a lower bound of

(

p

k= logS) on the number of invocations of a one-way
permutation is proven. Our result is also qualitatively bet-
ter, since it holds in a more general model (see Section 2
below for a discussion about the models in which such re-
sults can be stated). We do not know of any similar work
for PRG’s.

Previous negative result had focused more on impossi-
bility results for thesecurityof certain constructions rather
than for their efficiency. Impagliazzo and Rudich in [IR89]
give strong evidence that black-box access to one-way per-
mutations cannot yield secure key exchange. In [Sim98],
Simon proves that one-way permutations are not sufficient
to construct collision-resistant hash functions (which isa
stronger primitive than UOWHF’s). Finally a very recent
result [KSS00] shows that there is no construction of one-
way permutations based on one-way functions.

2A somewhat different notion of efficiency was considered earlier by
Rudich [Rud91], who proved that for everyk, there exists an oracle relative
to which secret key exchange can be done ink rounds but not ink � 1

rounds.

2 The Models

2.1 Impagliazzo-Rudich, Black Boxes and Ora-
cles

The fundamental paper about impossibility for crypto-
graphic constructions is [IR89], and it is useful to start from
there to motivate our definitions. The purpose of [IR89]
was to prove that a certain kind of cryptographic construc-
tion was impossible. In this paper we are concerned with
cryptographic constructions that are possible, and we are
interested in their efficiency, but the difficulties in formaliz-
ing the question are similar.

More specifically, [IR89] was concerned with the ques-
tion of whether key-exchange protocols based only on one-
way functions exists. The difficulty in addressing this ques-
tion is in the way of formalizing the notion of “being based
on one-way functions.” Intuitively, this should be formal-
ized as the key exchange protocol being an oracle procedure
that is given oracle access to a function. If the function is
one-way then the protocol is secure. However if key ex-
change protocols exist, then there are key exchange proto-
cols “based on one-way functions,” that simply ignore the
function given as an oracle (however, in order to prove the
security of such a construction, one has to prove the possi-
bility of key-exchange from scratch, which is beyond what
we are able to prove with current techniques). So if one
wants to prove that there is no key-exchange protocol based
on one-way functions, one has to give a more restrictive def-
inition, or to show that (as in the case above) the only way
to make such a construction is by proving something that is
beyond our current techniques.

The Impagliazzo-Rudich Approach. Impagliazzo and
Rudich first restrict to “black-box” constructions that are
secure whenever the function given as an oracle is hard to
invert (even if it is also hard to compute, and so does not
satisfy the definition of being one-way). Then, they assume
that P=NP. Under these assumptions, they prove that when
a random function is used as an oracle in any key exchange
protocol, then the protocol can be broken, even though a
random function is (with high probability) hard to invert.
It then follows that a proof of security of a “black-box”
construction of a key-exchange protocol based on one-way
functions must also contain a proof that P6= NP, and so is
beyond the reach of current techniques.

As we briefly mentioned in the introduction, we extend
this model. But the proof methodology is basically identi-
cal. We show that a “black-box” construction of PRG which
queries a random permutation oracle in too few places, may
be transformed in a constructions thatnever queriesthe ora-
cle at all. This yields the unconditional existence of PRG’s,



which is a result beyond the reach of current techniques
(since it also implies P6= NP).

Relativizations. In computational complexity theory
there is a canonical way of showing that a certain result is
seemingly beyond reach of current techniques, namely to
show that the opposite result holds relative to an oracle. Im-
pagliazzo and Rudich observe that their result can also be
interpreted in this setting.

Comparison. The Impagliazzo-Rudich approach pro-
vides a black-box one-way function (in their case, a ran-
dom function) and an adversary that breaks the construction
when it uses the primitive. The adversary is implementable
in polynomial time if P=NP. If one uses an oracle relative to
which P=NP (e.g. an oracle for a PSPACE-complete prob-
lem), and one augments this oracle with the above black-
box one-way function, one gets an oracle relative to which a
one-way function exist, yet the construction can be broken.
Typically, then, an impossibility result in the Impagliazzo-
Rudich setting implies a relativized impossibility result, so
that the Impagliazzo-Rudich setting is more general.

Among previous impossibility results, a very recent re-
sult showing that there is no construction of one-way per-
mutations based on one-way functions [Rud88, KSS00] is
in the Impagliazzo-Rudich model, while other results are
based on relativizations [Rud91, Sim98, KST99].

2.2 Model for Pseudorandom Generator Con-
structions

We say that a permutation� : f0; 1g

n

! f0; 1g

n is
(S; �)-one way if for every circuitA of size� S we have

Pr

x

[A(�(x)) = x℄ � �

To reduce the number of parameters, we will also say that a
function isS-one way (orone-way with securityS) if it is
(S; 1=S)-one way.

We say that a random variableX
m

ranging overf0; 1gm

is (S; �)-indistinguishable from uniform if for every circuit
T of size� S we have

j Pr

x2U

m

[T (x) = 1℄� Pr

x2X

m

[T (x) = 1℄j � �

A pseudorandom generator construction is an oracle pro-
cedureG(�)

: f0; 1g

m

! f0; 1g

m+k that expects as an ora-
cle a permutation� : f0; 1g

n

! f0; 1g

n. We are interested
in constructions whereG is computable in time polynomial
in m;n; k and where the output of the generator is indistin-
guishable from uniform whenever the oracle permutation is
a fixed one-way permutation, and the input of the generator
is randomly generated.

In particular, we will say thatG is a (S

p

; S

g

; �) pseu-
dorandom generator construction if for every permutation
� that is S

p

-one way we have thatG�

(U

m

) is (S

g

; �)-
indistinguishable from uniform.

The counterpositive is thatG is a(S
p

; S

g

; �)-generator if
for every� such that there exists a circuitT of size� S

g

satisfying

jPr

x

[T

�

(x) = 1℄�Pr

s

[T

�

(G

�

(s)) = 1℄j > �

there exists an oracle circuitA of size� S

p

satisfying

Pr

x

[A

�

(�(x)) = x℄ > 1=S

p

In Section 4 we show that if there is a(S
p

; S

g

; �) pseudoran-
dom generator construction that uses less thank=5 logS

p

accesses into the permutation, then it is possible to construct
unconditionally a polynomial-time computable pseudoran-
dom generator whose output is(S

g

; �)-indistinguishable
from uniform. This means that, in particular, P6=NP (as in
the Impagliazzo-Rudich setting).

It should be noted that our consequence is not only
stronger than P6=NP, but it is a “tight” consequence: it says
that the only way to construct a pseudorandom generator
based on a generic one-way permutation and that makes
o(k= logS) accesses into the permutation is to prove un-
conditionally that a pseudorandom generator can be con-
structed, thus dispensing with the use of one-way permuta-
tions altogether. It is as Impagliazzo and Rudich had proved
that if there is a key-agreement protocol that uses a one-
way function, then there is an unconditionally secure key-
agreement protocol.

2.3 Model for Universal One-Way Hash Function
Constructions

Roughly speaking, a family of universal one way hash
functions (abbreviated UOWHF) is a familyH of functions
having the same range and the same domain (the domain
being smaller than the range) such that when we pick at
random a functionh fromH and a pointx from the domain,
it is hard, givenh andx, to find a pointx0 6= x such that
h(x) = h(x

0

).
Formally, a family fh

s

g

s2f0;1g

r of functions h

s

:

f0; 1g

m+k

! f0; 1g

m is (S; �)-universal one way hash (ab-
breviated(S; �)�UOWH) if for every circuitA of size� S

we have

Pr

s;x

[A(x; s; h

s

(x)) = x

0

: x 6= x

0 andh
s

(x

0

) = h

s

(x)℄ � �

It will be convenient to represent such a family as a sin-
gle functionH : f0; 1g

r

� f0; 1g

m+k

! f0; 1g

m where
H(s; x) = h

s

(x).



A construction of UOWHF from one-way permutations
is an oracle procedureH(�)

(�; �) such thatH expects as an
oracle a permutation� : f0; 1g

n

! f0; 1g

n, and is given an
input seeds 2 f0; 1gr and an input stringx 2 f0; 1gm+k.
The output isH�

(s; x) 2 f0; 1g

m. Such a construction
is (S

p

; S

h

; �)-UOWH if for every� that isS
p

-one way we
have thatH�

(�; �) is (S

h

; �)-UOWH (even when the adver-
sary is given oracle access to the permutation�). We show
in section 5 that if there is a(S

p

; S

h

; �)-UOWH construc-
tion that makes less thank=5 logS

p

invocations to the per-
mutation, then there exists, unconditionally, a polynomial
time construction that is(S

h

; �)-UOWH. As a consequence,
P6=NP. Once more, our result falls in the Impagliazzo-
Rudich setting, but it has a stronger, and “tight,” conse-
quence.

3 The Hardness of Inverting Random Per-
mutations

In this section we prove that a random permutation is,
with high probability, one-way with exponential security,
even against non-uniform circuits.

Lemma 1 LetA be an oracle procedure that makes at most
q queries into the oracle. Let� : [N ℄! [N ℄ such that

Pr

x

[A

�

(x) = �

�1

(x)℄ � �

Then� can be described using2(log
�

N

a

�

) + log((N � a)!)

bits of information, givenA, wherea = �N=(q + 1).

PROOF: Consider the setI of �N points on whichA is
able to invert�, after making at mostq queries into�. We
want to to argue that there exists a subsetS � I such that
jSj � �N=(q + 1) and such that the value of��1 in all the
points ofS is totally determined once we are givenA, the
setsS and��1

(S) and the value of��1 in all the points in
[N ℄� S.

We defineS by the following process. InitiallyS is
empty, and all elements ofI are candidates for being an
element ofS. We take the lexicographically first elementx

out ofI , and we put it intoS. We simulate the computation
A

�

(x), and let us callx
1

; : : : ; x

q

the queries made byA
(we assume wlog that they are different), andy

1

; : : : ; y

q

the
answers (i.e.y

i

= �(x

i

)). If x is none of the answers, then
we removey

1

; : : : ; y

q

from I . If x is one of the answers,
sayy

i

, then we removey
1

; : : : ; y

i�1

from I . Then we take
the lexicographically smallest of the remaining elements of
I , we put it intoS, etc. At any step of the construction ofS,
we add one element toS and we remove at mostq elements
from I . SinceI has initially�N elements, in the endS has
at least�N=(q + 1) elements.

(Note: a way to picture the previous argument is to draw
a directed graph with [N] nodes, where there is an edge

(x; y) if A

�

(x) makes a queryx0 such that�(x0) = y.
In this graph, every vertex has out-degree at mostq. We
mark all vertices corresponding to elements ofI . We want
to find a subsetS of I such that the only edges among el-
ements ofS go from nodes of higher lex order to nodes of
lower lex order. A greedy algorithm will find anS such that
jSj � jI j=q.)

We now claim that given descriptions of the setsS and
�

�1

(S), and given the values of� on [N ℄ � �

�1

(S), and
givenA, it is possible to compute (or invert)� everywhere.
It is enough to show that it is possible to invert� every-
where. The values of��1

(x) for x 62 S are explicitly given.
The values of��1

(x) for x 2 S can be reconstructed as
follows (we should do the following reconstruction sequen-
tially, for all x 2 S in lexicographic order). We simulate the
computation ofA�

(x). By construction ofS, A�

(x) will
make queries either in points not in��1

(S), or it will query
�

�1

(x

0

) wherex0 2 S but x0 precedesx in lexicographic
order, or, otherwise,A is querying��1

(x) itself. In the first
two cases, we have enough information to continue the sim-
ulation. In the last case, it means that the current query is
�

�1

(x). In all possible cases, we have enough information
to reconstruct��1

(x).
In order to describeS, ��1

(S), and� restricted to[N ℄�

�

�1

(S), we needlog
�

N

a

�

+ log

�

N

a

�

+ log(N � a)! bits,
wherea = jSj. This completes the proof. 2

As a consequence, we have

Theorem 2 For sufficiently larget, if we pick at random a
permutation� : f0; 1g

t

! f0; 1g

t, there is a probability

at least1 � 2

�2

t=2

that the permutation is one-way with
security2t=5.

We note that it would be possible to prove that with com-
parably high probability the permutation has security about
(2:34) � 2

t=4. The weaker expression2t=5 is easier to use in
our application, so we did not try to optimize.
PROOF: Let A be an oracle circuit of sizeS = 2

t=5. The
circuit will not access the oracle permutation more thanq =

2

t=5 times. Let us callN = 2

t. From Lemma 1, we have
that the fraction of permutations� : f0; 1g

t

! f0; 1g

t such
that

Pr

x

[A

�

(�(x)) = x℄ > 2

�t=5

is at most
�

N

a

�

2

(N � a)!

N !

wherea = 2

�t=5

N=(q + 1) = N=N

1=5

(N

1=5

+ 1) >

N

3=5

=2. The above expression can be simplified to
�

N

a

�

a!



and using the inequalitiesa! < (a=e)

a and
�

N

a

�

>

(eN=a)

a, the expression is upper bounded by

�

e

2

N

a

2

�

a

<

�

4e

2

N

1=5

�

a

< 2

�a

< 2

�N

3=5

=2

for sufficiently largeN .
There are at most2St logS = 2

1

5

N

1=5

(logN)

2

oracle cir-
cuits of sizeS = 2

t=5, and so, by a union bound, the prob-
ability over the choice of a random� that there is one such
circuit such that

Pr

x

[A

�

(�(x)) = x℄ > 2

�t=5

is at most2
1

5

N

1=5

(logN)

2

�N

3=5

=2

< 2

�N

1=2

for sufficiently
largeN . 2

For each parametert < n we denote with�
t;n

the follow-
ing subset of the family of permutations overn-bits:

� 2 �

t;n

iff

�(a; b) = (�̂(a); b) for some

�̂ : f0; 1g

t

! f0; 1g

t

A corollary to Theorem 2 is that ift = 5 logS

p

, then for
anyn > t, � 2

R

�

t;n

is one-way with securityS
p

with
very high probability.

Corollary 3 For sufficiently larget, for anyn > t, if we
pick a random permutation� : f0; 1g

n

! f0; 1g

n in �

t;n

,

then with probability bigger than1� 2

�2

t=2

, the permuta-
tion � is one-way with security2t=5.

4 Lower Bound for Pseudo-Random Genera-
tors

In this section we show our lower bound for PRG con-
structions. We start from such a PRG constructionG

(�)

(�)

that expects as an oracle a permutation� : f0; 1g

n

!

f0; 1g

n. We assume thatG stretches anm-bit seed into
an(m+ k)-bit output.

Suppose thatG is a provable construction such that if� is
S

p

-hard thenG is secure; we prove that unlessG queries�
in at least
(k= logS

p

) places, it is possible to derive from
G an unconditional pseudorandom generator.

The basic idea of the proof is as follows. IfG queries
only few points in the oracle we can encode the answers in
the seed of a new PRG,G0

: f0; 1g

m

0

! f0; 1g

m+k, which
will be able to “simulate” a computation ofG when it is
fed with a random permutation oracle. Notice thatG

0 does
not use any oracle at all. We then use Theorem 2 to claim
that a random permutation oracle is indeed hard to invert by
a circuit of sizeS

p

even when its range ist = O(logS

p

).

Thus with this oracle the outputs ofG and consequently
G

0 are indistinguishable from random. The desired bound
comes from the fact thatG0 is still a “stretching” generator
provided thatm0 is smaller thanm+ k. Butm0

< qt+m

sinceqt bounds the number of bits needed to encode thet-
bits answers toG’s q questions, plus one needsm bits to
encode the original seed ofG.

Theorem 4 Let G(�)

: f0; 1g

m

! f0; 1g

m+k be a
(S

p

; S

g

; �) PRG construction that makesq queries into
the permutation oracle and suppose� > 2

�S

p . If q <

k=5 logS

p

then there is a(S
g

; 2�) PRGG

0

: f0; 1g

m

0

!

f0; 1g

m+k (with m

0

< m + k) without access to a permu-
tation oracle.

PROOF: If G(�) is a (S

p

; S

g

; �) PRG, it means that if� :

f0; 1g

n

! f0; 1g

n isS
p

-hard then, for any statistical testT
of size� S

g

we have that

jPr

x

[T (x) = 1℄�Pr

s

[T (G

�

(s)) = 1℄j < �

Fix a testT of sizeS
g

. Let t = 5 logS

p

. From Corollary
3 we know that a random permutation� 2

R

�

t;n

is S

p

-

hard with probability larger than1 � 2

�2

t=2

. Recall that�
operates only on the firstt input bits, i.e. � is defined as
�(a; b) = (�̂(a); b) where�̂ is a random permutation over
f0; 1g

t. Thus in other words

Pr

�2�

t;n

[jPr

x

[T (x) = 1℄�Pr

s

[T (G

�

(s)) = 1℄j < �℄ >

> 1� 2

�2

t=2

> 1� 2

�S

p

> 1� �

By an averaging argument this yields that

jPr

x

[T (x) = 1℄� Pr

�2�

t;n

;s

[T (G

�

(s)) = 1℄j < 2�

Without loss of generality we may assume now thatG al-
ways queries� 2 �

t;n

with strings that have distinctt-
prefixes. Indeed notice that queries(a; b) to � are answered
by (�̂(a); b). Thus for each “generic”G that asks arbitrary
queries, one can construct a^G with essentially the same
running time asG, such that wheneverG asks(a; b) where
a was the prefix of a query asked before, it will “skip” the
query to� and take as answer(�̂(a); b). In general the be-
havior of ^G is much different thanG’s, but when we restrict
� 2 �

t;n

they are equivalent. So assume w.l.o.g. thatG

always make queries with distinct prefixes.
Now we use the fact thatG(�) queries its oracle onlyq <

k=t times. Consider the following PRGG0. It takes as input

a seeds0 of lengthm0

= log

�

2

t

q

�

+ s < qt + m < m +

k. It uses the firstlog
�

2

t

q

�

bits to selectq distinct elements
y

1

; : : : ; y

q

in f0; 1gt and then define

G

0

(y

1

; : : : ; y

q

; s) = G

y

1

;:::;y

q

(s)



where with the notationGy

1

;:::;y

q

(s) we mean the compu-
tation of G on input s and when itsq oracle queries are
answered using thet-prefixesy

1

; : : : ; y

q

. More precisely, if
theith query byG is x

i

= (a

i

; b

i

) whereja
i

j = t, thenG0

answers it with(y
i

; b

i

) (here is where we use the fact that
w.l.o.g all thea

i

’s are distinct).
Clearly the distribution offG0

(s

0

)g

s

0 is identically dis-
tributed tofG�̂

(s)g

�̂2Pi

t;n

;s

thus:

jPr

x

[T (x) = 1℄�Pr

s

0

[T (G

0

(s

0

)) = 1℄j < 2�

which ends the proof. 2

5 Lower Bound for One Way Hash Functions

In this section we show our lower bound for UOWHF
constructions. The proof outline is similar to the one for
the case of PRG’s. We start from a UOWHF construc-
tion H

(�)

(�; �) that expects as an oracle a permutation� :

f0; 1g

n

! f0; 1g

n. We assume thatH takes as input ar-
bit key and compressesm+k-bit inputs intom-bit outputs.

If the construction makes a numberq of accesses into the
permutation such thatq < k=5 logS (whereS is the secu-
rity of the permutation), then we show that it is possible to
derive an unconditionally secure construction of UOWHF.

As in the case of PRG, we observe thatH is uncondi-
tionally secure when the permutation� is chosen so that it
randomly permutes the first5 logS bits of the inputs, while
leaving the remaining bits unchanged. We then show that
this idealized setting can be realized by putting answers for
theq queries into the key (one needs about5q logS bits to
specify such answers, since only the relevant5 logS bits
of each answer have to be specified). Furthermore, we put
in the output of our new hash function theq queries (or
rather, the first5 logS bits of each such query) done dur-
ing the computation. Ifq < k=5 logS we are still getting
a length-decreasing function, and we are able to show that
if an adversary can find collision in this new construction,
then there is an adversary that finds collisions in the ideal-
ized setting, which we know is impossible. So we get an
unconditionally secure construction of UOWHF.

Theorem 5 Let H(�)

: f0; 1g

r

� f0; 1g

m+k

! f0; 1g

m

be a(S
p

; S

h

; �) UOWHF construction that makesq queries
into the permutation oracle, suppose� > 2

�S

p . If q <

k=5 logS

p

then there is a(S
h

; 2�) UOWHH

0

: f0; 1g

r

0

�

f0; 1g

m+k

! f0; 1g

m

0

(with m0

< m + k) without access
to a permutation oracle.

PROOF: If H(�)

(�; �) is (S

p

; S

h

; �)-UOWH, it means that if
� : f0; 1g

n

! f0; 1g

n is S

p

-hard then, for any collision
finding adversaryA of sizeS

h

we have that

Pr

s;z

[A

�

(z; s;H

�

(s; z)) = z

0

: z 6= z

0 and

H

�

(s; z) = H

�

(s; z

0

)℄ � �

Let us definet = 5 logS

p

. For an elementx 2 f0; 1gn, we
call the string made up by the firstt bits ofx thet-prefixof
x.

We will now define a stronger notion of collision for
H . We say thatz0 is a strong collisionfor z with seeds
and permutation� if z0 6= z, H�

(s; z) = H

�

(s; z

0

) and
thet-prefixes of theq queries made during the computation
of H�

(s; z) are the same as thet-prefixes of theq queries
made during the computation ofH�

(s; z

0

). Clearly, for any
adversaryA of size� S

h

, and any permutation� of secu-
rity S

p

we have

Pr

s;z

[A

�

(z; s;H

�

(s; z)) = z

0

:

z

0 is strong collision forz with respect tos and�℄ � �

After making a restriction on the definition of success, we
now also make a restriction on the class of adversaries: in-
stead of considering an adversaryA that can access� ar-
bitrarily, we consider adversaries that do not have oracle
access to�, but are given thet-prefixes of the queries and
answers during the computation ofH

�

(s; z). Since such re-
stricted adversaries can be simulated by general adversaries
with no overhead, we also have that for every permutation
� of securityS

p

and everyA of size� S

h

Pr

s;z

[A(z; s;H

�

(s; z); x

1

; : : : ; x

q

; y

1

; : : : ; y

q

) = z

0

:

z

0 is strong collision forz with respect tos and�℄ � �

wherex
1

; : : : ; x

q

are thet-prefixes of theq queries made to
� during the computation ofH�

(s; z), andy
1

; : : : ; y

q

are
thet-prefixes of the respective answers.

Let nowA be a fixed circuit of size� S

h

, and let us
sample a random permutation� from the set�

t;n

(which
we shorten with� in the following). With high probability,
� is one-way with securityS

p

(see Corollary 3), and in fact
we have:

Pr

�2�

[ Pr

s;z

[A(z; s;H

�

(s; z); x

1

; : : : ; x

q

; y

1

; : : : ; y

q

) = z

0

:

z

0 is strong collision forz℄ > � ℄ < �

which implies

Pr

�2�;s;z

[A(z; s;H

�

(s; z); x

1

; : : : ; x

q

; y

1

; : : : ; y

q

) = z

0

:

z

0 is strong collision forz℄ < 2�

By the same argument in the proof of Theorem 4 we can as-
sume w.l.o.g. thatH queries� only on points with distinct
t-prefixes.

Consider now the hash function:H 0

: f0; 1g

r

0

�

f0; 1g

m+k

! f0; 1g

m

0

wherer0 = r+qt andm0

= m+qt

defined as follows3:

H

0

((s; y

1

; : : : ; y

q

); z) = (H

y

1

;:::;y

q

(s; z); x

1

; : : : ; x

q

)

3As in the case of the PRG less thanqt random bits are actually used
to sampleq distinct random elementsy

1

6= : : : 6= y

q

in f0; 1gt



where by Hy

1

;:::;y

q

(s; z) we mean the computation of
H

(�)

(s; z) when thet-prefix of the answer to thei-th query
is y

i

(and the remaining bits of the answer are equal to
the remaining bits of the query); and where we denote by
x

1

; : : : ; x

q

thet-prefixes of theq queries made during such
computation.

Notice that ifq < k=t thenm0

< m + k, i.e. this is a
length-decreasing function. Now clearly for any adversary
A of sizeS

h

we have that

Pr

s

0

;x

[A(s

0

; z;H

0

(s

0

; z)) = z

0

: z 6= z

0 and

H

0

(s

0

; z) = H

0

(s

0

; z

0

)℄ = Pr

�2�;s;z

[

A

�

(z; s;H

�

(s; z); x

1

; : : : ; x

q

; y

1

; : : : ; y

q

) = z

0

:

z

0 is strong collision forz℄ < 2�

which means thatH 0 is (S

h

; 2�)-UOWH. Notice lastly that
H

0 does not invoke any oracle. 2
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