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Are there too many complexity classes? Merely trying to understand one aspect of computation,

such as the power of randomness, leads to a whole range of complexity classes, such as ZPP, RP, and

BPP, to name but a few. Do we really need all of these classes?

One of the most exciting developments in complexity theory in the past few years is the growing

body of evidence that all of the aforementioned classes are merely pseudonyms for P. Our guest

column this issue gives an overview of this area.
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Abstract

Two independent techniques have been developed recently that yield su�cient conditions for

P = BPP in terms of worst-case circuit complexity of functions computable in exponential time.

Andreev, Clementi and Rolim proved that P = BPP provided that a sparse \e�ciently enumerable"

language exists of su�ciently high circuit complexity. This result has been subsequently improved

by Impagliazzo and Wigderson by showing that either P = BPP or all the decision problems solvable

in time 2

O(n)

are solvable by circuits of size 2

o(n)

. In this column we discuss these results and their

relation with previously known su�cient conditions for P = BPP.

1 Introduction

Randomness is very useful in the design of e�cient algorithms for several important problems. Proba-

bilistic algorithms are often the simpler ones to solve a given problem, or the most e�cient, or the only

e�ciently parallelizable ones (see [9]). For some problems, including primality testing and approxi-

mation of # P-complete counting problems, only randomized solutions are known. In computational

geometry, problems such as the approximate computation of the volume of a convex body only admit

randomized solutions.

There are several classes of e�cient probabilistic algorithms (see e.g. [15]) that di�er on the adopted

acceptance criteria. In particular, we will consider two classes of algorithms for decision problems:

two-sided bounded error polynomial time algorithms (BPP algorithms) and one-sided bounded error

polynomial time algorithms (RP algorithms). A BPP algorithm is required to give a correct answer

with probability not smaller than 2=3 for any input; an RP algorithm is a BPP algorithm with the

additional guarantee that if the input is a NO instance the algorithm will give the right answer with

probability 1. It is not known whether it is possible to e�ciently transform any BPP algorithm into

an RP algorithm. Furthermore, the question of whether BPP (or RP) is contained in P (here we refer
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to BPP and RP as the class of languages decided by BPP and RP algorithms respectively) is not even

a generally accepted conjecture, as opposed to other questions in complexity theory. The results that

are described in this column support the conjecture P = RP = BPP.

There is a rich area of research in complexity theory dealing with the use of randomness in computa-

tions, and in particular on how to e�ciently simulate randomized algorithms by means of deterministic

ones. The �rst foundational results for this line of research can be found in the seminal works of Blum

and Micali [7] and Yao [19], motivated by cryptographic applications. These papers introduced a

formal de�nition of Pseudo-Random Generator (PRG) as a function

G = f G

n

: f0; 1g

k(n)

! f0; 1g

n

; n > 0 g;

denoted by G : k(n)! n that \stretches" k(n) truly random bits into n pseudo-random bits (k(n) is

commonly said the price of G). More formally, G is a PRG if for any su�ciently large n and for any

Boolean circuit C : f0; 1g

n

! f0; 1g whose size is at most n we have:

jPr (C(~y) = 1)� Pr (C(G

n

(~x)) = 1)j �

1

n

where ~y is chosen uniformly at random in f0; 1g

n

, and ~x in f0; 1g

k(n)

. A Boolean operator is said to

be quick if it is computable in time polynomial in the length of its output [14]. In particular, a PRG

G is quick if G

n

: f0; 1g

k(n)

! f0; 1g

n

is computable in time polynomial in n.

The output set fG

n

(x) : x 2 f0; 1g

k(n)

g of a PRG G for a �xed n is also called a discrepancy

set for the class of circuits of size n

4

. The computation of a BPP algorithm on a �xed input is an

easy-to-compute function C of the outcomes of the random coins. It follows that a pseudo-random

generator can be used to approximate the fraction of random coin outcomes that make C accept,

and thus allows one to decide whether the algorithm accepts the input or not. PRG's can then be

considered the natural general method to de-randomize BPP algorithms. In particular, we note that

the following simple implication holds.

Theorem 1.1 If a quick PRG of logarithmic price exists then P = BPP.

In Section 2 we will see su�cient conditions for the existence of PRG's of logarithmic price. The

above discussion shows that any such condition implies P = BPP.

The \one-sided" version of a PRG is a Hitting Set Generator (HSG): a family of functions H =

fH

n

: f0; 1g

k(n)

! f0; 1g

n

; n > 0g (denoted by H : k(n)! n) that, for any su�ciently large n and for

any n-input Boolean circuit C with size at most n such that

Pr (C(~y) = 1) �

1

n

;

it holds

there exists ~x 2 f0; 1g

k(n)

such that C(H

n

(~x)) = 1 :

While a PRG of price k(n) converts k(n) bit of randomness into a pseudo-random string of length n

to be used in a BPP algorithm, a HSG converts k(n) bits of non-determinism into a string of length

n to be used in an RP algorithm. The following result is a consequence of the de�nition of HSG's.

4
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Theorem 1.2 If a quick HSG of logarithmic price exists, then P = RP

Indeed, given an RP algorithm and an input, one can run the algorithm on each pseudo-random

sequence generated by the HSG and accept the input if and only if one of these sequences make the

algorithm accept. It is apparent from the de�nition that a PRG is also a HSG but the converse is not

necessarily true. In Section 3 we will see su�cient conditions for the existence of HSG's of logarithmic

price.

2 Proving P = BPP Under Circuit Complexity Assumptions

2.1 Using Average-Case Circuit Complexity

The main results in the theory of de-randomization for general classes of probabilistic algorithms

can be seen as general techniques to construct PRG's that rely on unproven hardness conditions.

In particular, Nisan and Wigderson [14] presented a method to construct quick PRG's based on the

existence of Boolean functions in EXP that have exponential hardness [14]. The hardness condition

used by Nisan and Wigderson requires the existence of a function in EXP that has hard average-case

circuit complexity. More formally, a function f : f0; 1g

n

! f0; 1g is (�; L)-hard if, for any circuit C of

size at most L,

jPr (C(~x) = f(~x))� 1=2j � �=2:

Given a Boolean function F = fF

n

: f0; 1g

n

! f0; 1g; n > 0g, the hardness at n of F (denoted as

H

F

(n)) is de�ned as the maximum integer h

n

such that F

n

is (1=h

n

; h

n

)-hard. Then, F has exponential

hardness if H

F

(n) � 2


(n)

. Nisan and Wigderson showed a fundamental \Hardness vs Randomness"

result.

Theorem 2.1 ([14]) If a Boolean function F exists such that i) F 2 EXP, and ii) F has exponential

hardness, then there exists a quick PRG G : k(n) ! n where k(n) = O(logn), and consequently

P = BPP.

A more general form of the above theorem states that if BPP is not contained in DTIME(n

polylog(n)

)

then any EXP-complete function has rather \low" hardness. This possible shape of the \complexity

world" would be quite di�erent from what most complexity theorists expect. Nisan and Wigderson's

work thus had a tremendous impact in the Complexity Community: people started to think that

the gap between BPP and P might be very small. In [6], another Hardness-vs Randomness trade

o� has been obtained that states that if there is a function in EXP having hardness 2

n


(1)

then

BPP � DTIME(n

poly logn

). We thus have that under the hardness assumption above, the use of

randomness can be just slightly helpful in speeding computation.

Further research on the \Hardness vs Randomness" problem has been focused on the following

aspect of Nisan and Wigderson's work. The hardness required by Nisan and Wigderson's construction

of quick PRG's refers to average-case circuit complexity. Then a consequent and natural question

is the following: Does any \worst-case" hardness assumption on the circuit complexity of Boolean

functions computable in time exponential in the input size exist which allows one to derive an e�cient

derandomization method (in particular, to obtain P = BPP)? To motivate this question, consider

the potential new insights that would 
ow from the knowledge of the precise relationship between the



true computational power of randomness and the problem of �nding lower bounds for the worst-case

circuit complexity of classes of recursive Boolean functions (this latter being one of the most studied

problems in complexity theory). This argument will be the subject of Sections 3.2 and 3.3.

3 HSG's: How to Use and Construct Them

3.1 Hitting Set Generators and BPP

Another interesting question is that concerning the real relationship between RP and BPP. In the

context of de-randomization, this question leads us to a deeper comparison between the real power

of PRG's and that of HSG's: can the latter replace the former to de-randomize BPP algorithms? As

we have observed above, an HSG is not in general a PRG and since the acceptance criterion of BPP

requires the presence of a two-sided random space, the intuition here is that HSG's do not correctly

work for BPP. Furthermore, in several cases the construction of combinatorial objects having one-sided

random (i.e. hitting) properties has turned out to be more e�cient than that of combinatorial objects

having two-sided random (i.e. discrepancy) properties (for a survey of these cases see Appendix

C of [10]). This is for instance the case for extractors and OR-dispersers ([13]). Another case in

which one-sided randomness seems to be easier to achieve is in the case of \small" linear subspaces

of f0; 1g

n

[4]. It is indeed possible to construct small hitting sets for this class of subsets (and, so,

for the corresponding characteristic functions) that imply some explicit, exponential lower bounds for

the branching program model [4], but no construction of non-trivial discrepancy sets for this class is

known.

One general reason for the fact that one-sided random objects seem to be easier to construct is that

they have a monotonicity property not satis�ed by discrepancy sets: if H = fH

n

; n > 0g is a family of

hitting objects then any other family H

0

= fH

0

n

; n > 0g, such that for any n > 0 H

0

n

\contains" H

n

,

has (at least) the same same hitting properties.

In a rather surprising way, Andreev et al showed that the above intuition about the real relationship

between PRG's and HSG's is somewhat false.

Theorem 3.1 ([1]) Let k(n) = O(logn). If there exists a quick HSG H : k(n)! n then BPP = P.

The proof of the above result relies on the following lemma which is of independent interest.

Lemma 3.1 ([1]) Let q(n) be any positive function such that n � q(n) � 2

n

. There is a deterministic

algorithm A that, given access to a quick HSG H : k(n) ! n (with k(n) = 
(logn)), and given in

input any circuit C(x

1

; : : : ; x

n

) of size at most q(n), computes in time polynomial in

2

k(q(n)

O(1)

)

a value A(C) such that

jPr (C = 1)� A(C)j �

1

q(n)

:

The algorithm A uses the hitting set generated by the HSG to construct a discrepancy set for C. The

main novelty is that the obtained discrepancy set depends on C and thus on the BPP algorithm that

we want to de-randomize. This implies that the de-randomization method is not oblivious. Roughly

speaking, the algorithm trade-o� \uniformity" versus \two-sidedness".

Actually, Theorem 3.1 gives a more general consequence: by considering the \price" k(n) (with

k(n) = 
(logn)) of the HSG as a parameter, we have the following



Corollary 3.1 ([1]) If a quick HSG H : k(n)! n exists, then for any time-bound t(n), we have

BPTIME(t) � DTIME

�

2

O(k(t

O(1)

))

�

;

where BPTIME(t) is the class of languages accepted by probabilistic, two-sided error Turing machines

running in time t.

Notice that this result is comparable to the one in [12, 14] stating that the existence of a quick PRG

G : k(n)! n implies BPTIME(t) � DTIME(2

O(k(t

2

))

).

We emphasize that the same technique used to prove Lemma 3.1 has been recently used to solve

the \one-sided vs two-sided" problem in other frameworks (see Section 4).

3.2 Using Worst-Case Hardness to construct HSG's

Let's return now to the question of �nding worst-case hardness conditions su�cient to de-randomize

BPP-algorithms. Theorem 3.1 shows a di�erent way to achieve this goal. This is used in Theorem 3.2

to show that it is indeed su�cient to to use a worst-case hard Boolean function (as opposed to

average-case hardness) to construct a HSG.

Intuitively speaking, the worst-case hardness of a Boolean function seems to be much closer to its

hitting properties than to its discrepancy properties. In [2] and successively in [3], Andreev et al indeed

gave the �rst worst-case hardness condition which is su�cient to construct quick HSG's that satisfy

Theorem 3.1 thus obtaining P = BPP. A more formal description of this result follows. The circuit

complexity of a Boolean operator H will be denoted as L

op

(H). Observe that if L

op

(k; n) denotes the

worst-case circuit complexity of Boolean operators H : k(n) ! n, then it is known [17] that, for any

logn � k � n,

L

op

(k; n) = (1 + o(1))(2

k

n)=(k+ logn):

Furthermore, for almost every Boolean operator H : k! n, we have

L

op

(H) = �((2

k

n)=(k + logn)) :

The following theorem gives a su�cient condition for P = BPP in terms of the worst-case circuit

complexity of characteristic functions of sets generated by Boolean operators (as de�ned above).

Theorem 3.2 ([3]) Let k(n) = (2+O(1)) logn. A constant 0 < c

0

< 1 exists such that if there exists

a quick operator H : k(n)! n such that the characteristic function of its output sets

F

H

= fF

H

n

: f0; 1g

n

! f0; 1g ; where F

H

n

(~x) = 1 i� 9 ~y 2 f0; 1g

k(n)

s.t. H

n

(~y) = ~x; n > 0g

satis�es

L(F

H

n

) � 2

k(n)

n

c

0

;

then it is possible to construct a quick HSG H

0

: k

0

(n) ! n where k

0

(n) = �(log n), thus obtaining

P = BPP.



Another way to state the above theorem is the following. Assume that there exists a sparse

language S = fS

n

� f0; 1g

n

; n > 0g that can be generated by a uniform algorithm that runs in

time polynomial in n (so in time polynomial in the length of its output), and such that the worst-

case circuit complexity of deciding S is not much smaller (up to some polynomial factor) than the

worst-case circuit complexity of generating S. Then P = BPP.

The proof of Theorem 3.2 relies on the following fact. There is a precise trade-o� between the

worst-case circuit complexity of partial Boolean functions and the number of 1's in their output table.

In particular, we give a precise mathematical form of the intuitive fact that a partial Boolean function

having a hard worst-case circuit complexity cannot return 0 for a \large" number of inputs. So,

according to the de�nition of HSG's, any function that has a hard worst-case circuit complexity turns

out to have also a good hitting property. This property is used to construct the preliminary version of

the HSG which is then combined with a convenient use of OR Dispersers [16], a family of particular

expander graphs.

3.3 A Stronger Result Via the De-randomization of the XOR Lemma

Theorem 2.1 requires the existence of a Boolean function f in EXP such that, for some � > 0, any

circuit C of size 2

�n

can only achieve success probability 1=2 + 2

��n

while trying to predict g on a

random input of length n. Babai et al. [6] later proved that if a function f in EXP exists having

circuit complexity 2


(n)

then there exists another function g in EXP such that, for some �xed � > 0,

any circuit of size 2

��n

can only achieve success probability 1 � 1=n

2

while trying to predict f on a

random input of size n. The di�culty of predicting g on a random input can be increased by de�ning

a function h(x

1

; : : : ; x

k

) = g(x

1

)� : : :� g(x

k

): from Yao's Xor Lemma [19] it follows that the success

probability of a circuit for h of size 2

�n

goes down to 1/2 exponentially fast in k. If we take k = O(n)

the success probability will be as low as 1 � 2

�
(n)

, however h does not yet satisfy the conditions of

Theorem 2.1 since it has O(n

2

) inputs and the hardness is \only" 2


(n)

. From this assumption it is

only possible to infer from the techniques of [14, 6] that BPP can be deterministically simulated in

time n

poly logn

.

Impagliazzo and Wigderson [8] recently made further progress by showing how to de-randomize

the Xor Lemma. Their main result is a procedure that, given a function g with n inputs and a certain

unpredictability, constructs another function h with O(n+k) inputs whose unpredictability decreases

exponentially in k. Thus, assuming that a function f in EXP exists with circuit complexity 2


(n)

, one

can deduce that a function g exists in EXP such that circuits of size 2


(n)

only have success probability

1 � 1=n

2

on g. Then, using a result of Impagliazzo [11] it follows that a function g

0

in EXP exists

such that circuits of size 2


(n)

have success probability at most 2=3, and, eventually, that a function

h exists in EXP such that circuits of size 2

�n

only have success probability 2

��n

. In turn, the latter

statement implies the existence of PRG of logarithmic price and thus P = BPP.

Theorem 3.3 [8] If a function in f exists having circuit complexity 2


(n)

then P = BPP.

4 Related Results and Conclusion

De-randomization is not the only research direction that has been explored about the use of randomness

in computation. An alternative approach deals with the use of weak sources of randomness (see [13]).

Even in this case there is a di�erence between one-sided pseudorandom structures and two-sided

pseudorandom structures and Theorem 3.1 is a useful tool [5].



A natural question to ask is whether the results described in this column (or at least part of

them) extend to parallel and space-bounded classes. The issue of parallelization is not addressed by

Impagliazzo and Wigderson [8], and some steps in their construction appear to be hard to parallelize.

On the other hand, a bottleneck for the parallelization of the techniques of Andreev et al. [3] was the

use of Theorem 3.1, whose proof in [1] was inherently sequential. A new proof of Theorem 3.1 appeared

in [5] extends to parallel and space-bounded classes, and so do, to a certain extent, the techniques of

[3]. The current state of the art on this topic is that a reasonable worst-case su�cient condition exists

implying BPNC = NC but no worst-case circuit complexity condition is known to imply BPL = L (or

even RL = L).

While the main goal of de-randomization theory is to prove P = BPP, some weaker, but still

extremely interesting, results may be within reach. Theorem 3.1 already states that BPP is not much

more powerful than RP. A recent result due to Fortnow establishes that any BPP problem is solvable

by an RP algorithm making one oracle query to a promise-RP oracle (promise-RP is the extension

of RP to promise problems). It is an open question to prove the same result without using promise

problems. Solving this question may be an important intermediate step towards proving BPP = RP,

a result that would have several complexity-theoretic consequences (e.g. RP would be closed under

complement, BPP would be contained in NP and so on).
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