
On the E�ciency of Polynomial Time

Approximation Schemes

Marco Cesati

�

Luca Trevisan

y

January 8, 1997

Abstract

A polynomial time approximation scheme (PTAS) for an optimization problem A is an al-

gorithm that on input an instance of A and � > 0 �nds a (1 + �)-approximate solution in time

that is polynomial for each �xed �. Typical running times are n

O(1=�)

or 2

1=�

O(1)

n.

While algorithms of the former kind tend to be impractical, the latter ones are more inter-

esting. In several cases, the development of algorithms of the second type required considerably

new (and sometimes harder) techniques. For some interesting problems (including Euclidean

TSP) only an n

O(1=�)

approximation scheme is known.

Under likely assumptions, we prove that for some problems (including natural ones) there

cannot be approximation schemes running in time f(1=�)n

O(1)

, no matter how fast function f

grows.

Our result relies on a connection with Parameterized Complexity Theory. We show that this

connection is necessary.

Keywords: Computational Complexity, Approximation Algorithms, Parameterized Complexity.

1 Introduction

Approximation algorithms are a natural and e�ective way to deal with the intractability of opti-

mization problems. For r > 1, we say that an algorithm is r-approximate if it computes solutions

whose cost is within the multiplicative factor r from the optimum. For stronlgy NP-hard optimiza-

tion problems, the best possible approximation algorithm can �nd (1+ �)-approximate solutions in

time polynomial in the size of the input but (at least) exponential in �. Such an algorithm is called

a polynomial-time approximation scheme (in short PTAS). We call PTAS the class of optimization

problems that admit a PTAS.

Typical running times of a PTAS are n

O(1=�)

or 2

O(1=�)

n. While a PTAS of the former type

becomes useless even for moderate values of � and n, a PTAS of the latter type can return in

a reasonable amount of time a good approximation for an enormous instance. This observation

motivates our de�nition of e�cient PTAS as an approximation scheme running in time f(�)n

c

,

where f is an arbitrary function and c is a constant independent of �. We call EPTAS the class of

problems adimitting an e�cient PTAS.

�

Dipartimento di Scienze dell'Informazione, Universit�a di Roma \La Sapienza". Via Salaria 113, I-00198 Roma,

Italy. Email cesati@dsi.uniroma1.it.

y

Centre Universitaire d'Informatique, Universit�e de Gen�eve, Rue G�en�eral-Dufour 24, CH-1211, Gen�eve, Switzer-

land. Email trevisan@cui.unige.ch.

1



In general, bounding the running time by a polynomial whose degree does not depend on � is

an implicit but widely followed rule in the design of approximation schemes. We know of several

cases where a EPTAS has been designed for a problem for which a PTAS was already known; the

more e�cient algorithm was often quite di�erent from the previous one.

A PTAS running in time n

O(1=�)

for the problem of scheduling processes on identical machines

was given by Hochbaum and Shmoys in [15]. Very recently, the same authors gave a O(f(�) + n)

algorithm [16], where f is doubly exponential. Arora, Karger, and Karpinski [3] present PTAS's for

dense constraint satisfaction problems (including denseMax CUT and denseMax 3SAT) running

in time n

O(1=�)

. For dense Max CUT, a randomized algorithm by de la Vega [9] runs in time

O(2

poly(1=�)

n

c

). Similar performances are obtained by Frieze and Kannan [13] using an algorithmic

version of Szemeredy's regularity lemma. A more e�cient algorithm is given by Goldreich et al. [14].

It is still open whether there exists an EPTAS for dense Max 3SAT. Khanna and Motwani [17]

develop PTAS's for a large variety of planar constraint satisfcation problems; the running time

is n

O(1=�)

. For some of those problems, Crescenzi and Trevisan [8] improve the running time to

2

poly(1=�)

n. Perhaps the most interesting problem for which a PTAS exists is the Euclidean TSP.

Arora's PTAS [2] runs in time roughly n

30=�

. Arora formulates an algorithmic problem that, if

solved, would imply an EPTAS for Euclidean TSP.

We address the issue of whether all PTAS problems admit an e�cient PTAS. We show that

this problem is connected to parameterized complexity. This research area is a new, powerful

framework with which to address the di�erent parameterized behaviour of many computational

problems. Almost all natural problems have instances consisting of at least two logical items; many

NP-complete problems admit \e�cient" algorithms for small values of one item (the parameter).

Downey and Fellows have introduced [10, 11, 12] the notion of \�xed parameter tractable problem":

a parameterized problem admitting a solving algorithm whose running time, for any �xed value of

the parameter, is bounded by a polynomial of constant degree. The class of all �xed parameter

tractable problems is called FPT. Since a direct proof that some NP-complete problem is not

�xed parameter tractable would imply that P 6= NP, Downey and Fellows have then introduced a

\parameterized reduction" and a hierarchy of classes containing likely �xed parameter intractable

problems (the so-called W hierarchy): FPT � W[1] � W[2] � : : : � W[P] � SP. Moreover, many

very natural parameterized problems have been shown to be complete for several levels of the W

hierarchy, thus giving evidence that this framework is a useful tool for proving (likely) parameterized

intractability.

Our main results are:

1. A two-way relation between parameterized complexity and the EPTAS

?

= PTAS question.

Namely, if FPT = SP, then EPTAS = PTAS, and if FPT 6= W[P] then EPTAS 6= PTAS.

We prove the former result with the usual argument of pre�x languages. The weak reverse

connection makes use of a mildly involved scaling argument.

2. A natural problem mentioned in [17] is not in EPTAS unless FPT = W[1]. This result requires

a proof of W[1]-completeness of the induced language. The main new ingredient of this proof

is a cross-over gadget for multivalued satis�ability problems.

2 De�nitions

De�nition 1 (Parameterized problem) A parameterized problem is a set L � �

�

��

�

, where

� is a �xed alphabet. In an instance hx; yi of a parameterized problem, y encodes the parameters

and is usually an integer (or a set of integers).

2



De�nition 2 (SP, FPT) A parameterized problem L is in SP if there is a function g and an

algorithm T such that T determines if hx; ki 2 L in time bounded by jxj

g(k)

. L is in FPT if there is

a constant c, a function f and an algorithm T such that T determines if hx; ki 2 L in time bounded

by f(k) jxj

c

.

There exists an hierarchy W[1] � W[2] � : : : � W[t] � : : : of classes that are intermediate

between FPT and SP. On top of it, lies the classW[P], still contained in SP (see [10] for de�nitions).

There is some evidence that these classes do not collapse to FPT. In particular, if FPT = W[1]

then 3SAT can be solved in 2

o(n)

time [1] (where n is the number of variables). Natural complete

problems are known for most of these classes under FPT-preserving reductions.

An optimization problem A consists of three objects: (1) the set I of instances, (2) for any

instance x 2 I , a set sol(x) of solutions, and (3) for any instance x 2 I and for any solution

y 2 sol(x), a measure m(x; y). The goal of an optimization problem is, given an instance x, to

�nd an optimum solution y, that is, a solution whose measure is maximum or minimum depending

on whether the problem is a maximization or a minimization one. For a formal de�nition of NP

optimization (NPO) problems see [4]. In the following opt will denote the function that maps an

instance x into the measure of an optimum solution.

Let A be an NPO problem. For any instance x and for any solution y 2 sol(x), the performance

ratio of y with respect to x is de�ned as

R(x; y) = max

�

opt(x)

m(x; y)

;

m(x; y)

opt(x)

�

:

Observe that the performance ratio is always a number greater than or equal to 1 and is as close

to 1 as the solution is close to an optimum solution.

Let r > 1 be a �xed constant; we say that an algorithm T for an optimization problem A is

r-approximate if, for any instance x of size n, the performance ratio of the feasible solution T (x)

with respect to x is at most r.

De�nition 3 (PTAS, EPTAS) A polynomial time approximation scheme (PTAS) for an NPO prob-

lem A is an algorithm T (�; �) that, on input a rational r > 1 and an instance x of A, returns an

r-approximate feasible solution T (x; r); furthermore, the running time of T (x; r) is polynomial in

jxj for each �xed r. A PTAS is said to be an e�cient PTAS (EPTAS) if its running time is bounded

by f(r)jxj

c

where f is an arbitrary function and c is a �xed constant. We call PTAS (resp. EPTAS)

the class of optimization problems admitting a PTAS (resp. EPTAS).

De�nition 4 (Induced language) For a maximization (resp. minimization) problem A, the in-

duced language is the parameterized problem consisting of all the pairs hx; ki where x is an instance

of A and opt(x) � k (resp. opt(x) � k).

3 Necessity of Parameterized Complexity

Theorem 5 If FPT = SP then EPTAS = PTAS.

Proof: Let A be a PTAS problem, then an approximation scheme T (x; r) exists whose running

time is polynmomial for every �xed r > 1; let us consider the following paramterized language

L

T

= fh(x; y); ki : 9z:yz = T (x; 1 + 1=k)g. Clearly, L

T

2 SP, and thus L

T

2 FPT. From an FPT

algorithm for L

T

it is easy to construct an algorithm T

0

that simulates T and whose running time

is bounded by f(d1=(r� 1)e)jxj

�

for certain function f and constant �. 2

3



The previous result means that our question can be explored only in the realm of �xed parameter

complexity, since FPT = SP is not known to imply any collapse in standard complexity theory, say,

the collapse of the polynomial hierarchy

4 A Natural Hard Problems

Lemma 6 If A 2 EPTAS then L

A

2 FPT.

Proof: In order to decide whether hx; ki 2 L

A

it is su�cient to compute a (1+1=2k)-approximate

solution for x. 2

In the following we will consider the multivalued (planar)Max KCSP and Max GSAT prob-

lems.

For a �xed K � 1, the multivalued Max KCSP problem is de�ned as follows: the instance

contains a number n and a set of K-ary constraints over variables x

1

; : : : ; x

N

. A constraint is

speci�ed by listing its satisfying assignments. A solution is an assigment of values of f0; : : : ; n� 1g

to the variables. The measure of a solution is the number of constraints it satis�es, and the goal is

to maximize such number.

The multivalued Max GSAT problem is similar, but this time a constraint is a DNF expression

(a disjunction of conjunctions of literals) where a literal is an equation of the form [x

i

= a]. A

standard restriction of the Max GSAT problem is, for �xed B � 1, the Max GSATB problem,

where a constraint is a DNF expression such that the lenght of the disjunctions is at most B. Note

that, for any �xed K, multivalued Max KCSP is a special case of multivalued Max GSATK.

Given an instance of multivalued Max KCSP or Max GSAT, its incidence graph is de�ned

as follows: there is a node for any variable and one for any constraints; for any constraint, there

are edges between the node representing the constraint and all the nodes representing the variables

occurring in it. An instance is said to be planar if its incidence graph is planar. Khanna and

Motwani [17] prove that planar multivalued Max GSAT admits a PTAS.

Multivalued KCSP (resp. GSATB, GSAT) is the parameterized problem where the instance

is a multivalued Max KCSP (resp. Max GSATB, Max GSAT) instance, the parameters are

the number of variables and the number of constraints, and the question is whether the instance is

satis�able.

Lemma 7 Multivalued 2CSP is W[1]-hard.

Proof: We give parameterized reduction from the CLIQUE problem, that is W[1]-complete [12].

Given a graph G = (V;E) with m edges and n nodes, and an integer k, we show how to construct,

in time O((m+n)k

2

), an instance � of multivalued 2CSP with k variables and k(k�1)=2 constraints

such that the formula is satis�able i� the graph has a k-clique. The hardness of the problem will

follow.

Let us assume that V = f0; : : :n � 1g. � has k variables x

1

,. . . , x

k

that take value over

0; : : : ; n � 1. x

i

is supposed to be the i-th node of a k-clique in G. There is a constraint C

ij

for

any unordered pair i; j 2 f1; : : : ; kg. The constraint enforces that x

i

and x

j

are endpoints of some

edge of G (and thus, in particular, they are di�erent). The constraint is

_

(u;v)2E

([x

i

= u] ^ [x

j

= v])_ ([x

i

= v] ^ [x

j

= u]).

It is clear that � is satis�able i� G has a k-clique. 2

4



The next lemma shows that the previous hardness result cannot be pushed higher in the W

hierarchy, because even a much more general problem is in W[1].

Lemma 8 Multivalued GSAT belongs to W[1].

Proof: We will show a parameterized reduction from Multivalued GSAT (with parameters the

number of variables k

1

and the number of constraints k

2

) to the Short Nondeterministic Tur-

ing Machine Computation problem. Its instance is a nondeterministic Turing machine T with

some �xed number of work tapes; the parameter is an integral number k; the question is whether

there is a deterministic computation path of T (starting from empty tape) which accepts in at most

k steps. This problem is W[1]-complete ([6, 7]).

Let us consider an instance of Multivalued Max GSAT:

^

i=1:::k

2

_

j=1:::d

i

^

h=1:::c

i;j

[x

ijh

= v

ijh

]

where x

ijh

is a variable in the set f x

1

: : : x

k

g and v

ijh

is a number in f 0 : : :n � 1 g. Note that

c

i;j

� k

1

.

We should derive a nondeterministic Turing machine that executes the following pseudo-code:

nondeterministically guess k

1

values for x

1

: : :x

k

1

for i = 1 to k

2

do

nondeterministically guess j in f 1 : : : d

i

g

for h = 1 to c

i;j

do

if x

ijh

6= v

ijh

then reject

enddo

enddo

accept

Let us suppose that the original formula is satis�able; then there is a deterministic computation

path of T which guesses the correct values for the k

1

variables and then, for each index i, guesses the

index j of a satis�ed conjunction. Thus the computation never rejects, and eventually it accepts.

Conversely, if a deterministic computation path of T accepts, the formula must be satis�able.

The number of steps of each deterministic computation path is at most O(k

1

+ k

1

�k

2

) (observe

that the alphabet of T should contain at least one symbol for each value in f 0 : : :n� 1 g). 2

Lemma 9 Multivalued Planar 3CSP ia W[1]-hard.

Proof: Let � be an instance of multivalued 2CSP with k

1

variables and k

2

constraints. An

embedding of the incidence graph of � can have at most (k

1

k

2

)

2

crossings. Each crossing has the

form shown in Figure 1, left. We remove such crossing by creating new variables x

0

i

and x

0

j

and a

planar gadget enforcing x

i

= x

0

i

and x

j

= x

0

j

; the cross-over gadget is depicted in Figure 1, right.

The constraints of the gadget are as follows:

C

1

: x

i

+ x

j

� z (mod n) C

2

: x

j

+ x

0

i

� z (mod n)

C

3

: x

i

+ x

0

j

� z (mod n) C

4

: x

0

j

+ x

0

i

� z (mod n)

The gadget only requires 3CSP constraints. If x

i

= x

0

i

and x

j

= x

0

j

then all the constraints of the

gagdet can be satis�ed by setting z � x

i

+ x

j

(mod n). Conversely, if all the constraints of the

gadget are satis�ed, then

5



x

i

x

j

C

j;h

C

i;l

x

i

x

0

j

x

j

x

0

i

C

1

C

2

C

3

C

4

z

C

j;h

C

i;l

�

�

�

�

�

�

H

H

H

H

H

H

Figure 1: A multivalued cross-over gadget.

x

i

� z � x

j

� z � (z � x

0

i

) � x

0

i

(mod n)

and

x

j

� z � x

i

� z � (z � x

0

j

) � x

0

j

(mod n) ;

since x

i

; x

j

; x

0

i

; x

0

j

2 f0; : : : ; n�1g, it follows that x

i

= x

0

i

and x

j

= x

0

j

. After replacing each crossing

with a gadget, we have that the new (planar) instance is satis�able if and only if the former instance

was satis�able. 2

From Lemmas 6 and 9 the main result of this section follows.

Theorem 10 Multivalued Planar Max 3CSP 62 EPTAS unless W[1] = FPT.

5 An Arti�cial Hard Problem

In this section we will give a weak converse of Theorem 5, namely, we will prove the following

theorem.

Theorem 11 If W[P] 6= FPT then EPTAS 6= PTAS.

We will prove the theorem by de�ning an arti�cial optimization problem that admits a PTAS but

does not admit an EPTAS unless W[P] = FPT.

Let us de�ne the parameterized Linear Inequalities problem in the following way:

Instance: A system of n linear inequalities S.

Parameter: an integer k � n.

Question: can we delete k inequalities and get a system that is consistent over the rationals?

Linear Inequalities is complete in W[P] and thus cannot belong to FPT unless FPT = W[P] [1].

Let us de�ne an optimization version Max Subsystem such that the measure in de�ned in a very

tricky way.

Instance: A set of linear inequalities S.

Solution: A subset S

0

� S such that S � S

0

is consistent.

Measure: Let k = jS

0

j and n = jSj: m(S; S

0

) =

j

2(n+ 1)

2
k+1

k

k

.

6



Theorem 11 is implied by the following two lemmas.

Lemma 12 Max Subsystem is in PTAS.

Proof: Let us consider the following algorithm T

k

(S): �rst considers all O(n

k

) subsets S

0

� S of

cardinality at most k. If feasible solutions are found, then T

k

returns one with maximum measure,

otherwise returns a trivial solution S

trivial

(n� 1 equations removed). In the �rst case, algorithm

T

k

returns an optimum solution, otherwise, the minimum number of equations that has to be

removed is k

�

� k + 1 and the achieved performance ratio is

R(S; S

trivial

) =

j

2(n+ 1)

2

k

�

+ 1

k

�

k

j

2(n+ 1)

2

n

n� 1

k

�

j

2(n+ 1)

2
k + 2

k + 1

k

j

2(n+ 1)

2

n

n � 1

k

�

2(n+ 1)

2
k + 2

k + 1

2(n+ 1)

2

=

k + 2

k + 1

< 1 + 1=k

2

Lemma 13 If Max Subsystem is in EPTAS, then Linear Inequalities is in FPT.

Proof: Let T be a EPTAS for the problem Max Subsystem and let f be a function such that

the running time of T (x; r) is bounded by f(d1=(r � 1)e)jxj

�

. Let us consider the following FPT

algorithm for Linear Inequalities.

1. Execute T (S; r) with r = 1 + 1=(3(k

2

+ 2k) and let S

0

be the returned solution.

2. If jS

0

j � k then accept else reject.

The running time of the algorithm respects the de�nition of FPT and is clearly correct when

hS; ki 62 Linear Inequalities. Suppose now that hS; ki 2 Linear Inequalities and that the algorithm

rejects, we will derive a contraddiction. Let S

T

be the solution returned by T (S; 1+1=(3(k

2

+2k)).

R(S; S

T

) �

j

2(n+ 1)

2
k

�

+ 1

k

�

k

j

2(n+ 1)

2

k + 2

k + 1

k

�

j

2(n+ 1)

2
k + 1

k

k

j

2(n+ 1)

2

k + 2

k + 1

k

�

2(n+ 1)

2

k + 1�

k

2(n+ 1)

2

k

2(n+ 1)

2

k + 2

k + 1

�

k + 1�

1

2(k+1)

k

�

k + 1

k + 2

7



=

k

2

+ 2k + 1� 1=2

k

2

+ 2k

=

k

2

+ 2k + 1=2

k

2

+ 2k

= 1 +

1

2(k

2

+ 2k)

> 1 +

1

3(k

2

+ 2k)

where fourth inequality is due to the fact that k � n, and so k=2(n+ 1)

2

� 1=2(k+ 1). 2

6 Conclusions

The relations between �xed parameter complexity and approximability was already considered by

Cai and Chen [5]. Their study was directed towards the approximation properties of optimization

problems with a hard induced language. Our approach, instead, focuses on the relation between

the approximation factor in a PTAS and the parameter in a parameterized problem. The di�erence

between the two approaches is best noted by considering that the induced language of the problem

Max Subsystem, de�ned in Section 5, is in FPT.

When restricted to boolean domains, the planar Max GSATB problem admits an EPTAS for

any �xed B [8], while we have shown that multivalued planarMax GSAT3 is not in EPTAS unless

FPT = W[1]. It appears that the size of the domain changes quite dramatically the approximability

properties of constraint satisfaction problems. This point seems to be worth further investigation.

Acknowledgements

We are grateful to Sanjeev Khanna for his contribution to this research.

References

[1] K. A. Abrahamson, R. G. Downey, and M. R. Fellows. Fixed-parameter tractability and

completeness IV: on completeness for W [P ] and PSPACE analogues. Annals of Pure and

Applied Logic, 73(3):235{276, June 15, 1995.

[2] S. Arora. Polynomial time approximation schemes for Euclidean TSP and other geometric

problems. In Proceedings of the 37th IEEE Symposium on Foundations of Computer Science,

1996.

[3] S. Arora, D. Karger, and M. Karpinski. Polynomial time approximation schemes for dense

instances of NP-hard problems. In Proceedings of the 27th ACM Symposium on Theory of

Computing, pages 284{293, 1995.

[4] D.P. Bovet and P. Crescenzi. Introduction to the Theory of Complexity. Prentice Hall, 1993.

[5] L. Cai and J. Chen. On �xed-parameter tractability and approximability of NP -hard opti-

mization problems. In Proc. of 2nd Israel Symposium on Theory of Computing and Systems,

pages 118{126, 1993. To appear also in the Journal of Computer and System Science.

[6] L. Cai, J. Chen, R. G. Downey, and M. R. Fellows. On the parameterized complexity of short

computation and factorization. To appear in the Archive for Mathematical Logic, 1995.

8



[7] M. Cesati and M. Di Ianni. Computation models for parameterized complexity. Mathematical

Logic Quarterly, 43:179{202, 1997.

[8] P. Crescenzi and L. Trevisan. MAXNP-completeness made easy. Manuscript, 1996.

[9] W.F. de la Vega. MAXCUT has a randomized approximation scheme in dense graphs.

Manuscript, 1994.

[10] R. G. Downey and M. R. Fellows. Fixed-parameter intractability (extended abstract). In

Proceedings of the 7th IEEE Conference on Structure in Complexity Theory, pages 36{49,

Boston, June 1992. IEEE.

[11] R. G. Downey and M. R. Fellows. Fixed-parameter tractability and completeness I: Basic

theory. SIAM J. Comput., 24:873{921, 1995.

[12] R. G. Downey and M. R. Fellows. Fixed-parameter tractability and completeness II: On

completeness for W [1]. Theoretical Computer Science, 141:109{131, 1995.

[13] A. Frieze and R. Kannan. The regularity lemma and approximation schemes for dense prob-

lems. In Proceedings of the 37th IEEE Symposium on Foundations of Computer Science, 1996.

[14] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection with learning

and approximation. In Proceedings of the 37th IEEE Symposium on Foundations of Computer

Science, 1996.

[15] D.S. Hochbaum and D.B. Shmoys. Using dual approximation algorithms for scheduling prob-

lems: practical and theoretical results. Journal of the ACM, 34(1):144{162, 1987.

[16] D.S. Hochbaum and D.B. Shmoys. A linear time approximation scheme for the makespan

problem. Manuscript, 1996.

[17] S. Khanna and R. Motwani. Towards a syntactic characterization of PTAS. In Proceedings of

the 28th ACM Symposium on Theory of Computing, pages 329{337, 1996.

9


