
A Case Study of De-randomization Methods

for Combinatorial Approximation Algorithms

�

Jos�e D. P. Rolim

y

Luca Trevisan

z

October 30, 1997

Abstract

We study three di�erent de-randomization methods that are of-

ten applied to approximate combinatorial optimization problems. We

analyze the conditional probabilities method in connection with ran-

domized rounding for routing, packing and covering integer linear pro-

gramming problems. We show extensions of such methods for non-

independent randomized rounding for the assignment problem. The

second method, the so called random walks is exempli�ed with algo-

rithms for dense instances of some NP problems. Another often used

method is the bounded independence technique; we explicit this method

for the sparsest cut and maximum concurrent 
ow problems.

1 Introduction

Randomized algorithms are often used to solve or to approximate optimiza-

tion problems related to network design. Theoretical and practical concern

about the e�ective availability of a source of truly random bits, as well as the

desire of improved reliability, motivate the search for deterministic versions

of such algorithms.

While there is no general recipe to come up with the de-randomization

of a randomized algorithm, a small set of techniques seem to underlie most

�

This research was supported by the Swiss National Science Foundation under grant

no. 50003-034295.

y

Centre Universitaire d'Informatique, University of Geneva, 24 rue General Dufour,

1204 Geneva, Switzerland. rolim@cui.unige.ch

z

MIT Laboratory for Computer Science, Room NE43-371, 545 Technology Square,

Cambridge MA 02139, USA. luca@theory.lcs.mit.edu (Work done at the University of

Geneva)

1



of the known results, such as the method of conditional probabilities, the use

of random walks in expander graphs and k-wise independency techniques. In

general, randomization is used to provide a combinatorial structure with cer-

tain properties, using the probabilistic method. In such cases, a deterministic

construction of such an object can be a very hard task; a good rule of the

thumb is to prove that an object with somewhat weaker properties su�ces

for the algorithm, and then develop a deterministic construction of an object

of the latter type. The particular de-randomization method to be applied

will depend on which properties are to be preserved in the deterministic

version of the algorithm. In this paper we will see a number of examples of

randomized approximation algorithms that can be de-randomized with one

of the above mentioned techniques.

Several approximation algorithms for network design problems are some-

what related to linear programming (or generalizations of linear program-

ming). Once an optimization problem is formulated as an integer mathe-

matical programming problem, the relaxation over the reals can be used to

develop approximation algorithms in one of the following way:

1. Primal/dual algorithms: the algorithm �nds a feasible solution for the

problem of interest and a feasible solution for the dual of its relax-

ation; the ratio between the costs of the two solutions is at most some

constant r. Then the solution is r-approximate.

2. Rounding: an optimum (or near-optimum) solution is found for the

relaxation, and it is rounded to yield an integer solution. The ratio

between the cost of the rounded solution and the fractional one is at

most r. Then the rounded solution is r-approximate.

In the �rst case, the linear programming formulation is used just as a

conceptual tool to prove the approximation bound. In the second case, the

relaxation is actually solved. Rounding a fractional solution is, in general,

a di�cult task. Randomization is a primary tool. The algorithms we shall

consider in this paper use randomization to �nd a rounded solution. Despite

the similarity in the structure, the algorithms are quite di�erent, and their

de-randomization requires di�erent techniques, that are a good illustration

of the di�erent ways a randomized algorithm can be de-randomized.

In general, the way randomization is used in the algorithm calls for

the proper de-randomization method. The method of conditional probabil-

ities (and its generalizations) is suitable when we have a set of 0/1 values

x

1

; : : : ; x

n

that are chosen independently with probability p

1

; : : : ; p

n

, and the

2



objective function is a linear combination of such values. Randomized round-

ing falls in this case. Another classical use of randomness is to sample a small

set of points from some larger space. Several methods are known to sample

using few random bits. In several cases, the number of random bits can be

made logarithmic and thus a trivial exhaustive de-randomization is possible.

In some cases, randomization is used to construct combinatorial structures

with variables that are k-wise independent. The de-randomization technique

then consists in �nding a probability distribution which assigns a non-zero

probability to only a polynomial number of solutions while preserving the

k-wise independency. On this way an approximation solution is guaranteed

to exist and it can be searched in polynomial time deterministically.

The above three scenarios that are themselves a random sample out of a

somewhat larger variety and a combination of them are explained via some

case studies.

Randomized rounding for routing, and packing and covering

ILP. Randomized rounding was introduced in Raghavan and Thompson

(1987), Raghavan (1988). It allows to approximate routing problems as well

as problems that can be formulated as integer linear programs in packing

or covering form. The approximation guarantee is proved using Cherno�

bounds. De-randomization involves the use of pessimistic estimators, a gen-

eralization of the method of conditional expectation. Srinivasan (1996) has

improved Raghavan's bound for set cover, and has provided pessimistic es-

timators to de-randomize his algorithm.

Non-independent randomized rounding for the assignment

problem. Arora, Frieze and Kaplan (1996) develop a version of randomized

rounding for assignment problems (where the solution is a one-one function

between two sets of n objects). Applications include the linear arrangement

problem in dense graphs. Randomization is used in two phases of their

algorithm: an oversampling phase and a merging phase. Cherno� bounds

are used in the proof of correctness. De-randomization uses (de)randomized

rounding to simulate the sampling and merging.

Random walks for optimization problems. Dense instances of

many NP-hard problems have been given polynomial time approximation

algorithms by Arora, Karger and Karpinski (1995). Their approach is based

on an exhaustive sampling and a subsequent phase of rounding. The ex-

haustive sampling is de-randomized via random walks on expanders while

the second phase is de-randomized via conditional probabilities.

Min Cut. Linial, London and Rabinovich (1994) (and independently

Aumann and Rabani (1994)) show that the sparsest cut and its dual the

3



concurrent 
ow problem can be approximated within a factor O(log k). The

algorithm uses a mapping of a certain metric (obtained by solving a linear

programming relaxation of the problem) into a `

1

metric. Randomization

is used to generate the mapping. Linial, London and Rabinovich (1995)

have successively found a deterministic way of constructing the mapping

(even if it requires more dimensions than the original one). Garg (1995)

has independently found a deterministic algorithm for the special case of

sparsest cut.

Open questions. We remark that for some important network opti-

mization problems, only randomized approximation algorithms are known.

One example is the all-terminal network reliability problem (Karger (1995)),

a #P -hard counting problem. A more important one is the Euclidean TSP

and Steiner Tree problems, for which Arora [Aro97] developed randomized

quasi-linear time approximation schemes. Arora's algorithms are trivially

de-randomizable, but the trivial de-randomization increases the running

time. A quasi-linear time de-randomized algorithm would be a major result.

2 Random Rounding and Conditional Expecta-

tion

The framework is as follows. Say that we have a probability space

(Pr; f0; 1g

n

) and a set of \good strings" A � f0; 1g

n

such that Pr(A) � � for

some � > 0; assume also that the algorithm that we want to to de-randomize

uses randomness only to �nd a string x 2 A.

A deterministic algorithm can construct such a string in the following

way. For i = 0; 1; : : : ; n and (b

1

; : : : ; b

i

) 2 f0; 1g

i

, let us call P

i

b

1

;:::;b

i

= Pr[x 62

Ajx

1

= b

1

; : : : ; x

i

= b

i

]. Of course we have P

0

= 1 � Pr[A] < 1, moreover

we have that, for any i and any (b

1

; : : : ; b

i

), either P

i+1

b

1

;:::;b

i

;0

� P

i

b

1

;:::;b

i

or

P

i+1

b

1

;:::;b

i

;1

� P

i

b

1

;:::;b

i

. Observe that P

n

b

1

;:::;b

n

is either equal to 0 or 1, and is

equal to 1 if and only if (b

1

; : : : ; b

n

) 62 A.

algorithm cond-prob

for i = 1 to n do

if P

i

b

1

;:::;b

i�1

;0

� P

i�1

b

1

;:::;b

i�1

then

b

i

:= 0

else

b

i

:= 1;

return (b

1

; : : : ; b

n

);

4



The above algorithm maintains the invariant that, at any iteration of the

for loop, b

i

receives a value such that P

i

b

1

;:::;b

i

� P

i�1

b

1

;:::;b

i�1

. By induction,

this implies that P

n

b

1

;:::;b

n

� P

0

< 1, and so P

n

b

1

;:::;b

n

= 0 and (b

1

; : : : ; b

n

) 2 A.

This method could, in principle, be applied to almost any randomized

algorithm. In practice, however, the computation of the conditional proba-

bilities is an utterly complicated task.

A careful examination of the proof of correctness of the method reveals

that it is not really necessary to exactly compute all the conditional proba-

bilities. This is formalized below

De�nition 2.1 A pessimistic estimator for set A and probability distribu-

tion Pr is a set of values fU

i

b

1

;:::;b

i

g

i=0;:::;n

(b

1

;:::;b

i

)2f0;1g

i

such that the following prop-

erties hold.

1. U

0

< 1;

2. 8i = 0; : : : ; n � 1, for all (b

1

; : : : ; b

i

) 2 f0; 1g

i

, U

i

b

1

;:::;b

i

�

minfU

i+1

b

1

;:::;b

i

;0

; U

i+1

b

1

;:::;b

i

;1

g;

3. 8i = 0; : : : ; n, for all (b

1

; : : : ; b

i

) 2 f0; 1g

i

, P

i

b

1

;:::;b

i

� U

i

b

1

;:::;b

i

.

If we have an algorithm that computes U

i

b

1

;:::;b

i

in poly(n) time, then we

are done: we can run algorithm cond-prob using U

i

b

1

;:::;b

i

in place of P

i

b

1

;:::;b

i

.

The proof of correctness is the same.

Attributions and Related Work. The method of conditional prob-

abilities is a standard way to obtain deterministic constructions out of an

existence proof that involves the probabilistic method. A clear exposition is

in [AS92]. Pessimistic estimators are de�ned in [Rag88].

2.1 Rounding Integer Linear Programs

Randomized rounding is an algorithmic technique that is suitable of de-

randomization using conditional probabilities. The general framework is

as follows: we have a problem that can be formulated as an integer linear

program (ILP) with 0/1 variables. We relax the ILP to a linear program

(LP) and we solve it to optimality. Then, we interpret the fractional solution

obtained on this way as a probability distribution over the variables. The

constraints of the LP are satis�ed with high probability and the expected

value of the objective function is close to the value of the relaxation.

5



Theorem 2.2 Let x = (x

1

; : : : ; x

n

) be a vector satisfying a

T

� x = b, 0 �

x

i

� 1. De�ne the random variables y

1

; : : : ; y

n

such that y

i

is equal to 1 with

probability x

i

and equal to 0 with probability (1 � x

i

) then, for any f > 0,

the following holds with probability at least (1� n

�f

):

b� a

max

p

fn logn � a

T

� y � b� a

max

p

fn log n (1)

where a

max

= max

i

ja

i

j.

The Theorem also holds for rounding inequalities. It is also clear that the

Theorem can be extended to systems of m equations; in this case the error

will be a

max

p

fn logmn. Let x

0

be a fractional solution to the following

linear program.

max c

T

� x

Subject to

Ax � b

0 � x � 1

Construct an integer solution y probabilistically by setting, indepen-

dently for any j, y

j

= 1 with probability x

0

j

and y

j

= 0 with probabil-

ity 1 � x

0

j

. With high probability, the resulting solution has cost at least

(1� o(1))c

T

� x

0

and satis�es

Ay � b+O(M

A

p

nlogn) (2)

where M

A

is the largest entry of A.

The above fundamental results have direct application to randomized

approximation algorithms for routing problems and for problems expressible

as integer linear programs in packing or covering forms (that generalize,

respectively, hypergraph matching and set cover).

De-randomization uses a pessimistic estimator and yield the following

result.

Theorem 2.3 There exists a polynomial time algorithm that given a vector

x = (x

1

; : : : ; x

n

), 0 � x

i

� 1, and a m � n, matrix A, �nds a vector

y = y

1

; : : : ; y

n

2 f0; 1g

n

such that

Ax� O(A

max

p

n log n) � Ay � Ax+O(A

max

p

n logmn) (3)

6



where a

max

= max

i;j

ja

i;j

j. In addition, for the rows of A with all non-

negative entries, the stronger bound

X

i

a

i;j

x

j

� O(a

max

j

log n) �

X

j

a

i;j

y

j

�

X

i

a

i;j

x

j

+ O(a

max

j

log n)

holds, where a

max

j

= max

i

ja

i;j

j.

The very notion of pessimistic estimator has been introduced in order to

prove Theorem 2.3 [Rag88].

Attributions and Related Work. Random rounding has been in-

troduced by Raghavan and Thompson [RT87]. The de-randomized rounding

using a pessimistic estimator is due to Raghavan [Rag88]. Both results are

also presented in Raghavan's PhD Thesis [Rag86].

Random rounding has been used to develop approximation algorithms for

the Maximum Satis�ability problem [GW94] and the Constraint Satisfaction

problem [Tre96]. In these algorithms, the probability distribution used to

round the variables is not the solution of the relaxation, but rather a convex

combination of the solution of the relaxation and of the uniform distribution.

The de-randomization of these algorithms is easier since, basically, any 0/1

solution is feasible.

Theorem 2.2 can be improved in special cases, for example for resource-

constrained scheduling problem [SS96] and for packing and covering integer

linear programs [Sri95]. In both cases, the authors de-randomize their round-

ing schema using new pessimistic estimators.

3 Extensions of Random Rounding and Random

Walks

Another useful de-randomization technique is based on random walks on

graphs. Let G(V;E) be an undirected graph and let v

1

; v

n

2 V and jvj = n.

A randomized naive algorithm for testing a path from v

1

to v

n

would start

at vertex v

1

and chose an edge leaving v

1

at random, follow this edge to

a new vertex and repeat the procedure. This algorithm de�nes a random

walk and has many implications in de-randomization. The random walk on a

graph corresponds to aMarkov chain with states represented by the vertices

of the graphs. Let G be a connected non-bipartite undirected weighted

graph; the probability associated with a transition from a vertex v

i

to v

j

is

given by p

ij

=

w

ij

w

i

with w

ij

the weight for the edge between v

i

and v

j

and

7



w

i

=

P

(i;j)

w

ij

or 0 if v

i

and v

j

are not connected. Notice that the probability

of being on a �xed state represented by a vertex is

1

n

independently of the

particular vertex. Let A be a subset of E and consider the time the random

walk spends in A; this time for almost every trajectory converges to the

limiting probability of A, �(A). Notice that if A = E then �(E) =

1

n

the

stationary probability.

Estimating the value of �(A) is an essential tool for de-randomizing

algorithms based on the sampling of exponentially large sets. The basic

idea is to generate a number of random sample points in G and compute

the fraction in A. This may be done by the use of the rapid mixing property

of the random walk on G to generate a single nearly random sample point

from � and repeating the procedure to generate enough independent samples

points in order to apply an appropriate Cherno� bound. An alternative way,

which gives better results, is �rst to generate a nearly random starting point

and then to sample every point along a single trajectory of the random walk

[Gil93]. It is shown there that the convergence to �(A) has error probability

exponentially small in the length of the random walk and the square of the

size of the deviation from �(A). For the uniform probability distribution

�(A) = �, if jAj = �n.

The bound depends on the degree of expansion of a graph. An expander

is a graph G with the property that any subset S of vertices of G containing

at most

n

2

vertices is connected to at least O(jSj) vertices not in S. The

better an expander G is, the more likely the random walk will visit A a frac-

tion of time approximating �(A). Also the uniformity of the graph improves

the bound and if the random walk starts in the stationary distribution the

bound does not depend on the size of the graph. This bound can be stated

in terms of random walks as follows:

Theorem 3.1 ([Gil93]) Let G = (V;E) be a constant degree expander and

let A � V with jAj = �n and jV j = n. Consider a random walk of length l

on G with uniform probability and let t

l

be the number of vertices of A in

the andom walk. Then:

Pr[j

t

l

l

� �j � �] � 2

�l�

2

K

where K is a constant depending on the graph G.

The application for sampling works basically as follows. In order to

sample O(m) points almost uniformly from a set S, we build a constant

8



degree expander with vertex set S and set up a random walk of length m

on S. The vertices on the random walk correspond to the m points to be

sampled [Gil93]. Deterministically, we can go through all possible paths of

length m and one of them will almost surely correspond to a set of m points

uniformly sampled on set S.

3.1 Approximation of \Dense" Instances of NP-hard Prob-

lems

We present an application to an approximation scheme for dense instances

of NP-hard problems. It applies to problems such as Max CUT and Max

Bisection.

The general theorem is as follows

De�nition 3.2 For a constant c, a polynomial in n variables of total degree

d is said to be c-smooth if the coe�cient of the monomial of degree i is at

most cn

d�i

.

For example a linear function a

1

x

1

+ : : :+ a

n

x

n

+ b is c-smooth if a

i

� c

for i = 1; : : : ; n and b � cn.

Theorem 3.3 There exists a randomized polynomial time algorithm that

given a rational � > 0 and the following mathematical programming problem

max p(x

1

; : : : ; x

n

)

Subject to

x 2 f0; 1g

n

where p is a c-smooth degree-d polynomial, �nds a feasible solution y in

time O(n

poly(c;d;1=�)

whose value is within an additive factor �n

d

from the

optimum.

For d = 1 the theorem is obvious (indeed, it is trivial to �nd an optimum

solution). The most interesting case is for d = 2, since the cases with higher

degree can be reduced to the case of degree 2. Furthermore, the application

to Max CUT and Min Bisection only require degree 2 formulations.

The algorithm has two phases. In the �rst phase a relaxation of the

problem is considered over the reals, and an approximate solution is found.

Then the approximate (fractional) solution is rounded to yield an integer

solution. The �rst phase uses a reduction to linear programming; the reduc-

tion uses random sampling and can be de-randomized using random walks

9



on expanders. The second phase uses the randomized rounding of the previ-

ous section, and is de-randomized, as already seen, with the method of the

pessimistic estimator. We brie
y outline the algorithm. For simplicity, we

specialize the presentation to the case of the Max CUT problem.

Recall that in the Max CUT problem an undirected graph is given and

the goal is to �nd a partition of the set of its vertices so as to maximize the

number of edges having an endpoint in each side of the partition.

A graph is said to be �-dense if it has n vertices and at least �n

2

edges. It

is easily seen that in any graph withm nodes there always exists a cut of cost

� dm=2e. Since the algorithm of Arora, Karger amd Karpinski guarantees

an additive error �n

2

, it is (1 + 2�=�)-approximate in �-dense graphs.

Given a graph G = (V;E), V = f1; : : : ; ng the Max CUT problem can

be formalized with the following quadratic programming problem, having a

variable x

i

for any vertex i:

max

P

(i;j)2E

x

i

(1� x

j

) + x

j

(1� x

i

)

Subject to

x 2 f0; 1g

n

(4)

Observe that the program above is 2-smooth. It is convenient to reformulate

the objective function as

P

i

x

i

P

(i;j)2E

(1� x

j

).

Approximating a Fractional PIP

The intuition behind the algorithm is based on the fact that in the optimum

solution each vertex has the majority of the vertices connected to it in the

opposite subset or otherwise the solution would not be optimum. In order

to decide in which subset a particular vertex should be, the algorithm takes

a sample of O(logn) vertices of the graph and exhaustively tries all the

2

O(logn)

possibilities of placements of the vertices in the sample. For any

such partial solution, the rest of the algorithm is executed. At the end,

among the 2

O(logn)

solution that have been sequentially computed, the best

one is selected. While considering the rest of the algorithm, the reader may

assume, without loss of generality, to consider the case when the placements

of the sampled vertices is done according to an optimum solution. Let y

�

be such solution.

For the unsampled vertices a decision is taken based on the majority rule

over the sampled neighbors. Notice that with high probability every vertex

has some of its neighbors sampled. Since the sampling involves some error,

it is di�cult to decide where to put a vertex, whenever the sampled adjacent

10



vertices are almost equally distributed in the two halves of the partition. For

any vertex i, let r

i

be the fraction of sampled vertices that are adjacent to

i and have been placed in the right part of the partition. We expect r

i

n

to be an estimation of

P

(i;j)2E

(1� y

�

j

), within an additive error �n. These

observations reduce the PLP (4) to the following LP:

max

P

i

x

i

r

i

Subject to

r

i

� �n �

P

(i;j)2E

(1� x

j

) � r

i

n + �n

(5)

It should come as no surprise that, with high probability (over the choice

of the sample points), if the sample points are partitioned according to an

optimal solution, (5) is feasible and an optimum solution for it has a cost

that is at least the optimum of the relaxation of (4) minus �n

2

.

In this �rst phase, randomization is only used to generate the sample

points. The point have to satisfy O(n

2

) conditions; thus each condition has

to be satis�ed with probability at least 1 � � where � = 1=O(n

2

). The ad-

ditive error that is admitted in each condition is �. Under such condition,

a random walk of length O(1=�

2

log 1=�) = O(

1

�

2

logn) on a constant-degree

expander will give the required sample space. There only n

O(1=�

2

)

such walks,

so de-randomization can be done in polynomial time. An alternative way of

de-randomizing this sampling phase is via a technique called iterated sam-

pling [BR94] which is also an oblivious method using less random bits but

more points than the method just described.

Rounding a Fractional PIP Solution

In the second phase, the fractional solution obtained by solving (5) is con-

verted into a 0/1 solution by loosing another additive factor O(

p

n log n).

This phase uses randomized rounding as in Theorem 2.2. An extension

of such theorem is needed to handle the case of smooth polynomials rather

than linear functions.

Theorem 3.4 Let p be a c-smooth degree-d polynomial. Given fractional

values x 2 [0; 1]

n

, suppose random rounding is performed as in Theorem 2.2

to yield a vector y 2 f0; 1g

n

. Then, with probability at least 1 � n

d�f

, we

have

p(x)� c

p

f logndn

d�

1

2

� p(y) � p(x) + c

p

f logndn

d�

1

2

The theorem is proved by induction on d. The base case (d = 1) is The-

orem 2.2 and the inductive step uses Theorem 2.2 again. It follows that

11



the de-randomization of Theorem 2.2 yields the de-randomization of the

theorem above.

Remark 3.5 When the Max CUT problem is formulated as a PIP, the ob-

jective function is a multilinear polynomial. For multilinear polynomials, a

stronger version of Theorem 3.4 holds, namely, it is possible to �nd deter-

ministically in polynomial time an integral solution x such that p(x) � p(y).

Also, all the dense versions of Max SNP problems, when formulated as PIP,

have a multilinear objective function.

Attributions and Related Work. Approximation schemes for dense

problems are in [AKK95]. A more e�cient randomized approximation

scheme for dense Max CUT is in [dlV]. An alternative more e�cient

approximation scheme for dense Max CUT and Max k-CUT has been de-

veloped in [FK96] using an algorithmic version of Szemeredy's regularity

lemma. A linear-time randomization approximation scheme for dense Max

CUT appears in [GGR96]. An e�cient de-randomization of the algorithm of

[GGR96] is still an open question. Interestingly, the algorithm of [GGR96]

runs in constant time, on the unit-cost RAM model of computation, if it is

only required to output a value that approximates the Max CUT (rather than

an approximately optimum partition).

4 Advanced Use of Rounding: the Assignment

Problem

Another example of algorithm using a combined de-randomization method

is an approximation method developed by [AFK96] for assignment problems

for dense graphs.

In an assignment problem, there are n tasks that have to be assigned

to n people (so that each person is assigned to exactly one task), possibly

under some additional constraint, and some objective function has to be

minimized or maximized.

A feasible solution for an assignment problem can be seen as a per-

mutation of the elements of f1; : : : ; ng, or as a perfect matching in a com-

plete graph with n nodes. A mathematical programming formulation of an

assignment problem usually involves n

2

variables x

i;j

and the assignment

constraints.

12



P

i

x

i;j

= 1 8j 2 f1; : : : ; ng

P

j

x

i;j

= 1 8i 2 f1; : : : ; ng

x

i

2 f0; 1g 8i 2 f1; : : : ; ng

(6)

A feasible solution x to the following set of constraints:

P

i

x

i;j

= 1 8j 2 f1; : : : ; ng

P

j

x

i;j

= 1 8i 2 f1; : : : ; ng

x

i

2 f0; 1g 8i 2 f1; : : : ; ng

(7)

is usually called a matching. A fractional solution x with 0 � x

i

� 1 that

satis�es the �rst two sets of constraints of 6 is called a fractional perfect

matching. If we want to minimize a linear objective function of x with

non-negative coe�cients under the constraints 6, then we have the min-cost

perfect matching problem, that can be solved in polynomial time. With a

non-linear objective function and/or with additional constraints the problem

becomes NP-hard, and approximation algorithms are of interest, even for

special cases.

An approach to solve assignment problems could be to consider the relax-

ation over fractional matchings and then use randomized rounding to obtain

a 0/1 solution. Unfortunately, after randomized rounding is performed, the

obtained solution can be very far from a matching, and it does not seem

possible to \patch" it in a reasonable way in order to obtain a matching of

comparable cost.

We will now see a non-trivial method of rounding a fractional matching,

introduced by Arora, Frieze and Kaplan. The fundamental result is the

following.

Theorem 4.1 There exists a randomized polynomial-time algorithm that,

given a fractional perfect matching x, and a vector a, returns with high

probability a matching y 2 f0; 1g

n

2

such that

P

i;j

a

i;j

x

i;j

� a

max

O(

p

npoly log(n)) �

P

i;j

a

i;j

x

i;j

�

P

i;j

a

i;j

x

i;j

+ a

max

O(

p

npoly log(n))

P

i;j

y

i;j

� n � o(n)

where a

max

= max

i

ja

i

j.

When combined with the approximation algorithms of the previous sec-

tion, the rounding procedure for the assignment problem yields the following

result.

13



Theorem 4.2 There exists a randomized algorithm that, given the polyno-

mial integer problem

max p(x

1

; : : : ; x

n

)

Subject to

P

i

x

i;j

= 1 8j 2 f1; : : : ; ng

P

j

x

i;j

= 1 8i 2 f1; : : : ; ng

x

i

2 f0; 1g 8i 2 f1; : : : ; ng

(8)

where p is a c-smooth degree-d, polynomial, and a real � > 0, �nds a match-

ing y such that:

1. p(y) � p(x

�

)� �n

d

where x

�

is the optimum solution of (8);

2.

P

i;j

y

i;j

� n � o(n).

The algorithm runs in time n

O(poly(c;d;

1

�

) logn)

.

We will only review the proof and the de-randomization of Theorem 4.1.

The rounding has three phases: oversampling, decomposition, and merging.

Randomness is used in the �rst and the third phase. Both such phases can

be de-randomized using Theorem 2.3. In the following outline of the proof

of Theorem 3.4 we denote by x the initial fractional perfect matching. We

can also identify matchings (i.e. feasible solutions for (7)) as matchings in

the complete bipartite graph K

n;n

.

Oversampling

In the oversampling phase, n

2

integer variables X

i;j

are de�ned.

Properties: With high probability,

8i L�

p

Lpoly logL �

P

j

X

i;j

� L+

p

Lpoly logL

8j L�

p

Lpoly logL �

P

i

X

i;j

� L+

p

Lpoly logL

P

i;j

a

i;j

X

i;j

� L

P

i;j

x

i

a

i;j

� a

max

p

npoly logn

(9)

Procedure: Fix a value L = �(log

2

n).

For i = 1; : : : ; n, j = 1; : : : ; n, make the following random experiment:

toss L times a coin biased so that heads comes up with probability x

i;j

and tail with probability 1� x

i;j

. Let X

i;j

be the number of heads.

14



In order to deterministically �nd values X

i;j

satisfying properties (9), we

apply Theorem 2.3 to the vector X

0

= Lx that satis�es

8j

P

i

X

0

i;j

= L

8i

P

j

X

0

i;j

= L

P

i;j

X

0

i;j

a

i;j

= L

P

i;j

x

i

a

i;j

The algorithm of Theorem 2.3 will �nd a vector X

i;j

that satis�es (9).

Decomposition

It is convenient to see X

i;j

as a bipartite multigraph with two components

of size n. X

i;j

is the number of edges between the i-th left node and the j-th

right node. Equations (9) can be restated as saying that any node of this

graph has degree close to L. The graph can be made D-regular (for some

D = O(log

2

n)) by adding at most

p

Lpoly logL edges to any node. Overall,

O(n

p

Lpoly logL) edges are added. Any D-regular bipartite multigraph

can be decomposed into D perfect matchings, and this is what we do. After

the decomposition, we ignore the edges that were added to make the graph

regular. Let M

1

; : : :M

d

be the resulting matchings. Here we use the word

matching in a graph-theoretic sense, i.e. a subset of edges of K

n;n

without

common endpoints. To each such matching we can associate in a natural

way a vector of f0; 1g

n�n

satisfying equations (7): it is just its characteristic

vector. If M is a matching in K

n;n

and y is its vector representation, we

write a(M) =

P

i;j

a

i;j

y

i;j

=

P

(i;j)2M

a

i;j

its cost. From the properties of

X

i;j

, we have that

a

T

� x�

p

npoly log(n) �

1

D

X

i

a(M

i

) � a

T

� x+

p

npoly log(n)

4.1 Merging

Property: Given two matchings M and M

0

it �nds a matching M

00

that

with high probability satis�es

a(M) + a(M

0

)

2

�n

3=4

poly logn � a(M

00

) �

a(M) + a(M

0

)

2

+n

3=4

poly logn

M [M

0

is a graph of maximum degree 2. Its connected components are

paths and cycles. By possibly deleting O(

p

n) edges we make sure

each connected component has size at most O(

p

n). We partition the

15



connected components into O(

p

n) groups each of size O(

p

n). For

each group independently we do the following: with probability 1/2 we

decide to put in M

00

the edges of the i-th group belonging to M ; with

probability 1/2 we put in M

00

the edges of the i-th group belonging to

M

0

.

The proof of correctness uses a variation of Cherno� bounds and is relatively

simple. For the de-randomization, let g be the number of groups. For any

i = 1; : : : ; g let C

i

(resp. C

0

i

) be the total cost of the edges of M (resp. of

M

0

) in the i-th group. We introduce variables z

1

; : : : ; z

g

with the intended

meaning that if z

i

= 1 (resp. z

i

= 0) then we take the elements of M (resp.

ofM

0

) out of the i-th group. With this interpretation, the cost of a matching

M

00

produced according to the variables z

i

is

X

i

z

i

C

i

+ (1� z

i

)C

0

i

Under the fractional assignment z

i

= 1=2, the expression above evaluates to

(a(M) + a(M

0

))=2. We can thus invoke Theorem 2.3.

Attributions and Related Work. All the results of this section are

due to Arora, Frieze and Kaplan [AFK96].

5 Bounded Independence

In this section we consider a case where randomization is used to construct a

combinatorial object, and de-randomization involves an alternative explicit

construction of such an object. In this particular instance, the explicit

construction makes use of small sample spaces with bounded independence,

that constitute, together with conditional probabilities and random walks,

a major de-randomization tool.

We consider the Sparsest Cut and the Maximum Concurrent Flow prob-

lems. In such problem, the instance is an undirected graph G = (V;E) , a

set of k pairs (s

i

; t

i

), k demands d

i

. and capacities c(e) > 0 for each edge

e 2 E.

In the Maximum Concurrent Flow problem, we are asked to �nd the

largest � such there is an assignment of 
ow values f(P ) to paths P between

the pairs (s

i

; t

i

), without exceeding the capacity of each edge, such that the


ow from s

i

to t

i

is at least �f

i

1 � i � k.

16



The problem can be formulated as a linear program. To this aim we

introduce the following notation: for any i = 1; : : : ; k we denote by P

i

the

set of paths in G from s

i

to t

i

. The formulation is as follows.

max �

Subject to

P

P2P

i

f(P ) � �d

i

8i 2 f1; : : : ; kg

P

k

i=1

P

P2P

i

f(P ) � c(e) 8e 2 E

f(P ) � 0 8P 2 P 8i 2 f1; : : : ; kg

(10)

Even if the above problem has an exponential number of variables, it can be

shown that it can be reformulated in an equivalent way in polynomial size,

and thus can be optimally solved in polynomial time. Even without chang-

ing the formulation, it can be solved in polynomial time with the ellipsoid

method, since it is a convex optimization problem for which a polynomial-

time separation oracle exists.

In the Sparsest Cut problem we want to �nd a partition (S; V �S) of the

vertices that induces a \small" cut and such that \most" pairs (s

i

; t

i

) are

separated. For a set S � V , we de�ne cut(S) = f(u; v) 2 E : u 2 S ^ v 62 Sg

and we let sep(S) be the set of indices i such that s

i

and t

i

are in opposite

sides of the partition (S; V � S) (formally, sep(S) = fi : jS \ fs

i

; t

i

gj = 1g).

Then, we want to �nd a set S with a large value of

P

i2sep(S)

d

i

and a small

value of

P

e2cut(S)

c(e). We will actually minimize the ration of the two

values. The problem is thus as follows

min

P

e2cut(S)

c(e)

P

i2sep(S)

d

i

Subject to

S � V

When k = 1, the Sparsest Cut problem reduces to the standard Min CUT

problem, and is solvable in polynomial time. For larger values of k, it is a

standard NP-complete problem. With simple manipulation, we can restate

in the following equivalent way, where we have a variable x

e

for any edge

and a variable y

i

for any pair (s

i

; t

i

).

17



min

P

e2E

c(e)x

e

P

k

i=1

d

i

y

i

Subject to

P

e2P

x

e

� y

i

8P 2 P

i

; 8i = 1; : : : ; k

x

e

2 f0; 1g 8e 2 E

y

i

2 f0; 1g 8i = 1; : : : ; k

If we consider the relaxation where the variables x

i

and y

i

range over the

non-negative reals, we can normalize the objective function by adding the

constraint

P

i

d

i

y

i

= 1. We obtain a linear programming relaxation

min

P

e2E

c(e)x

e

P

k

i=1

d

i

y

i

Subject to

P

e2P

x

e

� y

i

8P 2 P

i

; 8i = 1; : : : ; k

x

i

� 0 8i = 1; : : : ; k

y

i

� 0 8e 2 Eg

(11)

Which is the dual of the formulation (10) of the Concurrent Flow problem.

In particular the optima of the relaxed Sparsest Cut problem and of the

Concurrent Flow problem are the same.

An O(logk)-approximate algorithm for the Sparsest Cut problem can be

obtained by rounding an optimum solution of the relaxation. The rounding

procedure increases the cost of the rounded solution by at most a factor

O(log k).

The rounding scheme is based on two results: that a certain embedding

of the graph in a `

1

metric can be converted into a feasible solution for the

Sparsest Cut problem, and that any solution to the relaxation (11) yields

an embedding of the graph into a `

1

metric. Before presenting such results,

we need some preliminary de�nitions.

De�nition 5.1 For any integer n and real p > 1, the `

p

norm of a vector

a 2 R

n

is de�ned as

jjajj

p

=

 

n

X

i=1

ja

i

j

p

!

1=p

:

18



The `

p

norm induces a metric space in R

n

under the distance function

d

p

(a;b) = jja � bjj

p

. We call `

n

p

the metric space (R

n

; d

p

). Observe that

d

2

is the standard Euclidean distance, while d

1

has been called rectilinear

distance.

Given two metric spaces (X; d) and (Y; d

0

), and embedding of the former

in the latter is simply a function � : X ! Y . An isometry is an embedding

� : X ! Y such that, for any a;b 2 X , d(a;b) = d(�(a); �(b)). An em-

bedding has distorsion c � 1 if, for any a;b 2 X , d(�(a); �(b))� d(a;b) �

cd(�(a); �(b)). In particular, an isometry is an embedding with distorsion

1.

A feasible solution (x;y) for (11) can always be seen as de�ning a metric

space (V; d

x

); the solution assigns \weights" x

e

to any edge, and the distance

d

x

(u; v) between two vertices u and v can be de�ned as the shortest path

distance in the resulting weighted graph.

Theorem 5.2 Given a feasible solution x;y of (11), and an embedding �

of (V; d

x

) into an `

1

space such that the following holds:

1. For all u; v 2 V , d

x

(u; v)� jj�(u)� �(v))jj

1

;

2. For all i = 1; : : : ; k, d

x

(s

i

; t

i

) � cjj�(s

i

)� �(t

i

)jj

1

.

it is possible to �nd in polynomial time a feasible solution for the Sparsest

Cut problem of cost at most c times the cost of x;y.

Note that the embedding is required to have distorsion c on the points s

i

,

t

i

, and is only required not to increase the other distances. For convenience,

we de�ne a generalization of the kind of embeddings we are interested in.

De�nition 5.3 Let (X; d) be a metric space and Y � X. An embedding �

of (X; d) into another metric space (M; d

0

) is said to be c-good for ((X; d); y)

if

1. For all a;b 2 X, d(a;b) � d

0

(�(a)� �(b));

2. For all a;b 2 Y , d(a;b) � cd

0

(�(a); �(b))1.

Theorem 5.4 For any metric space (X; d) and subset Y � X, there exists

a O(logjY j)-good embedding for ((X; d); y) in a `

1

space. Such an embedding

can be found in random polynomial time.

19



>From the fact the (11) can be optimally solved in polynomial time and from

the above two theorems it follows that the Sparsest Cut problem admits a

O(log k)-approximate algorithm.

Randomization is only used in the proof of Theorem 5.4. We will see

how to obtain a deterministic version.

Theorem 5.5 For any metric space (X; d) and subset Y � X, there exists

a O(logjY j)-good embedding in a `

2

space. Such an embedding can be found

in random polynomial time.

The existence proof uses the probabilistic method. Once the existence is

established, an actual embedding can be found as a standard application of

Semide�nite Programming. It is worth stressing that semide�nite program-

ming only works for `

2

metrics.

Theorem 5.6 Any set X of points in a `

2

space can be embedded into an `

1

space with constant distorsion. The embedding is computable in polynomial

time.

This theorem is the hearth of the de-randomization.

Proof: [Rough Sketch] Let m be the dimension of the space containing

V . Let S � f�1; 1g

m

be a collection of 4-wise independent vectors, S =

fs

1

; : : : ; s

jSj

g. It is possible to construct such a collection of size O(m

2

) in

poly(m) time. The mapping associates to an element a 2 V the element

�(a) 2 R

(jSj)

de�ned as follows

�(a) =

�

1

jSj

a � s

1

; : : : ;

1

jSj

a � s

m

�

Such a mapping introduces a distorsion at most

p

3. 2

Combining the proofs of Theorems 5.5 and 5.6 it is possible to get the

�nal result.

Theorem 5.7 For any metric space (X; d) and subset Y � X, there exists

a O(logjY j)-good embedding in a `

1

space. Such an embedding can be found

in polynomial time.

The deterministic O(log k)-approximate algorithm for the Sparsest Cut

problem works as follows:

1. an optimum solution (x

�

;y

�

) for (11) is found. The cost of such solu-

tion is lower bound to the optimum of the Sparsest Cut problem;

20



2. Using Theorem 5.7 we �nd an O(log k)-good embedding for

((V; d

x

�

); fs

i

; t

i

: i = 1; : : : ; kg;

3. Using Theorem 5.2 we �nd a feasible solution for the Sparsest Cut

problem of cost at most O(log k) times the cost of (x

�

;y

�

). Such a

solution is O(log k)-approximate.

Attributions and Related Work. There has been a lot of research

on the approximability of the Sparsest Cut problem and the related Multi

Cut problem. Shmoys' survey [Shm96] presents a very complete account

on the known results and their history. Regarding the results mentioned in

this section, the relation between embeddings in `

1

metrics and the Sparsest

Cut problems was �rst noted in [AD91]. Theorem 5.2 was independently

discovered by Linial, London and Rabinovich [LLR95] and by Aumann and

Rabani[AR]. The randomized embedding in `

1

metrics appeared in a prelim-

inary version [LLR94] of the paper of Linial, London and Rabinovich. The

deterministic embedding was found later, by the same authors, and appears

in [LLR95]. The deterministic mapping of `

2

metrics into `

1

metrics us-

ing 4-wise independence (Theorem 5.6) is attributed to [Ber97] in [LLR95].

A deterministic O(log k)-approximate algorithm for Sparsest Cut was also

discovered by Garg [Gar95].

Acknowledgements

We are grateful to Sanjeev Arora and Oded Goldreich for prompt answers

to some questions of ours.

References

[AD91] D. Avis and M. Deza. The cut cone, l

1

embeddability, complexity,

and multicommodity 
ows. Networks, 21:595{617, 1991.

[AFK96] S. Arora, A. Frieze, and H. Kaplan. A new rounding procedure

for the assignment problem with applications to dense graph ar-

rangement problems. In Proceedings of the 37th IEEE Symposium

on Foundations of Computer Science, pages 21{30, 1996.

[AKK95] S. Arora, D. Karger, and M. Karpinski. Polynomial time approxi-

mation schemes for dense instances of NP-hard problems. In Pro-

21



ceedings of the 27th ACM Symposium on Theory of Computing,

pages 284{293, 1995.

[AR] Y. Aumann and Y. Rabani. An O(log k) approximate min-cut

max-
ow theorem and approximation algorithm. SIAM Journal

on Computing. To appear.

[Aro97] S. Arora. Nearly linear time approximation schemes for Euclidean

TSP and other geometric problems. Manuscript, 1997.

[AS92] N. Alon and J. Spencer. The Probabilistic Method. Wiley Inter-

science, 1992.

[Ber97] B. Berger. The fourth moment method. SIAM Journal on Com-

puting, 26(4):1188{1207, 1997.

[BR94] M. Bellare and J. Rompel. Randomness-e�cient oblivious sam-

pling. In Proceedings of the 35th IEEE Symposium on Foundations

of Computer Science, pages 276{287, 1994.

[dlV] W.F. de la Vega. MAXCUT has a randomized approximation

scheme in dense graphs. Random Structures and Algorithms. To

appear.

[FK96] A. Frieze and R. Kannan. The regularity lemma and approxima-

tion schemes for dense problems. In Proceedings of the 37th IEEE

Symposium on Foundations of Computer Science, 1996.

[Gar95] N. Garg. A deterministic O(log k)-approximate algorithm for the

sparsest cut problem. Manuscript cited in [Shm96], 1995.

[GGR96] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and

its connection with learning and approximation. In Proceedings of

the 37th IEEE Symposium on Foundations of Computer Science,

1996.

[Gil93] D. Gillman. A cherno� bound for random walks on expander

graphs. In Proceedings of the 34th IEEE Symposium on Founda-

tions of Computer Science, pages 680{691, 1993.

[GW94] M. Goemans and D. Williamson. New 3/4-approximation algo-

rithms for the maximum satis�ability problem. SIAM Journal on

Discrete Mathematics, 7(4):656{666, 1994. Preliminary version in

Proc. of IPCO'93.

22



[LLR94] N. Linial, E. London, and Y. Rabinovich. The geometry of graphs

and some of its algorithmic applications. In Proceedings of the 35th

IEEE Symposium on Foundations of Computer Science, pages

577{591, 1994.

[LLR95] N. Linial, E. London, and Y. Rabinovich. The geometry of

graphs and some of its algorithmic applications. Combinatorica,

15(2):215{245, 1995.

[Rag86] P. Raghavan. Randomized Rounding and Discrete Ham-Sandwich

Theorems: Provably Good Algorithms for Routing and Packing

Problems. PhD thesis, University of California at Berkeley, 1986.

[Rag88] P. Raghavan. Probabilistic construction of deterministic algo-

rithms: approximating packing integer programs. Journal of Com-

puter and System Sciences, 37:130{143, 1988.

[RT87] P. Raghavan and C.D. Thompson. Randomized rounding: a tech-

nique for provably good algorithms and algorithmic proofs. Com-

binatorica, 7:365{374, 1987.

[Shm96] D. Shmoys. Cut problems and their applications to divide-and-

conquer. In D. Hochbaum, editor, Approximation Algorithms for

NP-Hard Problems, pages 192{235. PWS Publishing, 1996.

[Sri95] A. Srinivasan. Improved approximations of packing and covering

problems. In Proceedings of the 27th ACM Symposium on Theory

of Computing, pages 268{276, 1995.

[SS96] A. Srivastav and P. Stangier. Algorithmic cherno�-hoe�ding in-

equalities in integer programming. Random Structures and Algo-

rithms, 1996. Preliminary version in Proc. of ISAAC'94.

[Tre96] L. Trevisan. Positive linear programming, parallel approximation,

and PCP's. In Proceedings of the 4th European Symposium on

Algorithms, pages 62{75. LNCS 1136, Springer-Verlag, 1996.

23


