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Abstract

We present a linear-programming based method for

�nding \gadgets", i.e., combinatorial structures reduc-

ing constraints of one optimization problems to con-

straints of another. A key step in this method is a

simple observation which limits the search space to a

�nite one. Using this new method we present a number

of new, computer-constructed gadgets for several dif-

ferent reductions. This method also answers a question

posed by [1] on how to prove the optimality of gadgets

| we show how LP duality gives such proofs.

The new gadgets improve hardness results for

MAX CUT and MAX DICUT, showing that approx-

imating these problems to within factors of 60=61 and

44=45 respectively is NP-hard (improving upon the pre-

vious hardness of 71=72 for both problems [1]). We also

use the gadgets to obtain an improved approximation

algorithm for MAX 3SAT which guarantees an approx-

imation ratio of :801. This improves upon the previous

best bound (implicit in [6, 3]) of :7704.

1 Introduction

A \gadget" is a �nite combinatorial structure which

translates constraints of one optimization problem into

a set of constraints of a second optimization problem.

A typical example is in the reduction from 3SAT to

MAX 2SAT [4] in which a clause C

k

= X

1

_X

2

_X

3

is replaced by ten clauses

X

1

; X

2

; X

3

; :X

1

_ :X

2

; :X

2

_ :X

3

; :X

3

_ :X

1

;

Y

k

; :X
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_ :Y

k
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If clause C

k

is satis�ed, then 7 of the 10 new clauses are

satis�ed by setting Y

k

appropriately; otherwise only 6

of the 10 are satis�able. Use of the superscript Y

k

is

only to indicate that each clause C

k

gets its own \aux-

iliary variables"; henceforth we will only consider one

clause (or one \constraint") at a time, so we'll dispense

with the superscripts. We will re-visit the 3SAT-to-

2SAT reduction in Lemma 6.4.

Starting with the work of Karp, gadgets have played

a fundamental role in showing the hardness of opti-

mization problems. They are the core of any reduction

between combinatorial problems, and they retain this

role in the spate of new results on non-approximability

of optimization problems.

Despite their importance, the construction of gad-

gets has always been a \black art", with no known

uniform methods. In fact, until recently no one had

even proposed a concrete de�nition of a gadget; Bellare,

Goldreich and Sudan [1] �nally did so, with a view to

quantifying the role of gadgets in non-approximability

results. Their de�nition is accompanied by a seem-

ingly natural \cost" measure for a gadget. The more

\costly" the gadget, the weaker the reduction. How-

ever, �nding a gadget for a given reduction remained

an ad hoc task. Additionally, it remained hard to prove

that a gadget's cost was optimal.

This paper addresses the two issues raised above. We

show that for a large class of reductions, the space of

potential gadgets that need to be considered is actu-

ally �nite. This is not entirely trivial, and the proof

depends on properties of the problem that is being re-

duced to. However, the method is very general, and

encompasses a large number of problems. An imme-

diate consequence of the �niteness of the space is the

existence of a search procedure to �nd an optimal gad-

get. But a naive search would be impractically slow,

and search-based proofs of the optimality (or the non-

existence) of a gadget would be monstrously large.

As the next step, we show how to express the search
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for a gadget as a linear program (LP) whose con-

straints guarantee that the potential gadget is indeed

valid, and whose objective function is the cost of the

gadget. Central to this step is the idea of work-

ing with weighted versions of optimization problems

rather than unweighted ones. (The latter would yield

an integer program (IP) while the former yields an

LP). This seemingly helps only in showing hardness

of weighted optimization problems, but a new result

due to Crescenzi, Silvestri and Trevisan [2] shows that

for a large class of optimization problems (including

all the ones considered in this paper), the weighted

versions are exactly as hard with respect to approx-

imation as the unweighted ones. Therefore, working

with the weighted version is as good as working with

the unweighted one.

The LP representation has many bene�ts. First, we

are able to search for much more complicated gadgets

than is feasible manually. Second, we can use the the-

ory of LP duality to present short(er) proofs of opti-

mality of gadgets and non-existence of gadgets. Last,

we can solve relaxed or constrained versions of the LP

to obtain upper and lower bounds on the cost of a gad-

get, which can be signi�cantly quicker than solving the

actual LP. Being careful in the relaxing/constraining

process (and with a bit of luck) we can often get the

bounds to match, thereby producing optimal gadgets

with even greater e�ciency!

Armed with this tool for �nding gadgets (and an

RS/6000, OSL, and often APL2

1

), we examine some

of the known gadgets and construct many new ones.

[1] presented gadgets reducing the computation of a

veri�er to several problems, including MAX 3SAT,

MAX 2SAT, and MAX CUT. We examine these in

turn and show that the gadgets in [1] for MAX 3SAT

and MAX 2SAT were optimal, but their MAX CUT

gadget was not. We improve on the e�ciency of the

last, thereby improving on the factor to which ap-

proximating MAX CUT can be shown to be NP-hard.

We also construct a new gadget for the MAX DICUT

problem, thereby strengthening its hardness. Our �-

nal result, obtained by plugging our gadget into the

proof of [1], shows that approximating MAX CUT to

within a factor of 60=61 is NP-hard, as is approximat-

ing MAX DICUT to within a factor of 44=45. (For

both problems, the previous best hardness factor was

71=72 [1].)

2

1

respectively, an IBM RiscSystem/6000workstation, the IBM

Optimization Subroutine Library, which includes a linear pro-

gramming package, and (not that we're partisan) IBM's APL2

programming language

2

Note that approximation ratios in this paper for maximiza-

Obtaining better reductions between problems can

also yield improved approximation algorithms for some

problems (if the reduction goes the right way!). We

illustrate the point by constructing a gadget reduc-

ing MAX 3SAT to MAX 2SAT. Using this new re-

duction in combination with a technique of Goemans

and Williamson [5, 6] and the state-of-the-art :931-

approximation algorithm for MAX 2SAT due to Feige

and Goemans [3] (which improves upon the previous

(famous) :878-approximation algorithm of [6]), we ob-

tain a :801-approximation algorithm for MAX 3SAT.

The best result that could be obtained previously, by

combining the technique of [5, 6] and the bound of [3],

was :7704. (This is not mentioned explicitly anywhere

but why would we lie. See also the :769-approximation

algorithm in the paper of Ono, Hirata, and Asano [8].)

Finally, our reductions have implications for proba-

bilistically checkable proof systems. Let PCP

c;s

[log; q]

be the class of languages that admitmembership proofs

that can be checked by a probabilistic veri�er that

uses a logarithmic number of random bits, reads at

most q bits of the proof, accepts correct proofs with

probability at least c, and accepts strings not in the

language with probability at most s. We show: �rst,

that there exist constants c and s, c=s > 34=33, such

that NP � PCP

c;s

[log; 2]; and second, for all c; s with

c=s > 2:7214, PCP

c;s

[log; 3] � P. The best previously

known bounds for these results were 74/73 [1] and 4 [9]

respectively.

All the gadgets we use are computer constructed. In

the �nal section, we present an example of a \lower

bound" on the performance of a gadget; the bound

is not computer constructed (and cannot be, by the

nature of the problem), but it still relies on de�ning an

LP which describes the optimal gadget, and extracting

a lower bound from the LP's dual.

Organization of this paper The next section intro-

duces precise de�nitions which formalize the preceding

outline. Section 3 presents the �niteness proof and the

LP-based search strategy. Section 4 contains negative

(non-approximability) results and the gadgets used to

derive them. Section 5 briey describes our computer

system for generating gadgets. Section 6 presents the

positive result for approximating MAX 3SAT. Sec-

tion 7 presents an example of a proof of the optimality

of a gadget.

tion problems are less than 1, and represent the weight of the

solution achievable by a polynomial time algorithm, divided by

the weight of the optimal solution. This is the reciprocal of

the factors mentioned in [1] and exactly the factors as stated in

[10, 5, 6, 3].
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2 De�nitions

We begin with some de�nitions we will need before

giving the de�nition of a gadget from [1].

De�nition 2.1 A (k-ary) constraint function is a

boolean function f : f0; 1g

k

! f0; 1g.

When it is applied to variables X

1

; : : : ; X

k

(see the fol-

lowing de�nitions) the function f is thought of as im-

posing the constraint f(X

1

; : : : ; X

k

) = 1. In the open-

ing example, the reduction from 3SAT to MAX 2SAT,

f is the constraint X

1

_X

2

_X

3

.

De�nition 2.2 A constraint family F is a �nite col-

lection of constraint functions. The arity of F is the

maximum number of arguments of the functions in F .

In the reduction from 3SAT to MAX 2SAT, F con-

tains the three binary (2-ary) constraint functions

f

00

(a

1

; a

2

) = a

1

_a

2

, f

10

(a

1

; a

2

) = :a

1

_a

2

, and

f

11

(a

1

; a

2

) = :a

1

_:a

2

, and the two unary (1-ary) con-

straint functions f

0

(a

1

) = a

1

and f

1

(a

1

) = :a

1

. How

these are applied is formalized in the next de�nition.

De�nition 2.3 A constraint C over a variable set

X

1

; : : : ; X

n

is a pair C = (f; (i

1

; : : : ; i

k

)) where f :

f0; 1g

k

! f0; 1g is a constraint function and i

j

2 [n]

for j 2 [k]. Variable X

j

is said to occur in C if

j 2 fi

1

; : : : ; i

k

g. The constraint C is said to be satis-

�ed by an assignment ~a = a

1

; : : : ; a

n

to X

1

; : : : ; X

n

if

C(a

1

; : : : ; a

n

)

def

= f(a

i

1

; : : : ; a

i

k

) = 1. We say that con-

straint C is from F if f 2 F .

So in the opening example, the �rst constraint :X

1

could be described as (f

1

; (1)), while (if we give Y the

index 4), the last clause :X

3

_ :Y is the constraint

(f

11

; (3; 4)).

We can now formally de�ne a gadget.

De�nition 2.4 [Gadget [1]] For � 2 R

+

, a constraint

function f : f0; 1g

k

! f0; 1g, and a constraint family F :

an �-gadget (or \gadget with performance �") reducing

f to F is a �nite collection of real weights w

j

� 0, and

associated constraints C

j

fromF over primary variables

X

1

; : : : ; X

k

and auxiliary variables Y

1

; : : : ; Y

n

, with the

property that, for boolean assignments ~a to X

1

; : : : ; X

k

and

~

b to Y

1

; : : : ; Y

n

, the following are satis�ed:

(8~a : f(~a) = 1) (8

~

b) :

X

j

w

j

C

j

(~a;

~

b) � �; (1)

(8~a : f(~a) = 1) (9

~

b) :

X

j

w

j

C

j

(~a;

~

b) = �; (2)

(8~a : f(~a) = 0) (8

~

b) :

X

j

w

j

C

j

(~a;

~

b) � �� 1:(3)

The gadget is strict if, in addition,

(8~a : f(~a) = 0) (9

~

b) :

X

j

w

j

C

j

(~a;

~

b) = �� 1:(4)

We say that the function

~

b =

~

b(~a) is a witness for the

gadget if equation (2) (and, for a strict gadget, equa-

tion (4)) is satis�ed by

~

b(~a). For a given witness function

~

b, the function b

i

(~a) =

~

b(~a)

i

.

To show that the introductory example is a strict 7-

gadget, one witness (it is not unique) is the function

~

b(a

1

; a

2

; a

3

) = a

1

^ a

2

^ a

3

. It is straightforward to

verify that this satis�es 7 clauses if one, two, or all

three of a

1

; a

2

; and a

3

are 1, and satis�es 6 clauses if

a

1

= a

2

= a

3

= 0; it is a separate step to verify that

no satisfying assignment gives a value exceeding 7, and

no unsatisfying assignment gives a value exceeding 6.

We observe that because the weights may all be re-

scaled, what is signi�cant is the ratio of the right-hand

sides of equations (1{4). A \strong" gadget is one

with a small �; in particular, if �

0

> �, any �-gadget

is also automatically (after re-scaling) an �

0

-gadget.

(But strictness is not maintained.) In the extreme, a

1-gadget would do a perfect reduction.

Because of the natural association between a gadget

and the corresponding function

P

w

j

C

j

, a gadget may

be thought of as an instance of a \(weighted) constraint

satisfaction problem".

De�nition 2.5 For a function familyF , MAX F is the

optimization problem whose instances consist of m con-

straints fromF , on n variables, and whose objective is to

�nd an assignment to the variables which maximizes the

number of satis�ed constraints.

Viewed as a constraint satisfaction problem, a gadget

has the property that when restricted to any satisfying

assignment ~a to X

1

; : : : ; X

k

its maximum is exactly �,

and when restricted to any unsatisfying assignment its

maximum is at most �� 1 (exactly �� 1 if the gadget

is strict).

For convenience we now give a comprehensive list

of all the constraints and constraint families used in

this paper. We motivate these classes briey after the

de�nitions.

De�nition 2.6

� Parity check is the constraint family PC = fPC

0

;

PC

1

g, where, for i 2 f0; 1g, PC

i

is de�ned as fol-

lows:

PC

i

(a; b; c) =

8

<

:

1 if a� b� c = i

0 otherwise.
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� Respect of monomial basis check is the constraint

family RMBC = fRMBC

ij

ji; j 2 f0; 1gg, where

RMBC

ij

(a; b; c; d) =

8

>

>

>

<

>

>

>

:

1 if a = 0 and b = c� i

1 if a = 1 and b = d� j

0 otherwise.

RMBC

00

may be thought of as the test (c; d)[a]

?

= b,

RMBC

01

as the test (c;:d)[a]

?

= b, RMBC

10

as

the test (:c; d)[a]

?

= b and RMBC

11

as the test

(c; d)[a]

?

= :b.

� For any k � 1, Exactly-k-SAT is the constraint fam-

ily EkSAT = ff : f0; 1g

k

! f0; 1g : jf~a : f(~a) =

0gj = 1g, that is, the set of k-ary disjunctive con-

straints.

� For any k � 1, k-SAT is the constraint family kSAT

=

S

l2[k]

ElSAT.

� SAT is the constraint family SAT =

S

l�1

ElSAT

� 3-Conjunctive SAT is the constraint family3ConjSAT

= ff

000

; f

100

; f

110

; f

111

g, where:

1. f

000

(a; b; c) = a ^ b ^ c.

2. f

001

(a; b; c) = a ^ b ^ :c

3. f

011

(a; b; c) = a ^ :b^ :c

4. f

111

(a; b; c) = :a^ :b ^ :c

� CUT is the constraint function CUT : f0; 1g

2

!

f0; 1g with CUT(a; b) = a� b.

� DICUT is the constraint function DICUT : f0; 1g

2

! f0; 1g with DICUT(a; b) = :a^ b.

� 2CSP is the constraint family consisting of all 16 bi-

nary functions, i.e. 2CSP = ff : f0; 1g

2

! f0; 1gg.

Table 1 summarizes the gadgets found in this pa-

per. The gadget reduces a function f (called source)

to a family F (called target). The above list of con-

straint families includes both sources and targets of

reductions.

Our interest in the function families PC and RMBC

comes from the following theorem of [1].

Theorem 2.7 [1] For any family F , if there exists an

�

1

-gadget reducing every function in PC to F and an

�

2

-gadget reducing every function in RMBC to F , then

for any  > 0, MAX F is hard to approximate to within

1�

:15

:6�

1

+:4�

2

+ .

Thus using CUT, DICUT, 2CSP, EkSAT and kSAT

as the target of reductions shows the hardness of MAX

CUT, MAX DICUT, MAX 2CSP, MAX EkSAT and

MAX kSAT respectively, and minimizing the value of

� in the gadgets gives better hardness results.

We also use 2SAT as a target to obtain new approx-

imation algorithms for the source (by a reduction to

MAX 2SAT and using the algorithm of [3] to approxi-

mate this problem). The two families reduced to 2SAT

in this way are 3SAT and 3ConjSAT.

3 The Basic Procedure

In this section we shall illustrate our technique by con-

structing a gadget reducing PC

0

to 2SAT.

The key aspect of making the gadget search spaces

�nite is to limit the number of auxiliary variables, by

showing that duplicates (in a sense to be clari�ed) can

be eliminated by means of proper substitutions.

Let f be a k-ary function with s satisfying assign-

ments ~a

(1)

; : : : ;~a

(s)

. For a gadget � with n auxiliary

variables reducing f to a familyF , an extended witness

of � is a s � (n + k) matrix (c

ij

) such that c

ij

= a

(i)

j

for j � k, and c

ij

= b

j�k

(~a

(i)

) otherwise, where

~

b is a

witness of �.

Lemma 3.1 If an �-gadget � reducing f to an r-ary

familyF has an extended witness with r+1 equal columns,

and at least one column corresponds to an auxiliary vari-

able, then there is an �-gadget �

0

using one fewer auxiliary

variable. If � is strict, so is �

0

.

Proof : Let (c

ij

) be the extended witness claimed in

the hypothesis, let i

1

; : : : ; i

r

; i

r+1

be indices of equal

columns of (c

ij

), and assume without loss of general-

ity that i

r+1

> k. We wish to show that we can ob-

tain a new �-gadget by replacing occurrences of X

i

r+1

with some other X

i

j

. For any constraint C of �, de�ne

red(C) as follows. If X

i

r+1

does not occur in C, then

red(C) = C. Otherwise, since at most r variables occur

in C, it follows that X

i

h

does not occur in C for some

h 2 [k]. Then, we de�ne red(C) as the constraint ob-

tained from C by replacing the occurrence of X

i

r+1

by

an occurrence ofX

i

h

. If � = (C

1

; : : : ; C

m

; w

1

; : : : ; w

m

),

then de�ne a new gadget �

0

= (red(C

1

); : : : ; red(C

m

);

w

1

; : : : ; w

m

). Correspondingly, let

~

b

0

(~a) be identical

to b(~a) but with b

i

r+1

eliminated. �

0

has n � 1 auxil-

iary variables (X

i

r+1

never occurs in �

0

). By construc-

tion, �

0

(~a;

~

b

0

(~a)) � �(~a;

~

b(~a)), so �

0

satis�es the gadget-

de�ning equation (2). (Similarly, for strict gadgets �,

4



source f �! target F our � was

3SAT �! 2SAT 3.5 7

3ConjSAT �! 2SAT(y) 4

PC �! 3SAT 4 4

PC �! 2SAT 11 11

PC �! 2CSP 5 11

PC

0

�! CUT(z) 8 10

PC

0

�! DICUT 6.5

PC

1

�! CUT(z) 9 9

PC

1

�! DICUT 6.5

RMBC �! 2CSP 5 11

RMBC �! 3SAT 4 4

RMBC �! 2SAT 11 11

RMBC

00

�! CUT(z) 8 11

RMBC

00

�! DICUT 6

RMBC

01

�! CUT(z) 8 12

RMBC

01

�! DICUT 6.5

RMBC

10

�! CUT(z) 9 12

RMBC

10

�! DICUT 6.5

RMBC

11

�! CUT(z) 9 12

RMBC

11

�! DICUT 7

Table 1: All gadgets described are provably optimal,

and strict. The sole exception (y) is the best possible

strict gadget; there is a non-strict 3-gadget. All previ-

ous results quoted are interpretations of the results in

[1], except the gadget reducing 3SAT to 2SAT, which

is due to [4], and the gadget reducing PC to 3SAT,

which is folklore. The gadgets marked with (z) are not

strictly reductions to CUT; see Section 4.1.

�

0

satis�es (4)). Also, the range of the universal quan-

ti�cation for �

0

is smaller than that for �, therefore �

0

satis�es inequalities (1) and (3). 2

De�nition 3.2 For a constraint f , call two variables a

j

0

and a

j

distinct if there exists an assignment ~a, satisfy-

ing f , for which a

j

0

6= a

j

.

Corollary 3.3 Suppose f is a constraint on k variables,

with s satisfying assignments and k

0

distinct variables. If

there is an �-gadget reducing f to an r-ary family F ,

then there is an �-gadget with at most r2

s

� k

0

auxiliary

variables.

If there is a strict �-gadget reducing f to F , then there

is a strict �-gadget with at most r2

2

k

� k auxiliary vari-

ables.

Proof : In the �rst case, the domain of the witness

function b is fa : f(a) = 1g, a set of cardinality s,

so an extended witness has s rows, and the number of

distinct columns is at most 2

s

. If there are more than

r+1 equal columns, and not all of them correspond to

primary variables, then we can eliminate one auxiliary

variable as per the preceding lemma; thus no more than

r2

s

� k

0

auxiliary variables are required.

For strict gadgets the proof is identical, except that

the domain of the witness function b is fa 2 f0; 1g

k

g.

Here the k primary variables are all distinct, since the

domain considered is that of all assignments. 2

Note that further reductions in the number of auxil-

iary variables are often possible. In the proof of Lemma

3.1 we used substitutions whenever there were r + 1

equal columns. Indeed, for constraint families like 3SAT

we can make substitutions whenever there are two equal

columns, since there is the possibility to replace an (il-

legal) constraint like (X

1

_X

1

_X

3

) by a legal constraint

(X

1

_X

3

). In general this is possible if the target of the

reduction is a family with a property that we name by

analogy with the terminology for matroids:

De�nition 3.4 A constraint family F is hereditary if

for any f

i

(X

1

; : : : ; X

n

i

) 2 F , and any two indices j; j

0

2

[n

i

], the function f

i

when restricted to X

j

� X

j

0

and

considered as a function of n

i

� 1 variables, is identical

(up to the order of the arguments) to some other function

f

i

0

2 F [f0; 1g, where n

i

0

= n

i

� 1 (and 0 and 1 denote

the constant functions).

Lemma 3.5 If an �-gadget � reducing f to a hereditary

family F has a witness function for which two auxiliary

variables are identical (i.e. b

j

0

(�) � b

j

(�)), or if an auxil-

iary variable is identical to a primary variable (b

j

0

(~a) � a

j

)

then there is an �-gadget �

0

using one fewer auxiliary vari-

able. If � is strict, so is �

0

.

Proof : Similar to the proof of Lemma 3.1, except we

use the hereditary property to ensure that the result of

substitution is a gadget. 2

If the constraint family allows the complementation

of any variable (as for example 2SAT but not CUT or

DICUT), then the number of auxiliary variables may

5



be approximately halved: we need only consider wit-

ness functions whose value is 1 at least as often as it

is 0.

De�nition 3.6 A family F is complementation-closed

if it is hereditary and, for any f

i

(X

1

; : : : ; X

n

i

) 2 F , and

any index j 2 [n

i

], the function f

0

i

given by f

0

i

(X

1

; : : : ; X

n

i

)

= f

i

(X

1

; : : : ; X

j�1

;:X

j

; X

j+1

; : : : ; X

n

i

) is contained in

F .

Notice that for a complementation-closed family F ,

the hereditary property implies that if f

i

(X

1

; : : : ; X

n

i

)

is contained in F then so is the function f

i

restricted to

X

j

� :X

j

0

for any two distinct indices j; j

0

2 [n

i

]. This

guarantees that we can make substitutions even if two

columns in the (extended) witness are complements of

each other. To sum up, we have the following result.

Lemma 3.7 Suppose f is a constraint on k variables,

with s satisfying assignments and k

0

� k variables distinct

even under complementation. If there is an �-gadget re-

ducing f to a hereditary (respectively, complementation-

closed) constraint family F , then there is an �-gadget

with at most 2

s

� k

0

(respectively, 2

s�1

� k

0

) auxiliary

variables.

In some cases (e.g. 2SAT but not CUT), there is also

no need to consider witness functions which are iden-

tically 0 or identically 1. (Clauses in which their cor-

responding auxiliary variables appear can be replaced

by shorter clauses eliminating those variables.)

The previous discussion means that if we are look-

ing for an �-gadget reducing PC

0

to 2SAT with the

minimum value of �, then we can restrict our search

to gadgets over at most 7 variables. Over 7 variables,

2 �7+4 �

�

7

2

�

2SAT constraints can be de�ned; call them

C

1

; : : : ; C

98

. A gadget over 7 variables can thus be

identi�ed with the vector (w

1

; : : : ; w

98

) of the weights

of the constraints. Since in [1] it is shown that an 11-

gadget exists reducing PC

0

to 2SAT, it follows that in

an optimum gadget no constraint will have a weight

larger than 11. If we were allowed only integer weights

over the constraints, then an optimum gadget could

be found by exhaustive search over a space of 12

98

elements. Allowing real weights over the constraints

makes the search space in�nite, yet we can use lin-

ear programming to �nd an optimum gadget quite ef-

�ciently. Consider the following linear program with

64 + 4 + 64 = 132 constraints over 99 variables:

minimize � (LP1)

subject to

(8~a : PC

0

(~a) = 1) (8

~

b) :

P

j

w

j

C

j

(~a;

~

b) � �

(8~a : PC

0

(~a) = 1) :

P

j

w

j

C

j

(~a;

~

b(~a)) = �

(8~a : PC

0

(~a) = 0) (8

~

b) :

P

j

w

j

C

j

(~a;

~

b) � �� 1

� � 0

(8j 2 [98]) : w

j

� 0:

In general, any \duplicated" variables can be elimi-

nated from an �-gadget to give a \simpli�ed"�

0

-gadget

(�

0

� �), and the �

0

-gadget can be associated with its

(�xed-length) vector of weights.

Theorem 3.8 The weight vector associated with any

simpli�ed �-gadget provides a feasible solution to the as-

sociated LP, and conversely any feasible solution to the LP

is a weight vector which describes an �-gadget. An opti-

mal LP solution yields an optimal �-gadget (one where �

is as small as possible).

In particular, (LP1) has optimal solution � = 11,

proving the optimality of the [1] gadget.

In the remaining sections we give applications of

some gadgets and then report their best possible gad-

gets. All gadgets are computer-constructed unless oth-

erwise noted. Most gadgets are omitted for brevity.

4 Improved Negative Results

4.1 MAX CUT

We begin by showing an improved hardness result for

the MAX CUT problem. It is not di�cult to see that

no gadget per De�nition 2.4 can reduce any member

of PC to CUT: For any setting of the variables which

satis�es equation (2), the complementary setting has

the opposite parity (so that it must be subject to in-

equality (3)), but the values of all the CUT constraints

are unchanged (so the gadget's value is still �, violat-

ing (3)). Following [1], we generalize the de�nition:

De�nition 4.1 A gadget with auxiliary constant 0 is a

gadget as previously de�ned, except that (1{4) are only

required to hold when Y

1

= 0.

To get a hardness result for MAX CUT, we �rst need

the following lemma, which is a very minor modi�ca-

tion of a lemma in [1].

6



0

x1

x2

x3

Figure 1: 8-gadget reducing PC

0

to CUT. Every edge

has weight .5. The auxiliary variable which is always 0

is labelled 0.

Lemma 4.2 [1] For the constraint family CUT, if there

exists an �

1

-gadget with constant 0 reducing every func-

tion in PC to CUT and an �

2

-gadget with constant 0

reducing every function in RMBC to CUT, then for any

 > 0, MAX CUT is NP-hard to approximate to within

1�

:15

:6�

1

+:4�

2

+ .

Notice that the CUT constraint family is hereditary,

since identifying the two variables in a CUT constraint

yields the constant function 0. Thus by Lemma 3.7,

if there is an �-gadget with constant 0 reducing PC

0

to CUT, then there is an �-gadget with at most 13

auxiliary variables (16 variables in all). Only

�

16

2

�

=

120 CUT constraints are possible on 16 variables. Since

we only need to consider the cases when Y

1

= 0, we can

construct a linear program as above with 2

16�1

+ 4 =

32; 772 constraints to �nd the optimal �-gadget with

constant 0 reducing PC

0

to CUT. A linear program

of the same size can similarly be constructed to �nd a

gadget with constant 0 reducing PC

1

to CUT.

Lemma 4.3 There exists an 8-gadget with constant 0

reducing PC

0

to CUT, and it is optimal and strict. There

exists a 9-gadget reducing PC

1

to CUT, and it is optimal

and strict.

The PC

0

gadget is shown in Figure 1. It turns out

that we cannot apply exactly the technique above to

�nd an optimal gadget that reduces RMBC

00

to CUT.

Since there are 8 satisfying assignments to the 4 vari-

ables of the RMBC

00

constraint, by Lemma 3.7, we

would need to consider 2

8

�4 = 252 auxiliary variables,

leading to a linear program with 2

252

+ 8 constraints,

which is somewhat beyond the capacity of current com-

puters.

To overcome this di�culty, we observe that for the

RMBC

00

function when a

1

= 0, the value of a

4

is irrel-

evant, and when a

1

= 1, the value of a

3

is irrelevant.

Thus we consider only restricted witness functions for

which

~

b(0; a

2

; a

3

; 0) =

~

b(0; a

2

; a

3

; 1) and

~

b(1; a

2

; 0; a

4

) =

~

b(1; a

2

; 1; a

4

). It is not a priori obvious that a gadget

with a witness function of this form exists, but we as-

sume for the moment that such a gadget does exist.

Following the proof of Lemma 3.7, we note that the size

of the domain of a restricted witness function is now 4

(instead of 8). Thus if an �-gadget with constant 0 and

the restricted witness function exists, an �-gadget with

constant 0 and at most 2

4

auxiliary variables exists.

Noting that we can identify auxiliary variables identi-

cal to a

1

or a

2

, we can consider gadgets with at most

14 auxiliary variables. We can then create a linear pro-

gramwith

�

18

2

�

= 153 variables and 2

18�1

+8 = 131; 080

constraints. The result of the linear program is the fol-

lowing.

Lemma 4.4 There exist 8-gadgets with constant 0 re-

ducing RMBC

00

and RMBC

01

to CUT. There exist 9-

gadgets reducing RMBC

10

and RMBC

11

with constant

0 to CUT. All are optimal and strict.

Notice that since we used a restricted witness func-

tion, the linear program does not prove that the gad-

gets are optimal. In order to prove the optimality of

our gadget we ran a di�erent linear program. This

time we pick only a subset of the constraints arising

from part (2) of the de�nition of a gadget. We restrict

our attention to only four of the accepting con�gura-

tions. For the case of RMBC

00

, these were 0100, 1001,

1010 and 0111. It is clear that since the linear program

arising from this has fewer constraints, its solution pro-

vides a lower bound on the performance of the gadget

reducing RMBC

00

to CUT with constant 0. Luckily,

it turns out that the lower bound obtained in this way

equaled the performance of the gadget, thus providing

a proof of optimality. In fact, this \under-constrained"

LP also produced a valid gadget (more luck!), so the

restricted-witness-function trick was not needed after

all.

3

The two lemmas imply the following theorem.

Theorem 4.5 For every  > 0, MAX CUT is hard to

approximate to within 59=60 +  � :983. In particular,

MAX CUT is hard to approximate to within 60=61.

3

The optimum objective function value of a LP is of course

unique but in general the corresponding primal (and dual) solu-

tions are not unique. We have observed most or all of our LP's

producing di�erent solutions | di�erent optimal gadgets. For

this lower-bounding LP, it is possible that a di�erent solution

would not happen to produce a gadget.

7
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Figure 2: 8-gadget reducing PC

0

to DICUT. Edges

have weight 1 except when marked otherwise.

4.2 MAX DICUT

An analysis similar to that above leads to linear pro-

grams generating gadgets reducing members of PC and

RMBC to DICUT. The only di�erence is that in this

case we do not need gadgets with a constant.

Lemma 4.6 There exist 6:5-gadgets reducing PC

0

and

PC

1

to DICUT, and they are optimal and strict.

The PC

0

gadget is shown in Figure 2.

Lemma 4.7 There exists a 6-gadget reducing RMBC

00

to DICUT, 6:5-gadgets reducing RMBC

01

and RMBC

10

to DICUT and a 7-gadget reducing RMBC

11

to DICUT.

All are optimal and strict.

Theorem 4.8 For every  > 0, MAX DICUT is hard

to approximate to within 131=134 +  � :978. In par-

ticular, MAX DICUT is hard to approximate to within

44=45.

4.3 MAX 2-CSP

Lemma 4.9 There exist 5-gadgets reducing PC

0

and

PC

1

to 2CSP, and they are optimal and strict.

Lemma 4.10 There exist 5-gadgets reducing every con-

straint function in the family RMBC to 2CSP. All are

optimal and strict.

Theorem 4.11 For every  > 0, MAX 2CSP is hard to

approximate to within :97+ . In particular, MAX 2CSP

is hard to approximate to within 33=34.

MAX 2CSP can be approximated within .859 [3].

The above theorem has implications for probabilisti-

cally checkable proofs. Using the well-known reduc-

tion from constraint satisfaction problems to proba-

bilistically checkable proofs, Theorem 4.11 implies that

constants c and s exist such that NP � PCP

c;s

[log; 2]

and c=s > 34=33. The previously known gap between

the completeness and soundness achievable reading two

bits was 74=73 [1].

5 Interlude: Methodology

Despite the seeming variety, all gadgets in this paper

were computed by a single APL2 program (calling OSL

to solve the constructed LP). The source function f is

speci�ed explicitly, by a small program. Capitalizing

on regularities of the problems of interest, the target

familyF is speci�ed by an underlying function (e.g. dis-

junction) applied within all clauses of speci�ed length

and symmetries (ordered or unordered; variable com-

plementation permitted or prohibited).

Selected assignments are speci�ed explicitly. They

de�ne the extended witness function, from which du-

plicates (under the speci�ed symmetries) are removed.

The witness function is equivalent to the auxiliary vari-

ables' identities. Re-iterating previous points, selecting

of all accepting assignments will produce a gadget, se-

lecting of all assignments will produce a strict gadget,

and selecting a subset of these assignments will pro-

duce a lower bound and | with luck | a valid gadget.

Use of a \don't-care" state (in lieu of 0 or 1) in selected

assignments guarantees a gadget (if the LP is feasible),

but not optimality. To illustrate, the most complex

gadget speci�cation was that for the reduction from

RMBC

00

to CUT, whose input was

(; 0)('BU'; 0) RMBC00 MAKE 6= (00*0)(011*)(10*0)(11*1):

Evaluating all assignments to the primary and aux-

iliary variables de�nes the inequality constraints of the

LP, while witness assignments de�ne the equality con-

straints. After the LP is constructed and solved, an

independent veri�cation step con�rms the gadget's va-

lidity, performance, and strictness.

Complete run times for the hardest gadgets described

in this paper were in the range of a half hour on an

RS/6000 workstation, with memory usage of 500MB

or so. The easiest half-dozen gadgets can be run on a

ThinkPad in seconds.

6 Improved Positive Results

In this section we show that we can use gadgets to

improve approximation algorithms. In particular, we

look at MAX 3SAT, and a variation, MAX 3ConjSAT,

in which each clause is a conjunction (rather than a dis-

junction) of three literals. An improved approximation

8



algorithm for the latter problem leads to improved re-

sults for probabilistically checkable proofs in which the

veri�er examines only 3 bits. Both of the improved

approximation algorithms rely on strict gadgets reduc-

ing the problem to MAX 2SAT. We begin with some

notation.

De�nition 6.1 A (�

1

; �

2

)-approximation algorithm for

MAX 2SAT is an algorithm which receives as input an

instance with unary clauses of total weight m

1

and binary

clauses of total weight m

2

, and two reals u

1

� m

1

and

u

2

� m

2

, and produces reals s

1

� u

1

and s

2

� u

2

and

an assignment satisfying clauses of total weight at least

�

1

s

1

+ �

2

s

2

. If there exists an optimum solution that

satis�es unary clauses of weight no more than u

1

and

binary clauses of weight no more than u

2

, then there is

the guarantee that no assignment satis�es clauses of total

weight more than s

1

+ s

2

.

That is, supplied with a pair of \upper bounds" u

1

; u

2

,

a (�

1

; �

2

)-approximation algorithm produces a single

upper bound of s

1

+ s

2

, along with an assignment re-

specting a lower bound of �

1

s

1

+ �

2

s

2

.

Lemma 6.2 [3] There exists a polynomial-time (:976;

:931) approximation algorithm for MAX 2SAT.

6.1 MAX 3SAT

In this section we show how to derive an improved ap-

proximation algorithm for MAX 3SAT. By restricting

techniques in [6] from MAX SAT to MAX 3SAT and

using a :931-approximation algorithm for MAX 2SAT

due to Feige and Goemans [3], one can obtain a :7704-

approximation algorithm for MAX 3SAT. The basic

idea of [6] is to reduce each clause of length 3 to the

three possible subclauses of length 2, give each new

length-2 clause one-third the original weight, and then

apply an approximationalgorithmfor MAX 2SAT. This

approximation algorithm is then \balanced" with an-

other approximation algorithm for MAX 3SAT to ob-

tain the result. Here we show that by using a strict

gadget to reduce 3SAT to MAX 2SAT, a good (�

1

; �

2

)-

approximation algorithm for MAX 2SAT leads to a

:801-approximation algorithm for MAX 3SAT.

Lemma 6.3 If for every f 2 E3SAT there exists a strict

�-gadget reducing f to 2SAT, there exists a (�

1

; �

2

)-

approximation algorithm for MAX 2SAT, and � � 1 +

(�

1

��

2

)

2(1��

2

)

, then there exists a �-approximation algorithm for

MAX 3SAT with

� =

1

2

+

(�

1

� 1=2)(3=8)

(�� 1)(1� �

2

) + (�

1

� �

2

) + (3=8)

:

Lemma 6.4 For every function f 2 E3SAT, there exists

a strict (and optimal) 3:5-gadget reducing f to 2SAT.

Combining Lemmas 6.2, 6.3 and 6.4 we get a :801-

approximation algorithm.

Theorem 6.5 MAX 3SAT has a polynomial-time :801-

approximation algorithm.

6.2 MAX 3-CONJ SAT

We now turn to the MAX 3ConjSAT problem.

Lemma 6.6 If for every f 2 3ConjSAT there exists a

strict (�

1

+�

2

)-gadget reducing f to 2SAT composed of

�

1

length-1 clauses and �

2

length-2 clauses, and there ex-

ists a (�

1

; �

2

)-approximation algorithm for MAX 2SAT,

then there exists a �-approximation algorithm for MAX

3ConjSAT with

� =

1

8

�

1

1

8

+ (1� �

1

)(�

1

� �

2

) + (1 � �

2

)(�

1

+ �

2

� 1)

provided �

1

+ �

2

> 1 + 1=8(1� �

2

).

The proof is similar to that of Lemma 6.3 and omit-

ted here.

Lemma 6.7 For any f 2 3ConjSAT there exists a strict

(and optimal) 4-gadget reducing f to 2SAT. The gadget

is composed of one length-1 clause and three length-2

clauses.

Theorem 6.8 MAX 3ConjSAT has a polynomial-time

.367-approximation algorithm.

It is shown by Trevisan [9] that the above theorem

has consequences for PCP

c;s

[log; 3]. This is because the

computation of the veri�er in such a proof system can

be described by a decision tree of depth 3, for every

choice of random string. Further, there is a 1-gadget

reducing every function which can be computed by a

decision tree of depth k to kConjSAT. Thus we get

the following corollary for PCP systems using 3 bits of

queries.

Corollary 6.9 PCP

c;s

[log; 3] � P provided that c=s >

2:7214.

The previous best trade-o� between completeness and

soundness for polynomial-timePCP classes was c=s > 4

[9].
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7 A Lower Bound from Duality

All the computer-constructed gadgets referred to in

the preceding sections come with automatic proofs of

optimality: the LP formulation guarantees optimality

mathematically, and the equality of the objective val-

ues computed for the LP and its dual assures optimal-

ity in practice. Here we mention one instance where

we can use duality to provide lower bounds on the � of

a gadget even though such a lower bound can not be

constructed on a computer, since the target family is

in�nite.

Theorem 7.1 If � is an �-gadget reducing any member

of PC to SAT, then � � 4.

Proof : A feasible solution to any LP's dual is a

lower bound for the LP. The linear program that �nds

the best gadget reducing PC

0

to SAT is similar to

(LP1), the only di�erence being that a larger num-

ber of clauses are considered, namely, N =

P

7

i=1

�

7

i

�

2

i

.

The dual program is then:

maximize

X

~a;

~

b:PC

0

(~a)=0

y

~a;

~

b

(DUAL2)

subject to

1 +

P

~a:PC

0

(~a)=1

y

~a;

~

b(~a)

�

P

~a;

~

b

y

~a;

~

b

8j 2 [N ] :

P

~a:PC

0

(~a)=1

ŷ

~a;

~

b(~a)

C

j

(~a;

~

b(~a)) �

P

~a;

~

b

y

~a;

~

b

C

j

(~a;

~

b)

(8~a) (8

~

b) : y

~a;

~

b

� 0

(8~a : PC

0

(~a) = 1) : ŷ

~a;

~

b(~a)

� 0:

Consider now the following assignment of values to

the variables of (DUAL2) (unspeci�ed values are zero):

(8~a : PC

0

(~a) = 1) ŷ

~a;

~

b(~a)

=

3

4

(8~a : PC

0

(~a) = 1)(8~a

0

: d(~a;~a

0

) = 1) y

~a

0

;

~

b(~a)

=

1

3

where d is the Hamming distance between binary se-

quences. It is possible to show that this is a feasible

solution for (DUAL2) and it is immediate to verify that

its cost is 4. 2

Note: In a recent breakthrough result, Hastad [7] has

shown that MAX PC is hard to approximate to within

1=2 + , for any  > 0. The results translate to a

surprising threshold of 7=8+  for the approximability

of MAX E3SAT. Using the gadgets constructed here,

he can also translate this into improved hardness re-

sults of 16=17 +  and 12=13 +  for MAX CUT and

MAX DICUT respectively.
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We apologize for two errors in the FOCS proceedings

version of our paper [2].

The �rst error was typographical. In the introduc-

tory example illustrating a reduction from 3SAT to

MAX 2SAT, the 10 clauses replacing C

k

= X

1

_X

2

_X

3

should be

X

1

; X

2

; X

3

; :X

1

_:X

2

; :X

2

_:X

3

; :X

3

_:X

1

Y

k

; X

1

_ :Y

k

; X

2

_ :Y

k

; X

3

_ :Y

k

:

The second error was in Lemma 3.1 and, as a conse-

quence, Corollary 3.3. However, the further results of

the paper all depend on the more speci�c Lemma 3.5,

which is correct, so our principal claims are una�ected.

Lemma 3.1 claimed that for any gadget reducing a

constraint f to a constraint family F , there exists an

equivalent gadget with at most K auxiliary variables,

where K = K

f;F

is a �nite bound. The error was

pointed out by Karlo� and Zwick [1], who provide a

counterexample in which no �nite gadget achieves op-

timality.

Since the proof of Lemma 3.5 referred to that of

Lemma 3.1, we give here a self-contained proof.

Lemma 3.5 If an �-gadget � reducing f to a hereditary

family F has a witness function for which two auxiliary

variables are identical (i.e. b

j

0

(�) � b

j

(�)), or if an auxil-

iary variable is identical to a primary variable (b

j

0

(~a) � a

j

)

then there is an �

0

-gadget �

0

using one fewer auxiliary

variable, and with �

0

� �. If � is strict, so is �

0

.

Proof : We de�ne a new gadget �

0

obtained from �

by replacing each occurrence of X

j

0

by X

j

and argue

that �

0

is an �

0

-gadget reducing f toF for some�

0

� �.

For any constraint C of �, de�ne red(C) as follows.

If X

j

0

does not occur in C, then red(C) = C. Oth-

erwise, we tentatively de�ne red(C) as the constraint

obtained from C by replacing the occurrence of X

j

0

by

an occurrence ofX

j

. If C did not originally involveX

j

,

then red(C) is a valid constraint from F . If C did in-

volve X

j

already, then red(C) contains two occurences

of X

j

, which is not allowed by our de�nition. However,

the hereditary property of F yields either an equivalent

constraint C

0

2 F or else the constant function 0 or 1.

In this case we reset red(C) to C

0

or the appropriate

constant.

If � = (C

1

; : : : ; C

m

; w

1

; : : : ; w

m

), then de�ne a new

gadget �

0

= (red(C

1

); : : : ; red(C

m

); w

1

; : : : ; w

m

). Cor-

respondingly, let

~

b

0

(~a) be identical to b(~a) but with b

j

0

eliminated. �

0

has one fewer auxiliary variable (X

j

0

never occurs in �

0

).

By construction, �

0

(~a;

~

b

0

(~a)) � �(~a;

~

b(~a)), so �

0

sat-

is�es the gadget-de�ning equation (2). (Similarly, for

strict gadgets �, �

0

satis�es (4)). Also, the range of the

universal quanti�cation for �

0

is smaller than that for

�, therefore �

0

satis�es inequalities (1) and (3). If con-

stants are produced, subtracting them from both sides

of the gadget-de�ning inequalities (1{4) produces an

(��w)-gadget, where w is the total weight on clauses

replaced by 1's. 2
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