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Abstract

We prove (mostly tight) space lower bounds for “stream-
ing” (or “on-line”) computations of four fundamentalcom- 1 |ntroduction
binatorial objects: error-correcting codes, universaldia
functions, extractors, and dispersers. Streaming compu-
tations for these objects are motivated algorithmically by
massive data set applications and complexity-theordyical
by pseudorandomness and derandomization for space
bounded probabilistic algorithms.

Our results reveal a surprising separation of extractors
and dispersers in terms of the space required to compute
them in the streaming model. While online extractors re-
quire space linear in their output length, we construct dis-
persers that are computable online with exponentially less
space. We also present several explicit constructions of on
line extractors that match the lower bound.

We show that online universal and almost-universal hash
functions require space linear in their output length (this

baundwas known previously only for “pure” universal hash primitives in this model: universal hash functions, error-

functions [24, 5]). correcting codes, randomness extractors and dispersers, a

Finally, we show that both online encoding and online \ e hresent (mostly tight) lower bounds and explicit con-
decoding of error-correcting codes require space propor- structions.

tional to the product of the length of the encoded message

and the code’s relative minimum distance. Block encoding S
. Motivation

trivially matches the lower bounds for constant rate codes.

In this paper we deal with the “on-line space-bounded,”
or “streaming” model of computation, a model where a ma-
chine of bounded memory receives its input on a read-only
tape, with one-way access. The goal is to design algorithms
whose memory use is considerably shorter than the length
of the input. In algorithm design, this model captures sev-
eral settings where the input data is very large (henceritis i
feasible to store in memory the entire input) and itis read, o
“discovered” sequentially [2, 10, 19]. In complexity thgor
this model captures the way probabilistic space-bounded al
gorithms use their randomness, so that pseudorandomness
in the space-bounded setting has (non-uniform) “streaming
algorithms” as “adversaries.”

We consider the tasks of computing four fundamental

*A full version of the paper is avallable at From an aIg_orithmic perspective, s_treaming procedure_s
http: //ww. cs. berkel ey. edu/ ~zi vi for hash functions and error-correcting codes are basic
TSupported by NSF Grant CCR-9820897. primitives that may be useful for a variety of streaming ap-
*Part of this research was performed while visiting the tostifor Ad- plications In fact. most streaming algorithms today (e g
vanced Study, Princeton, NJ. ) ! . e
§Part of this research was performed while visiting the totsifor Ad- [2, 10]) make crucial use of hash functions. Error-corregti

vanced Study, Princeton, NJ. codes that admit space-efficient online encoding and decod-



ing are important when having to transmit large amounts of Perspective
data over a fast but unreliable channel. If the data is gen-
erated continuously on the fly, then online encoding elimi-
nates the need to store the data before transmitting itn@nli

decpding aIIows_ one 1o process the received.data without 14 cite some examples, it is a matter of folklore that one
having to store it beforehand; this may result in large sav- ¢, get hash functions with low collision probability from

ings of space because th_e encoded data is frequently muc@rror-correcting codes (by encoding the input and prajecti
larger than the message it encodes. it to a small set of coordinates — an example of this approach
can be seen in [26]); error-correcting codes are used in the
extractor construction of [41], and in several more recent
From a complexity-theoretic perspective, extractors and constructions [30, 20, 31, 40, 33]; hash functions are also
dispersers are important pseudorandomness and derandorextractors, as follows from the Leftover Hash Lemma [18];
ization tools. They were used in the design of pseudoran-error-correcting codes with strong list-decodability peo-
dom generators for space-bounded computations (explicitl ties can be derived from extractors [39].
in [28, 29] and implicitly in [27]), and they are roughly While there is no known equivalence, or transforma-
equivalent to randomness-efficient procedures to redwce th tion, between extractors and dispersers, there are several
error-probability in probabilistic algorithms. Randonsse  results pointing to a substantial equivalence between-“ran
of space-bounded computations is assumed to arrive in ajomization with one-sided error” and “randomization with
stream (written on a one-way random tape); this necessi-two-sided error,” the former being the setting of dispesser
tates some of the pseudorandomness and derandomizatioand the latter being the setting of extractors. For exam-
procedures designed for such computations to admit onlineple, it is known that “hitting set generators” (that are seme
space-bounded implementations. what the “computational” version of dispersers) can be used
to derandomize algorithms with two-sided error (a task
for which it formerly appeared that “pseudorandom gen-
Roughly speaking, an extractor is a procedBret (-, -) erators,” the “computational” version of extractors, were
with two inputs, where the second input (also called the needed)[3, 6, 15, 13]. In fact, the results of [15, 13] have an
seed is typically logarithmically shorter than the first in-  information-theoreticinterpretation that says that disers
put; the property is that if the first input comes from a dis- €an be converted into “samplers,” that are almost, but not
tribution of sufficiently large entropy, and the seed is uni- duite, extractors. Upper and lower bounds for extractors
formly distributed, then the output of the procedure (which and dispersers show that essentially the same parameters
is shorter than the first input but still exponentially longe are achievable for the two objects, and even the results of
than the seed) is almost uniformly distributed. We think of [4] do not differentiate between the two.
an online extractor as a procedure with two one-way input  For hash functions and error-correcting codes, we were
tapes (one per input) and limited memory. To reduce error vVery interested in the question of whether reasonably space
probability in space-bounded probabilistic algorithmseo  €efficient algorithms could exist. As we state below, the an-
needs online extractors in a slightly different model: the a swer is affirmative for hash functions, while itis complgtel
gorithm has one input tape for the first inputand must ~ negative for error-correcting codes.
produce the list of output&zt(x, s) for all possible val- However, more generally, our main interest was to look
ues of the second input Bar-Yossefet al. [4] prove a at these tightly related objects under the lens of a very re-
strong space lower bound in this setting, but not in the morestrictive model of computation, and see what happens of
general setting where the algorithm has two tapes. If thetheir connections. As we state below, we give a strong (ex-
first input has lengtm, the seed has length the output ponential, in the case of long seed) separation between the
has lengthn, and the output is almost uniform provided the space sufficient to compute dispersers and the space nec-
first input has entrop¥, then [4] prove that, in their model, essary to compute extractors.  Our results also show the
the computation uses memory at least, roughly- d. A extreme differences in power between seemingly similar
disperserD(-, -) is a weaker type of extractor, such that if models of space-bounded computation. We show how to
the first input has sufficiently large entropy, and the seed isconstruct online dispersers with exponentially less mgmor
uniform, then the output hits with non-zero probability ev- than in the [4] setting (that had one input tape, and the out-
ery set of sufficiently large density. The [4] lower bound puts had to be “enumerated” over all values for the second
also applies to dispersers. We remark that extractors (andinput), and we show a lower bound for extractors with one-
for a stronger reason, dispersers) can be computed in logaway tapes that is exponentially bigger than the space needed
rithmic space assuming one ha®-wayaccess to the input ~ with a two-way tape in the [17] construction.
[17]. Finally, the generation of high-quality randomness from

Very strong connections are known between the combi-
natorial objects discussed in this paper.



biased sources is a very important practical problem, thattation of random walks on expanders (using ideas from [4]).
does arise in settings for which the streaming model is an  These results are described in Section 3 (lower bounds)
appropriate formalization. In such cases, one is probablyand Section 5 (upper bounds).

not interested in the randomness extractors satisfying the The proof uses the idea that after looking at a block of
strong definition used in this paper (that need the uniform the input of sizen — k, the extractor cannot be sure it has
second input), but rather in faster deterministic extrecto seen any randomness (becausekthsts of entropy could
that (for special classes of distributions) directly camee be “concentrated” in the remaining part of the input), and so
biased streaming input into an almost uniform output streamit can only output bits from the memory or from the seed.
(cf. [42]). It would probably be very interesting to study Fork < n/2, we can say that the extractor cannot output
which classes of distributions admitting polynomial time anything while looking at the first/2 bits, and it can only
deterministic extractors also have space-efficient stig@m  output randomness that is in the state or in the seed after-
extractors. Our work hopefully prepares the terrain for the wards. While the intuition is clear, the actual proof reqair

treatment of such questions. considerable technical work.
For dispersers and fdr < n/2, we show that it is pos-
Our Results sible to use memory about /¢ and seed! = O(¢logn)
for every parametef. The idea is to randomly partition the
For error-correcting codes mappihdits inton bits, and ~ inputinto£ blocks, in such a way that each block still con-

that are able to correct at leadt errors, we prove that both ~ tains sufficiently large entropy, and then use memary’

the encoding and the decoding procedures must use memt© extract randomness from each block. A good partition

ory Q(5k). The bound can be matched trivially by dividing Wil be found with low probability, but this is compatible

the input intoO(1 /) blocks, and encoding each block with with th_e definition o_f dlspe_rser. Th_e C(_)nstrucnon and_|ts

a code of constant rate and constant relative minimum dis-analysis, presented in Section 6, utilize ideas from previo

tance. These results are described in Section 7. constructions of extractors and dispersers [28, 32, 37, 38]
For universal hash functions mappindits intom bits,

our space lower bound is roughhi. (This bound fol- 2  Preliminaries

lows also from the time-space tradeoffs of Mansetal.

[24] and the communication-space tradeoffs of Beahe

al. [5]. Our bound has the advantage of being applica-

ble also to almost-universal hash function.) The bound can

be achieved by linear hash functions. If the output is con-

siderably shorter than the input, this can be a significant

saving. Using almost-universal hash functions, which ad- . ]

mit O(m + log n)-sized descriptions, one can evaluate such 2-1  Online Extractors and Dispersers

hash functions on many inputs using spéaben + logn).

The lower bound for hash functions follows from the lower [|X — Y| denotes the total variation distance between

bound for extractors and from the Leftover Hash Lemma. two distributions on the same domain ||X — Y| def

These results are described in Section 4 (lower bound) and% Yo | X(w) = Y(w)| = maxrco|X(T) — Y(T)|.

Section 5 (upper bound). Given a distributionX onQ and a functionf : Q — Q' we
Our main results are the lower bound for extractors and denote byf (X) the distribution induced byx andf on (Y.

the construction of dispersers. Combined, they show an un-f/, denotes the uniform distribution dit), 1}*. H.,(X) =

usual “separation” between the two combinatorial objects, min,, ., (log(1/X (w))) denotes the min-entropy of a dis-

and offer fresh insights. tribution X on Q. An (n, d, m) functionis a function of the
For extractors where the first input has lengtlthe seed  form f : {0,1}" x {0,1}¢ — {0,1}™; we nickname its

has lengthd, the output has lengtim, and the output is  first input “the input” and its second input “the seed”.

uniform assuming the first input has entropyour lower

bound has two cases. Definition 1 (Extractor [28]) An (n,d,m) function E is
If & < n/2,i.e. if the extractor works with inputs of called a (k,e)-extractor if for every distributionX on

relatively small entropy, then we prove that the memory has {0, 1}" with Hoo (X) > k, ||[E(X,Uq) — Upn|| < e.

to be at least, roughlyn — d. This is matched by careful

implementations of the extractors of Trevisan and of Raz  Definition 2 (Disperser [34]) An (n,d, m) function D is

al. [41, 30]. called a (k,¢)-disperser if for every distributionX on
If £ > n/2, then the lower bound is rough{yn —d)(n— {0,1}™ with Ho(X) > k, and for every subsel’ C

k)/n, which we can match with a space-efficientimplemen- {0, 1}™ of size at least2™, Pr(D(X,Uy) € T) > 0.

In this section we define online extractors, dispersers,
universal hash functions, and error-correcting codes. We
then review some tools from Information Theory we use in
our analysis.



We studyonline extractorsaandonline dispersers- ones

There are explicit constructions of universal hash func-

that are computable by space-bounded one-pass algorithmsions of size2°("+™) that are logspace computable. For

We consider two variants of such algorithnsingle-seed
algorithmsandall-seeds algorithms

Definition 3 (Online extractors/dispersers) An algo-
rithm A is called asingle-seed one-pass algoritffor an

(n,d,m) function f, if given one-way access to an input

r € {0,1}" and one-way access to a seed= {0,1}¢,
it outputs f(x, ) on a one-way output taple.A is called
an all-seeds one-pass algorithm f@r if given one-way
access to an input € {0,1}", it outputs f(x,r) for all
r € {0,1}4 on2? one-way output tapes.

example, the Toeplitz family (cf. [12]) is of sizg+m—1,
We studyonline hash functions- ones that are com-
putable by space-bounded one-pass algorithms:

Definition 7 (Online universal hash functions) An algo-

rithm A is called aone-pass algorithrfor a family of hash
functionsH = {h : {0,1}" — {0,1}™}, if given one-way
access to a (description of a) functiane H and one-way
access to an input € {0,1}", A outputsh(z) on a one-
way output tape.

The Leftover Hash Lemma, due to Hastad, Impagliazzo,

The space of an algorithm is defined to be the binary | eyin, and Luby [18], yields a construction of (strong) ex-
logarithm of the number of possible configurations the al- {,actors from any universal family of hash functions:

gorithm has. Each configuration consists of the machine’s

state and the contents of the work space. Hence, the maxtemma 8 (Hastad, Impagliazzo, Levin, Luby [18])

imum number of configurations atspace machine has is
25,

Bar-Yossef, Goldreich, and Wigderson [4] proved space tion E

Let H = {h : {0,1} — {0,1}™} be a universal
family of hash functions of size?. Then the func-
{0,1}" x {0,1}¢ — {0,1}™ defined as

lower bounds for all-seeds one-pass algorithms for dis- E(x, h) = h(zx) is a (k, ) strong extractor for anys < n
persers. Our results show that for extractors their spaceand fore > 2(m—k)/2-1,
lower bound holds even for single-seed one-pass algo-

rithms, but for dispersers there are substantially moreespa
efficient single-seed one-pass algorithms.

Theorem 4 (Bar-Yossef, Goldreich, Wigderson [4])
Definet % [n/(n — k)]. LetD : {0,1}" x {0,1}¢ —
{0,1}™ be a(k, ¢)-disperser withe < 1/¢. Then, for all
integersl < p < 2¢, any all-seeds one-pass algorithm
for D that writes to at mosp output tapes simultaneously
requires space > m —d—p—1—logt —log(1/1 — et).

We will be interested in a stronger notion of extractors,
defined as follows. It is interesting to note that all our uppe
bounds for online extractors are exhibited by strong extrac

tors.

Definition 5 (Strong extractor) An (n,d,m) function E
is called a(k, €) strong extractaif for every distributionX
on{0,1}"with Hyo(X) > k, ||E(X,Uq) oUg— Uppral] <

e (where the two occurrences bf; refer to the same vari-
able).

2.2 Online Universal Hash Functions

Definition 6 (Universal hash functions [7]) A family of
functionsH = {h : {0,1}" — {0,1}™} is called auniver-
sal family of hash functionsf for everyx # ' € {0,1}",
Prpem(h(z) = h(z")) < 1/2™.

1The one-way access to the seed is required for the lower bfmnd
strong extractors, where the seed may be very long. For énelatd sce-
nario, where the seed is much shorter than the input, we dar tiee
definition by allowing two-way access to the seed; this waikiednge our
lower bounds by only an additive factor @f

Therefore, our space lower bounds for online extractors
will directly imply space lower bounds for online univer-
sal hash-functions. In fact, an “almost” universal famify o
hash functions are sufficient to construct extractors. &her
fore, our lower bounds apply to such families as well.

Definition 9 (e-almost universal hash functions)A fam-
ily of functionsH = {h : {0,1}" — {0,1}™} is called
an e-almost universal family of hash function§for every
x#x' €{0,1}", Prrep(h(x) = h(z")) <e.

Lemma 10 (Impagliazzo, Zuckerman [21]) Let H =

{h : {0,1}" — {0,1}™} be an((1 + €2)/2™)-almost
universal family of hash functions of si2é. Then the
function £ : {0,1}" x {0,1}¢ — {0,1}™ defined as
E(xz,h) = h(x) is a(k, €) strong extractor for any; < n

such that > 2(m—k)/2,

We note that the extractors based on universal hash func-
tions (e.g., the Toeplitz family), have seed lengdn).
Based on almost universal families, the seed length can be
reduced taD(m + logn + log 1/¢) (see e.g. [14]).

2.3 Online Error-Correcting Codes

LetIF, be afield of sizg. An (n, k, d), error-correcting
code(ECC) is a subsef C IF} of size q", such that for
every two distinct codewords, w’ € C, the Hamming dis-
tance betweem andw’ (i.e., |[{i | w; # w;}|) is at least
d. n is called thecode’s lengthk is its dimension andd
is its minimum distance k/n is the code’'srate and d/n



is its relative minimum distance An encoding function block of the input, cannot know whether these bits contain
E: IF’qC — [F;;, maps every message to its encodingdeA some entropy or are totally fixed. Intuitively, this implies

coding functionD : F} — ||:7q€, maps every received (pos- that the algorithm cannot immediately extract the entropy

S|b|y Corrupted) message to the Origin of its closest code- of the i-th bIOCk, if it eXiStS, but rather has to wait for the
word. i+1-st block. However, at that point the algorithm “remem-

bers” onlyS bits of the entropy of thé-th block. It follows
Definition 11 (Online error-correcting codes) Let C be that the algorithm can extract at masbits of entropy from
an (n, k,d),-code. An algorithmA is called aone-pass  each block, and therefoi® > m/t.
encoding algorithmif given one-way access to a message  Both lower bounds hold only for extractors in whick:
T € IF’; it outputsE(z) on a one-way output tape. An al- 1/t. When the entropy is at most a constant fractiom pf
gorithm B is called aone-pass decoding algorithifigiven this does not pose a strict restriction on the error. However
one-way access to a received message ., it outputs for extremely high entropieg:(> n — o(n)) this requires
D(w) on a one-way output tape. the error to bey(1). It remains open to check whether this

limitation is inherent or just an artifact of our proof.
2.4 Tools from Information Theory

Theorem 14 Lett = [n/(n — k)], and letE : {0,1}" x

Throughout this paper we use several tools from {0,1}¢ — {0,1}™ be a(k, ¢)-extractor withe < 1/4. Then

information theory. ~We briefly survey them below. @any one-pass algorithr that computes? requires space
Shannon’s (binary) entropyis defined asH(X) = S =m/t—d—2e(m+log(l/e) — 1) —log(m + 1).
E,ex(logy(1/X (w))). Two basic properties of the entropy )
are the following (cf. [9], Chapter 2): (1) sub-additivity: FT0Of- LétA beaone-pass algorithm that comput&snd

P let S be the space ofl. We split any inputz € {0, 1}™ into
H(X,)Y) < HX H(Y) and (2) data processing in-
eq(uality):H_(f()é)))<+H()(().) @ P ng ! t blocks: 2!, ..., zt, each (except, maybe, for the last one)
The following theorem (see [9], pages 488-489) con- of lengthn — k. In the sequel we assume for simplicity of

nects the variation distance between two distributions angntation that the last block 'S also of size- k. .
their entropy difference: For any inputz € {0,1}" and seed- € {0,1}%, we

divide the execution ofdA on x andr into ¢ phases: the
Theorem 12 If || X —Y|| < 1/4,then,|H(X) - H(Y)| < i-th phase ends just befork starts to read the first bit of
2| X — Y| - (log % —1). thei + 1-st block; the first phase starts at the first step of
the algorithm; the last phase ends at the end of the execu-
The following fact (due to Lawrence Ip [22]) connects tion. We denote by)?(z, ) the bits A outputs during the
the entropy of a distribution 00, 1}=™ (all the binary  j-th phase, by (z, ) the bits of the seed it reads during
strings of length at most) to the expected length of strings  the-th phase, and b (z, r) the configuration of4 at the
under the distribution: beginning of the-th phase.

Proposition 13 For any distribution X on {0,1}<™, Varying over all inputsr and seeds, A may have at

most2° possible configurations at the beginning of tkté
H(X) < B(X]) + H(1X]) < B(|X]) + log(m + 1). phase for any > 2. For: = 1, it has only one possible
) configuration at the beginning of the first phase — the initial
3 Lower Bounds for Online Extractors configuration.
For any blocki and stringa € {0,1}"~%, let X; , be a

We present two versions of the lower bound: the first distribution on{0, 1}" which is fixed toa on thei-th block
(Theorem 14) gives weaker bounds, but its proof is intu- and uniform everywhere else. Clearl o (X; o) = k.
itive and utilizes known facts from information theory; the In general, y’(z,7) is a deterministic function of
second (Theorem 15) is stronger, but its proof is more in- z*, r*(x, ) andc(z, 7). When picking inputs according to
volved. We also show (Theorem 16) that an even strongery;, ,, all the inputs share the samh block, and there-
lower bound holds for strong extractors. The proofs of the fore y*(x,r) is a function only ofr*(z,r) andc!(x, ). We
two latter theorems are omitted for lack of space. They ap- can thus writey’ (z,7) = gia(c(z,7),r*(x,7)) for some
pear in the full version of the paper. functiong; ..

The basic idea behind both lower bounds is the follow-  \We first show that there exists some blacknd an as-
ing: we split every inputr € {0,1}" intot = n/(n — k) signmenta to this block, such that outputs at least/t
blocks of sizen — k. A distribution X; , that is fixed to bits in thei-th phase when running diX; ., Uy):
some stringy € {0,1}"~* on thei-th block and uniform
everywhere else has min-entropyand thusE' (X o, Uq) Claim 1 There exists a blockand a stringa: € {0, 1}"*,
is e-close to uniform. The algorithm, when reading thii such thatE (|y* (X, o, Ua)|) > m/t.



Proof. Since the output ofd is always of lengthm, then
for any inputz and any seed, >'_, |y*(x,)| = m. In
particular, if we choose: € U, andr € Uy, we have,
E(Zf.:l ly*(Un,Uq)|) = m. Therefore, there exists some
i€ {1,...,t}, such thatt(|y"(Uy, Uq)|) > m/t.

We can think of the choice of € U,, as first picking
x' € U,_1, and then picking the rest of the bits; ?, from
Ui. We denote by’ o 2~ then-bit string that hag in its
i-th block andz~* in the rest of the blocks. Them/t <
E(ly! (Un—koUx, Ua)]) = Esicu,_, (E(jy (oUs, Ug)|).
It follows that there exists some assignment {0,1}"—*
for which E(|yi(a o Uy, Uyg)|) > m/t. O

def ef

Define Y % (X, 4,Uq) and €t %' ¢(X; 0, Uy).

Theorem17Let H = {h : {0,1}" — {0,1}} be
a 2¢-sized universal family of hash functions with <
n—4logn. Definek = [m+4logn] andt = [n/(n—k)].
Then any one-pass algorithr for H requires spaces >
m/(t—1)—2logt(1+1/(t —1)).

Theorem 18 Let H = {h : {0,1}" — {0,1}} be a29-
sized(1+ €?)/2™-almost universal family of hash functions
with e < 1/2 satisfying[m + 2log(1/e)] < n(1 — v/2¢).
Definek = [m + 2log(1/e)] andt = [n/(n — k)].
Then any one-pass algorithr for H requires spaces >
m/(t—1)—2logt(1+1/(t —1)).

Remark 19 A somewhat strange aspect of Theorem 17 and

The discussion above implies that there exists some func-Theorem 18 is that the bounds Shmay deteriorate when

tion g; o suchthat’® = g; ,(C*,U,). Therefore H(Y?) =
H(gi.a(C',Us)) < H(CLU)) < H(CY) + H(Us) <
S +d.

Let Y~ %' y=i(X; o, U4), wherey~(z, ) are all the
bits A outputs onr andr not during thei-th phase. Note
that |y ~%(x,7)] = m — |y*(x,7)|, and thus by Claim 1,
E(JY~Y) < m(1—-1/t). Inorder to boundi (Y ~%), we use
Proposition 13 (see Section 2.4%(Y ~%) < E(|Y~¢|) +
log(m+1) < m(1—1/t)+log(m+1). We can now bound
the entropy ot %' E(X; ., Uy): H(Y) = H(Y!, Y1) <
HYYY+HY ) <S+d+m(l—1/t)+log(m+1).

Since||Y — Uy, || < € < 1/4, and since the the function
xlog(1/x) is monotone increasing for < 1/2, we can
apply Theorem 12 (see Section 2.4) and obtafi(Y") —
H(U,)| < 2e(log(2™/e) — 1) = 2¢(m + log(1/€) — 1).

SinceH (U,,) = m, this implies that:H(Y) > m(1 —
2¢) — 2¢(log(1/e) — 1). Combining the upper and lower
bounds onH (Y'), we obtain the desired lower bound Sn
O
Theorem 15 Lett % [n/(n— k)], and letE : {0,1}" x
{0,1}¢ — {0,1}™ be a(k, )-extractor withe < 1/(2t?).
Then any one-pass algorithr that computed’ requires
spaceS > (m—d)/(t —1) —2logt(1+ 1/(t — 1)).

For strong extractors a stronger lower bound holds:

Theorem 16 Lett % [n/(n— k)], and letE : {0,1}"™ x

{0,1}* — {0,1}™ be a(k,¢) strong extractor withe <
1/(2t?). Then any one-pass algorithrh that computess
requires space& > m/(t — 1) — 2logt(1+ 1/(t — 1)).

4 Lower Bounds for Online Hashing

Since universal and almost universal hash functions im-

the output sizen increases. Such anomalies disappear
when we consider stronger notions of hashing such as pair-
wise independencetl = {h : {0,1}" — {0,1}"}is a
family of pair-wise independent hash functions if for ev-
eryx # ' € {0,1}", and for everyy,y’ € {0,1}™,
Praem(h(z) = y A h(z') = ') = 1/2?™. Observe that
for everym’ < m, the familyH’ = {n’ : {0,1}" —
{0,1}™'}, whereh/(z) is them/-bit prefix ofh(z), is also a
family of pair-wise independent hash functions. The space
required for online evaluation off’ is a lower bound for
the space required for online evaluation &t

5 Upper Bounds for Extractors and Hashing

We give several constructions of extractors that can
be computed by one-pass algorithms in space that almost
matches our lower bounds. These constructions cover many
settings of the parameters (i.e. the input min-entropy, the
output length and the seed length). For lack of space, we
omit most of the technical details of the section from this
extended abstract.

5.1 Upper Bound for Low Entropies

Universal Hashing The simplest bounds on the online
evaluation of extractors for “low” min-entropies (e.§.<
n/2) can be obtained by universal hashing and almost uni-
versal hashing.

Theorem 20 For all integersm < k < n, ande >
2(m=k)/2=1 " there exists dk, €)-extractor £ : {0,1}" x
{0,1}¢ — {0, 1}%*™ that can be evaluated by a one-pass
algorithm with spacen + O(logn).

The extractor we use to prove Theorem 20 employs the

ply strong extractors (Lemma 8 and Lemma 10) we can im- family of universal hash functions that is based on matrix
mediately deduce space lower bounds for online hashingmultiplication. Thatis, we defin&(z,r) = M, o (M, - x),
from Theorem 16 (the proofs are straightforward and ap- (where the seed of F is interpreted as am by n Binary

pear in the full version of the paper).

matrix M,.). ThatFE is an extractor follows from Lemma 8.



We define a space efficient one-pass algorithtmat eval- a seed- € {0,1}¢, the value of the extractor iB(z,r) =

uatesE. The algorithmA works in phases. After phase  (Z(r|s,),...,T(r|s,,)), wherez is the encoding of under
it has in memory the product of the firstolumns of M, C,Z(j) is thej-th coordinate oft, andr|s, is the projection
with the firsti bits of . Almost all of the space used by of r on the coordinates designated .8y
is dedicated to holding this partial product. In the full version, we show that if the Binary code used

in the construction is the concatenation of Reed-Solomon
Remark 21 Note that fork < n/2 (assuming that < and Hadamard and the weak designs are those of Hartman-
1/8) the space ofd is optimal up to the additivé)(log n) Raz, then the Trevisan/RRV extractor can be computed

factor. In fact, in the “right model” (e.g., that of branchin  space efficiently in one pass. A similar (slightly weaker)

programs),A would only use space: + O(1) that would  construction was suggested by D. Sivakumar [35].
be optimal up to an additive factor @6f(1).

) Theorem 23 The Trevisan/RRV construction with con-
As mentioned above, the seed length of extractors that.stenated Reed-Solomon and Hadamard code and the

are based on hashing can be reduced using almost universglariman-Raz weak designs is computable by:as O(d)
hashing. Many such families can be evaluated by space efﬁ'space one-pass algorithm.

cient one-pass algorithms, implying the following theorem

(details are deferred to the full version): 5.2 Upper Bound for High Entropies

Theorem 22 For all integersk < n, and everye > 0,

there exists ak, e)-extractor E : {0,1}" x {0,1}¢ — For _the case whe_re both andm_ are Ia_lrge, our upper
0,1} with m = k — 2logl/e — O(1) andd = t_)oundls obtained using the GoId_relc_h—W|_gderson construc—
tion [14]. The “heavy” computation in their extractors is a
random walk on an expander graph [1]. Bar-Yossef, Gol-
dreich, and Wigderson [4] presented a space-efficient one-

. . pass algorithm for computing neighborhoods in Margulis-
Trevisan/RRV Extractors The disadvantage of the hash- : . . ;
ing based extractors defined above is that their seed IengthGabber Galil expanders [25, 11, 23]. Using this algorithm,

. S we show in the full version how to evaluate the extractors

is rather large. Here we show that Trevisan's extractork [41 of [14] by anO(n — k) + O(log(1/¢)) space one-pass al-

and their extensions by Raz, Reingold, and Vadhan [30] can__ - hm. This is ootimal up to a constant factor in the case

also be computed by a one-pass algorithm with space thatqom h prma’ up 1o : :

) - wherem = Q(n) (which is the interesting setting of param-

is close to match our upper bounds. More specifically, we eters for [14])

show that the extractors of [30] using the weak designs of '

Hartman and Raz [17], can be computed by a one-pass al-

gorithm with spacen + O(d). Fork < n/2, this matches Upper bound for smaller m To match the lower bpund

the lower bound up to an additive factor ©fd). We note for largek and smallerm, we use a watered down variant of

that these extractors can extract the entire entropy of thel14] (that does not use expanders and has a smaller output

source usingoly(log(n/e)) bits. We also note that these !€ngth). . _ . .

extractors arstrong extractors This is true for all the ex- ‘One of the main observations of [14] is that any high

tractors used for upper bounds in this paper (that is, the ex-Min-entropy source is also a “block source” [8]. When the

tractors based on hashing described above and the extractofource is divided into blocks of length then each of them

for high min-entropy described below). contains roughlys — (n — k) bits of “independent” ran-
Trevisan's construction is based on error-correcting domness. Since extracting randomness from block sources

codes andlesigns Raz, Reingold and Vadhan [30] improve 1S much easier than from general sources [28], we can use

Trevisan’s construction for some setting of the parametersthem for the following simplified variant of [14]:

O(m + logn/e) that can be evaluated by a one-pass al-
gorithm with space(d).

by usingweak designinstead of designs. A family of On inputz € {0,1}" and seedr € {0,1}%, the
subsetsSy, ..., Sn, C [d] is called a weaK?, p)-design, if (k,O(e)) extractor E first divides the input into blocks
forall i, |S;| = ¢, and2j<i2|5i”5f‘ < p(m —1). We will x = x1 o x2 o ...xy, Where each block is of length

use the explicit family of weak designs of Hartman and Raz @ = O((n — k) +logn/e). The output ofE is now defined
[17]; for these designs there is &{log m)-space algorithm  as: E(z,r) L E'(x1,r) o E'(x3,7) o ... E'(zy, 1),
that given an index < ¢ < m, outputss;. whereE’ : {0,1}* x {0,1}* — {0,1}™/* isan(a — (n —
Givenn, e > 0, k& < n, andm < k/2, the k) — O(logn/e€), €) strong extractor. Since the space for
Trevisan/RRV construction uses any efficiently encodable computingE online is roughly the space needed for com-
(m,n, (3 + =)n) binary codeC with @ = poly(n/e) and a puting E’ online, then by takingz’ to be one of the space-
(log@, (k—O(log(m/e)+d))/m) weak desigrb, . .., Sy, efficient extractors for small min-entrop¥, requires space

with d = O(log®(n/€)log k). For aninput: € {0,1}" and roughlym/t’ + O(log(n/€)).



6 Upper Bound for Online Dispersers

In this section we construct online dispersers which beat
the lower bounds we give in section 3 on online extractors.

Recall that wherk < n/2 any online extractor has to have

space roughlyn — d. The space in our disperser construc-

tion can be arbitrarily smallemn¢/¢ for anyt). However, to
achieve such small space we use seeds of lefgttog n).

The idea of the construction is best explained if we as-

sume that the source iddt-fixing source By that we mean
thatn — k of the bits are fixed, and the remainihdpits are
uniformly distributed. The first kind of bits are called “bad
bits” and the second kind “good bits”. For a parametdst
1=149<i1 < ---44_1 <1 =n+1beindices such thatin
any intervalli;, i;11) there are exactl /¢ good bits. If we

know suchi’s we can easily extract many bits online using

The following corollary follows by plugging in the upper
bound from Theorem 23.

Corollary 25 For everyn, k, e andt, there exists gk, ¢)-
disperserE : {0,1}" x {0,1}0(tlog*(n/e)logk) _, {0 1}m
form = k — O(tlog(n/e€)). Furthermore,E can be eval-
uated by a one-pass algorithm with space= m/t +
O(logn).

To extend the argument above from bit-fixing sources to
general sources we use methods from [28, 32, 37, 38] to

argue that any (general) source contains a sub-source on

which it resembles a bit fixing source in the sense thiat
works for such a sub-source. Exact details appear in the full
versiory.

small space. We simply run an online extractor on each one/  Online Error-Correcting Codes
of the blocks and concatenate the outputs. Each application

of an online extractor outputs onh/¢ bits, (wherem is

We prove space lower bounds for both online encoding

the total number of bits we output). Thus, the space usedand online decoding of error-correcting codes. We then

by any application of the online extractor can be abnyt.

show simple (almost) matching upper bounds. We provide

We can reuse this space for the next application and thus thenly sketches of the proofs. The full proofs appear in the

total space of this construction is abeuf't. By increasing
t we can arbitrarily reduce the space.

full version of the paper.

In practice, we do not know the indices that yield a par- Theorem 26 '—it C be an (n,k,d),-ECC with encoding
tition with &/t good bits in each block. We therefore add functionE : F, — IF;. Then any one-pass algorithr

more bits to the seed and use them to choose rariderm
indices. The rational is that we will hit a “correct” choice

for F requires spac& > k- d/n -logq —log(klogq+1).

of indices with positive probability, and when that happens Proof sketch.For simplicity, we assume the code is binary.
we extract randomness from the source. It follows that our Ve divide each codeword inte/d blocks of sizel. We iter-
construction is a disperser as we hit almost all outputs whenatively construct a chain of codeword séts- F 2 Fy 2

choosing “correct” indices.

More precisely, we construdt : {0,1}" x {0,1}¢ —
{0,1}™ given a parametet and a(k, ¢)-extractorE :
{0,1}" x {0,1}¢ — {0,1}™ which can be evaluated by
a one pass algorithm with spage It gets an inputc €
{0,1}™ and a seed = ({1, --,:—1;y1,- -, yt), Where
¢; € {0,1}°8™ andy; € {0,1}%, and outputs;, - - -,z €
{0,1}™, where for everyj, z; = E(xj,,_, ¢,,¥;)-> Here

xp; 5 stands fotw;, xiq1, -+, 2j-1.

E can be evaluated by a one pass algorithm with space

5 + O(logn) if the seed is given in the following order:
élay];a ‘€27y21 e 7ét—17yt—17yt' At Stepj we readéj and
run £ on thej'th block usingy; as seed.

Theorem 24 E is a (k,¢)-disperser withk = t(k +
2logn + O(1)), e = té,n = n,d = (t — 1)logn + td
andm = tm. Furthermore,E’ can be evaluated by a one-
pass algorithm with space= 5 + O(logn).

2Formally, we cannot us& on stringsz: of length smaller tham. In
such a case we assume that the too sh@ipadded with zeroes. Note that
this can be done online, and thatrifs chosen from a source withbits of
min-entropy, the extractor will extract randomness fromsburce.

-+ 2 F, /4, such thatall the codewords Ity share their last
i blocks and such thaf’;|/|F;41| < (k + 1)2°. It follows
that|Fn/d| > |C|/((k + 1)2S)n/d — 9k—(S+log(k+1))(n/d)
On the other hand, necessarjl§, ;4| < 1, implying the
lower bound.

The construction of the chain works by inductively ex-
tracting F; from F;_; as follows. The encoding algorithm
has at mostk + 1)2° configurations(s, ), wheres is a
state of the algorithm andis a location on the input tape.
Consider all the configurations of the algorithm right befor
starting to write the-th from the last block of the output
on each of the codewords ifi;_;. A fraction of at least
1/((k + 1)2°) of them share the same configuration. We
define these to be the codewordgtin By induction, all the
codewords inF; share their last — 1 blocks. To show they
share also thé-th from the last block we use a cut & paste
argument to show that otherwise there are two codewords

SMany previous extractors and dispersers constructions3@832, 37,
43, 38, 31] take this route and start by “partitioning” a sminto a “block
source”. It should be noted that whereas most of the previmrks were
interested it = O(logn), we are also interested in larges, (like V&)
and our proof works by tailoring techniques from previousthwto this
setup.



that differ only in the lastl — 1 bits of thei-th from the last
block, contradicting the distance property of the codel

Theorem 27 Let C be an (n, k, d),-ECC with encoding
function £ : IF’qC — IF; and decoding functio® : F; —

IF’;. Then any one-pass algorithm fdp requires space
S>k-(d—1)/(2n)-logq—log(klogq + 1).

Proof sketch. The proof is similar to the previous one. We
divide each received word < F;, into 2n/(d — 1) blocks
of size(d — 1)/2. We divide the decoding af, D(w), into
2n/(d — 1) corresponding blocks (not necessarily of equal
size): thei-th block of D(w) is the part ofD(w) written to
the output tape while the decoding algorithm readsittte
block of w.

We show that there exists a chain of codeword Sets
Fo 2 Fy 2 --- 2 Fyy,/a—1), Such that the decodings of all
the codewords irF; share their first blocks and such that
|Fi|/|Fis1] < (k4 1)25. As before, this implies the lower
bound, sinceFy,, ;q—1)| < 1.

The construction of the chain of codeword sets is similar
in flavor to the one outlined in the proof of Theorem 26.
The difference is that in order to reach a contradiction, we
use a cut & paste argumentto construct a corrupted receive
word that decodesotto its closest codeword. O

We now give a construction of an error-correcting code

(t — 1) logn random bits in “partitioning” the source) are:
(1) use randomness extracted from the source in the parti-
tioning process; this randomness, however, is only close to
uniform, which is not sufficient for the current proof; (2)-de
randomize the choice of the partition; this has already been
achieved fort = O(logn) by [32, 38], and a disperser with
Sd << m would follow if we could do it fort >> logn.

We have not resolved so far the space complexity of on-
line extractors for high entropies (> n/2) that have a large
error € > (n—k)/n). Our lower bound proofs fail to imply
anything for this range of parameters, possibly because the
apply to the stronger model of extractors that work against
block fixing sources (sources of the fork) ).

Our online hashing lower bounds deteriorate as the out-
put length increases. This may be an artifact of the reduc-
tion from the extractor lower bound. A direct lower bound
for universal hashing might circumvent this problem.

Finally, our online decoding upper bound for error-
correcting codes is not tight for small rates. It remainsope
to find a better construction in this sense.
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