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Abstract

We prove (mostly tight) space lower bounds for “stream-
ing” (or “on-line”) computations of four fundamental com-
binatorial objects: error-correcting codes, universal hash
functions, extractors, and dispersers. Streaming compu-
tations for these objects are motivated algorithmically by
massive data set applications and complexity-theoretically
by pseudorandomness and derandomization for space-
bounded probabilistic algorithms.

Our results reveal a surprising separation of extractors
and dispersers in terms of the space required to compute
them in the streaming model. While online extractors re-
quire space linear in their output length, we construct dis-
persers that are computable online with exponentially less
space. We also present several explicit constructions of on-
line extractors that match the lower bound.

We show that online universal and almost-universal hash
functions require space linear in their output length (this
bound was known previously only for “pure” universal hash
functions [24, 5]).

Finally, we show that both online encoding and online
decoding of error-correcting codes require space propor-
tional to the product of the length of the encoded message
and the code’s relative minimum distance. Block encoding
trivially matches the lower bounds for constant rate codes.

∗A full version of the paper is available at
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1 Introduction

In this paper we deal with the “on-line space-bounded,”
or “streaming” model of computation, a model where a ma-
chine of bounded memory receives its input on a read-only
tape, with one-way access. The goal is to design algorithms
whose memory use is considerably shorter than the length
of the input. In algorithm design, this model captures sev-
eral settings where the input data is very large (hence it is in-
feasible to store in memory the entire input) and it is read, or
“discovered” sequentially [2, 10, 19]. In complexity theory,
this model captures the way probabilistic space-bounded al-
gorithms use their randomness, so that pseudorandomness
in the space-bounded setting has (non-uniform) “streaming
algorithms” as “adversaries.”

We consider the tasks of computing four fundamental
primitives in this model: universal hash functions, error-
correcting codes, randomness extractors and dispersers, and
we present (mostly tight) lower bounds and explicit con-
structions.

Motivation

From an algorithmic perspective, streaming procedures
for hash functions and error-correcting codes are basic
primitives that may be useful for a variety of streaming ap-
plications. In fact, most streaming algorithms today (e.g.,
[2, 10]) make crucial use of hash functions. Error-correcting
codes that admit space-efficient online encoding and decod-



ing are important when having to transmit large amounts of
data over a fast but unreliable channel. If the data is gen-
erated continuously on the fly, then online encoding elimi-
nates the need to store the data before transmitting it. Online
decoding allows one to process the received data without
having to store it beforehand; this may result in large sav-
ings of space because the encoded data is frequently much
larger than the message it encodes.

From a complexity-theoretic perspective, extractors and
dispersers are important pseudorandomness and derandom-
ization tools. They were used in the design of pseudoran-
dom generators for space-bounded computations (explicitly
in [28, 29] and implicitly in [27]), and they are roughly
equivalent to randomness-efficient procedures to reduce the
error-probability in probabilistic algorithms. Randomness
of space-bounded computations is assumed to arrive in a
stream (written on a one-way random tape); this necessi-
tates some of the pseudorandomness and derandomization
procedures designed for such computations to admit online
space-bounded implementations.

Roughly speaking, an extractor is a procedureExt(·, ·)
with two inputs, where the second input (also called the
seed) is typically logarithmically shorter than the first in-
put; the property is that if the first input comes from a dis-
tribution of sufficiently large entropy, and the seed is uni-
formly distributed, then the output of the procedure (which
is shorter than the first input but still exponentially longer
than the seed) is almost uniformly distributed. We think of
an online extractor as a procedure with two one-way input
tapes (one per input) and limited memory. To reduce error
probability in space-bounded probabilistic algorithms, one
needs online extractors in a slightly different model: the al-
gorithm has one input tape for the first inputx, and must
produce the list of outputsExt(x, s) for all possible val-
ues of the second inputs. Bar-Yossefet al. [4] prove a
strong space lower bound in this setting, but not in the more
general setting where the algorithm has two tapes. If the
first input has lengthn, the seed has lengthd, the output
has lengthm, and the output is almost uniform provided the
first input has entropyk, then [4] prove that, in their model,
the computation uses memory at least, roughly,m − d. A
disperserD(·, ·) is a weaker type of extractor, such that if
the first input has sufficiently large entropy, and the seed is
uniform, then the output hits with non-zero probability ev-
ery set of sufficiently large density. The [4] lower bound
also applies to dispersers. We remark that extractors (and,
for a stronger reason, dispersers) can be computed in loga-
rithmic space assuming one hastwo-wayaccess to the input
[17].

Perspective

Very strong connections are known between the combi-
natorial objects discussed in this paper.

To cite some examples, it is a matter of folklore that one
can get hash functions with low collision probability from
error-correcting codes (by encoding the input and projecting
it to a small set of coordinates – an example of this approach
can be seen in [26]); error-correcting codes are used in the
extractor construction of [41], and in several more recent
constructions [30, 20, 31, 40, 33]; hash functions are also
extractors, as follows from the Leftover Hash Lemma [18];
error-correcting codes with strong list-decodability proper-
ties can be derived from extractors [39].

While there is no known equivalence, or transforma-
tion, between extractors and dispersers, there are several
results pointing to a substantial equivalence between “ran-
domization with one-sided error” and “randomization with
two-sided error,” the former being the setting of dispersers,
and the latter being the setting of extractors. For exam-
ple, it is known that “hitting set generators” (that are some-
what the “computational” version of dispersers) can be used
to derandomize algorithms with two-sided error (a task
for which it formerly appeared that “pseudorandom gen-
erators,” the “computational” version of extractors, were
needed) [3, 6, 15, 13]. In fact, the results of [15, 13] have an
information-theoretic interpretation that says that dispersers
can be converted into “samplers,” that are almost, but not
quite, extractors. Upper and lower bounds for extractors
and dispersers show that essentially the same parameters
are achievable for the two objects, and even the results of
[4] do not differentiate between the two.

For hash functions and error-correcting codes, we were
very interested in the question of whether reasonably space-
efficient algorithms could exist. As we state below, the an-
swer is affirmative for hash functions, while it is completely
negative for error-correcting codes.

However, more generally, our main interest was to look
at these tightly related objects under the lens of a very re-
strictive model of computation, and see what happens of
their connections. As we state below, we give a strong (ex-
ponential, in the case of long seed) separation between the
space sufficient to compute dispersers and the space nec-
essary to compute extractors. Our results also show the
extreme differences in power between seemingly similar
models of space-bounded computation. We show how to
construct online dispersers with exponentially less memory
than in the [4] setting (that had one input tape, and the out-
puts had to be “enumerated” over all values for the second
input), and we show a lower bound for extractors with one-
way tapes that is exponentially bigger than the space needed
with a two-way tape in the [17] construction.

Finally, the generation of high-quality randomness from
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biased sources is a very important practical problem, that
does arise in settings for which the streaming model is an
appropriate formalization. In such cases, one is probably
not interested in the randomness extractors satisfying the
strong definition used in this paper (that need the uniform
second input), but rather in faster deterministic extractors
that (for special classes of distributions) directly convert a
biased streaming input into an almost uniform output stream
(cf. [42]). It would probably be very interesting to study
which classes of distributions admitting polynomial time
deterministic extractors also have space-efficient streaming
extractors. Our work hopefully prepares the terrain for the
treatment of such questions.

Our Results

For error-correcting codes mappingk bits inton bits, and
that are able to correct at leastδk errors, we prove that both
the encoding and the decoding procedures must use mem-
ory Ω(δk). The bound can be matched trivially by dividing
the input intoO(1/δ) blocks, and encoding each block with
a code of constant rate and constant relative minimum dis-
tance. These results are described in Section 7.

For universal hash functions mappingn bits intom bits,
our space lower bound is roughlym. (This bound fol-
lows also from the time-space tradeoffs of Mansouret al.
[24] and the communication-space tradeoffs of Beameet
al. [5]. Our bound has the advantage of being applica-
ble also to almost-universal hash function.) The bound can
be achieved by linear hash functions. If the output is con-
siderably shorter than the input, this can be a significant
saving. Using almost-universal hash functions, which ad-
mit O(m+log n)-sized descriptions, one can evaluate such
hash functions on many inputs using spaceO(m + log n).
The lower bound for hash functions follows from the lower
bound for extractors and from the Leftover Hash Lemma.
These results are described in Section 4 (lower bound) and
Section 5 (upper bound).

Our main results are the lower bound for extractors and
the construction of dispersers. Combined, they show an un-
usual “separation” between the two combinatorial objects,
and offer fresh insights.

For extractors where the first input has lengthn, the seed
has lengthd, the output has lengthm, and the output is
uniform assuming the first input has entropyk, our lower
bound has two cases.

If k ≤ n/2, i.e. if the extractor works with inputs of
relatively small entropy, then we prove that the memory has
to be at least, roughly,m − d. This is matched by careful
implementations of the extractors of Trevisan and of Razet
al. [41, 30].

If k > n/2, then the lower bound is roughly(m−d)(n−
k)/n, which we can match with a space-efficient implemen-

tation of random walks on expanders (using ideas from [4]).
These results are described in Section 3 (lower bounds)

and Section 5 (upper bounds).
The proof uses the idea that after looking at a block of

the input of sizen − k, the extractor cannot be sure it has
seen any randomness (because thek bits of entropy could
be “concentrated” in the remaining part of the input), and so
it can only output bits from the memory or from the seed.
For k ≤ n/2, we can say that the extractor cannot output
anything while looking at the firstn/2 bits, and it can only
output randomness that is in the state or in the seed after-
wards. While the intuition is clear, the actual proof requires
considerable technical work.

For dispersers and fork ≤ n/2, we show that it is pos-
sible to use memory aboutm/ℓ and seedd = O(ℓ log n)
for every parameterℓ. The idea is to randomly partition the
input intoℓ blocks, in such a way that each block still con-
tains sufficiently large entropy, and then use memorym/ℓ
to extract randomness from each block. A good partition
will be found with low probability, but this is compatible
with the definition of disperser. The construction and its
analysis, presented in Section 6, utilize ideas from previous
constructions of extractors and dispersers [28, 32, 37, 38].

2 Preliminaries

In this section we define online extractors, dispersers,
universal hash functions, and error-correcting codes. We
then review some tools from Information Theory we use in
our analysis.

2.1 Online Extractors and Dispersers

||X − Y || denotes the total variation distance between

two distributions on the same domainΩ: ||X − Y || def
=

1
2

∑

ω∈Ω |X(w) − Y (w)| = maxT⊆Ω |X(T ) − Y (T )|.
Given a distributionX onΩ and a functionf : Ω → Ω′ we
denote byf(X) the distribution induced byX andf onΩ′.
Ut denotes the uniform distribution on{0, 1}t. H∞(X) =
minw∈Ω(log(1/X(ω))) denotes the min-entropy of a dis-
tributionX onΩ. An (n, d, m) functionis a function of the
form f : {0, 1}n × {0, 1}d → {0, 1}m; we nickname its
first input “the input” and its second input “the seed”.

Definition 1 (Extractor [28]) An (n, d, m) function E is
called a (k, ǫ)-extractor, if for every distributionX on
{0, 1}n with H∞(X) ≥ k, ||E(X, Ud) − Um|| < ǫ.

Definition 2 (Disperser [34]) An (n, d, m) function D is
called a (k, ǫ)-disperser, if for every distributionX on
{0, 1}n with H∞(X) ≥ k, and for every subsetT ⊆
{0, 1}m of size at leastǫ2m, Pr(D(X, Ud) ∈ T ) > 0.
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We studyonline extractorsandonline dispersers– ones
that are computable by space-bounded one-pass algorithms.
We consider two variants of such algorithms:single-seed
algorithmsandall-seeds algorithms:

Definition 3 (Online extractors/dispersers)An algo-
rithm A is called asingle-seed one-pass algorithmfor an
(n, d, m) functionf , if given one-way access to an input
x ∈ {0, 1}n and one-way access to a seedr ∈ {0, 1}d,
it outputsf(x, r) on a one-way output tape.1 A is called
an all-seeds one-pass algorithm forf , if given one-way
access to an inputx ∈ {0, 1}n, it outputsf(x, r) for all
r ∈ {0, 1}d on2d one-way output tapes.

The space of an algorithm is defined to be the binary
logarithm of the number of possible configurations the al-
gorithm has. Each configuration consists of the machine’s
state and the contents of the work space. Hence, the max-
imum number of configurations anS-space machine has is
2S.

Bar-Yossef, Goldreich, and Wigderson [4] proved space
lower bounds for all-seeds one-pass algorithms for dis-
persers. Our results show that for extractors their space
lower bound holds even for single-seed one-pass algo-
rithms, but for dispersers there are substantially more space-
efficient single-seed one-pass algorithms.

Theorem 4 (Bar-Yossef, Goldreich, Wigderson [4])

Definet
def
= ⌈n/(n − k)⌉. Let D : {0, 1}n × {0, 1}d →

{0, 1}m be a (k, ǫ)-disperser withǫ < 1/t. Then, for all
integers1 ≤ p ≤ 2d, any all-seeds one-pass algorithm
for D that writes to at mostp output tapes simultaneously
requires spaceS ≥ m− d− p− 1− log t− log(1/1− ǫt).

We will be interested in a stronger notion of extractors,
defined as follows. It is interesting to note that all our upper
bounds for online extractors are exhibited by strong extrac-
tors.

Definition 5 (Strong extractor) An (n, d, m) function E
is called a(k, ǫ) strong extractor, if for every distributionX
on{0, 1}n with H∞(X) ≥ k, ||E(X, Ud)◦Ud−Um+d|| <
ǫ (where the two occurrences ofUd refer to the same vari-
able).

2.2 Online Universal Hash Functions

Definition 6 (Universal hash functions [7]) A family of
functionsH = {h : {0, 1}n → {0, 1}m} is called auniver-
sal family of hash functions, if for everyx 6= x′ ∈ {0, 1}n,
Prh∈H(h(x) = h(x′)) ≤ 1/2m.

1The one-way access to the seed is required for the lower boundfor
strong extractors, where the seed may be very long. For the standard sce-
nario, where the seed is much shorter than the input, we can relax the
definition by allowing two-way access to the seed; this wouldchange our
lower bounds by only an additive factor ofd.

There are explicit constructions of universal hash func-
tions of size2O(n+m) that are logspace computable. For
example, the Toeplitz family (cf. [12]) is of size2n+m−1.

We studyonline hash functions– ones that are com-
putable by space-bounded one-pass algorithms:

Definition 7 (Online universal hash functions) An algo-
rithm A is called aone-pass algorithmfor a family of hash
functionsH = {h : {0, 1}n → {0, 1}m}, if given one-way
access to a (description of a) functionh ∈ H and one-way
access to an inputx ∈ {0, 1}n, A outputsh(x) on a one-
way output tape.

The Leftover Hash Lemma, due to Hastad, Impagliazzo,
Levin, and Luby [18], yields a construction of (strong) ex-
tractors from any universal family of hash functions:

Lemma 8 (Hastad, Impagliazzo, Levin, Luby [18])
Let H = {h : {0, 1}n → {0, 1}m} be a universal
family of hash functions of size2d. Then the func-
tion E : {0, 1}n × {0, 1}d → {0, 1}m defined as
E(x, h) = h(x) is a (k, ǫ) strong extractor for anyk ≤ n
and forǫ ≥ 2(m−k)/2−1.

Therefore, our space lower bounds for online extractors
will directly imply space lower bounds for online univer-
sal hash-functions. In fact, an “almost” universal family of
hash functions are sufficient to construct extractors. There-
fore, our lower bounds apply to such families as well.

Definition 9 (ǫ-almost universal hash functions)A fam-
ily of functionsH = {h : {0, 1}n → {0, 1}m} is called
an ǫ-almost universal family of hash functions, if for every
x 6= x′ ∈ {0, 1}n, Prh∈H(h(x) = h(x′)) ≤ ǫ.

Lemma 10 (Impagliazzo, Zuckerman [21]) Let H =
{h : {0, 1}n → {0, 1}m} be an ((1 + ǫ2)/2m)-almost
universal family of hash functions of size2d. Then the
function E : {0, 1}n × {0, 1}d → {0, 1}m defined as
E(x, h) = h(x) is a (k, ǫ) strong extractor for anyk ≤ n
such thatǫ ≥ 2(m−k)/2.

We note that the extractors based on universal hash func-
tions (e.g., the Toeplitz family), have seed lengthO(n).
Based on almost universal families, the seed length can be
reduced toO(m + log n + log 1/ǫ) (see e.g. [14]).

2.3 Online Error-Correcting Codes

Let IFq be a field of sizeq. An (n, k, d)q error-correcting
code(ECC) is a subsetC ⊆ IFn

q of size qk, such that for
every two distinct codewordsw, w′ ∈ C, the Hamming dis-
tance betweenw andw′ (i.e., |{i | wi 6= w′

i}|) is at least
d. n is called thecode’s length, k is its dimension, andd
is its minimum distance. k/n is the code’srate andd/n
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is its relative minimum distance. An encoding function,
E : IFk

q → IFn
q , maps every message to its encoding. Ade-

coding function, D : IFn
q → IFk

q , maps every received (pos-
sibly corrupted) message to the origin of its closest code-
word.

Definition 11 (Online error-correcting codes) Let C be
an (n, k, d)q-code. An algorithmA is called aone-pass
encoding algorithm, if given one-way access to a message
x ∈ IFk

q it outputsE(x) on a one-way output tape. An al-
gorithmB is called aone-pass decoding algorithm, if given
one-way access to a received messagew ∈ IFn

q , it outputs
D(w) on a one-way output tape.

2.4 Tools from Information Theory

Throughout this paper we use several tools from
information theory. We briefly survey them below.
Shannon’s (binary) entropyis defined asH(X) =
Eω∈X(log2(1/X(ω))). Two basic properties of the entropy
are the following (cf. [9], Chapter 2): (1) sub-additivity:
H(X, Y ) ≤ H(X) + H(Y ) and (2) data processing in-
equality:H(f(X)) ≤ H(X).

The following theorem (see [9], pages 488–489) con-
nects the variation distance between two distributions and
their entropy difference:

Theorem 12 If ||X −Y || ≤ 1/4, then,|H(X)−H(Y )| ≤
2||X − Y || · (log |Ω|

||X−Y || − 1).

The following fact (due to Lawrence Ip [22]) connects
the entropy of a distribution on{0, 1}≤m (all the binary
strings of length at mostm) to the expected length of strings
under the distribution:

Proposition 13 For any distribution X on {0, 1}≤m,
H(X) ≤ E(|X |) + H(|X |) ≤ E(|X |) + log(m + 1).

3 Lower Bounds for Online Extractors

We present two versions of the lower bound: the first
(Theorem 14) gives weaker bounds, but its proof is intu-
itive and utilizes known facts from information theory; the
second (Theorem 15) is stronger, but its proof is more in-
volved. We also show (Theorem 16) that an even stronger
lower bound holds for strong extractors. The proofs of the
two latter theorems are omitted for lack of space. They ap-
pear in the full version of the paper.

The basic idea behind both lower bounds is the follow-
ing: we split every inputx ∈ {0, 1}n into t = n/(n − k)
blocks of sizen − k. A distributionXi,α that is fixed to
some stringα ∈ {0, 1}n−k on thei-th block and uniform
everywhere else has min-entropyk, and thusE(Xi,α, Ud)
is ǫ-close to uniform. The algorithm, when reading thei-th

block of the input, cannot know whether these bits contain
some entropy or are totally fixed. Intuitively, this implies
that the algorithm cannot immediately extract the entropy
of the i-th block, if it exists, but rather has to wait for the
i+1-st block. However, at that point the algorithm “remem-
bers” onlyS bits of the entropy of thei-th block. It follows
that the algorithm can extract at mostS bits of entropy from
each block, and thereforeS ≥ m/t.

Both lower bounds hold only for extractors in whichǫ <
1/t. When the entropy is at most a constant fraction ofn,
this does not pose a strict restriction on the error. However,
for extremely high entropies (k ≥ n − o(n)) this requires
the error to beo(1). It remains open to check whether this
limitation is inherent or just an artifact of our proof.

Theorem 14 Let t = ⌈n/(n − k)⌉, and letE : {0, 1}n ×
{0, 1}d → {0, 1}m be a(k, ǫ)-extractor withǫ < 1/4. Then
any one-pass algorithmA that computesE requires space
S ≥ m/t − d − 2ǫ(m + log(1/ǫ) − 1) − log(m + 1).

Proof. Let A be a one-pass algorithm that computesE, and
let S be the space ofA. We split any inputx ∈ {0, 1}n into
t blocks:x1, . . . , xt, each (except, maybe, for the last one)
of lengthn − k. In the sequel we assume for simplicity of
notation that the last block is also of sizen − k.

For any inputx ∈ {0, 1}n and seedr ∈ {0, 1}d, we
divide the execution ofA on x and r into t phases: the
i-th phase ends just beforeA starts to read the first bit of
the i + 1-st block; the first phase starts at the first step of
the algorithm; the last phase ends at the end of the execu-
tion. We denote byyi(x, r) the bitsA outputs during the
i-th phase, byri(x, r) the bits of the seedr it reads during
thei-th phase, and byci(x, r) the configuration ofA at the
beginning of thei-th phase.

Varying over all inputsx and seedsr, A may have at
most2S possible configurations at the beginning of thei-th
phase for anyi ≥ 2. For i = 1, it has only one possible
configuration at the beginning of the first phase – the initial
configuration.

For any blocki and stringα ∈ {0, 1}n−k, let Xi,α be a
distribution on{0, 1}n which is fixed toα on thei-th block
and uniform everywhere else. Clearly,H∞(Xi,α) = k.

In general, yi(x, r) is a deterministic function of
xi, ri(x, r) andci(x, r). When picking inputs according to
Xi,α, all the inputs share the samei-th block, and there-
foreyi(x, r) is a function only ofri(x, r) andci(x, r). We
can thus writeyi(x, r) = gi,α(ci(x, r), ri(x, r)) for some
functiongi,α.

We first show that there exists some blocki and an as-
signmentα to this block, such thatA outputs at leastm/t
bits in thei-th phase when running on(Xi,α, Ud):

Claim 1 There exists a blocki and a stringα ∈ {0, 1}n−k,
such thatE(|yi(Xi,α, Ud)|) ≥ m/t.
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Proof. Since the output ofA is always of lengthm, then
for any inputx and any seedr,

∑t
i=1 |yi(x, r)| = m. In

particular, if we choosex ∈ Un and r ∈ Ud, we have,
E(

∑t
i=1 |yi(Un, Ud)|) = m. Therefore, there exists some

i ∈ {1, . . . , t}, such thatE(|yi(Un, Ud)|) ≥ m/t.
We can think of the choice ofx ∈ Un, as first picking

xi ∈ Un−k, and then picking the rest of the bits,x−i, from
Uk. We denote byxi ◦ x−i then-bit string that hasxi in its
i-th block andx−i in the rest of the blocks. Then,m/t ≤
E(|yi(Un−k◦Uk, Ud)|) = Exi∈Un−k

(E(|yi(xi◦Uk, Ud)|)).
It follows that there exists some assignmentα ∈ {0, 1}n−k

for whichE(|yi(α ◦ Uk, Ud)|) ≥ m/t. ✷

Define Y i def
= yi(Xi,α, Ud) and Ci def

= ci(Xi,α, Ud).
The discussion above implies that there exists some func-
tion gi,α such thatY i = gi,α(Ci, Ud). Therefore,H(Y i) =
H(gi,α(Ci, Ud)) ≤ H(Ci, Ud) ≤ H(Ci) + H(Ud) ≤
S + d.

Let Y −i def
= y−i(Xi,α, Ud), wherey−i(x, r) are all the

bits A outputs onx andr not during thei-th phase. Note
that |y−i(x, r)| = m − |yi(x, r)|, and thus by Claim 1,
E(|Y −i|) ≤ m(1−1/t). In order to boundH(Y −i), we use
Proposition 13 (see Section 2.4):H(Y −i) ≤ E(|Y −i|) +
log(m+1) ≤ m(1−1/t)+log(m+1). We can now bound

the entropy ofY
def
= E(Xi,α, Ud): H(Y ) = H(Y i, Y −i) ≤

H(Y i) + H(Y −i) ≤ S + d + m(1 − 1/t) + log(m + 1).
Since||Y − Um|| < ǫ ≤ 1/4, and since the the function

x log(1/x) is monotone increasing forx ≤ 1/2, we can
apply Theorem 12 (see Section 2.4) and obtain:|H(Y ) −
H(Um)| ≤ 2ǫ(log(2m/ǫ) − 1) = 2ǫ(m + log(1/ǫ)− 1).

SinceH(Um) = m, this implies that:H(Y ) ≥ m(1 −
2ǫ) − 2ǫ(log(1/ǫ) − 1). Combining the upper and lower
bounds onH(Y ), we obtain the desired lower bound onS.
✷

Theorem 15 Let t
def
= ⌈n/(n − k)⌉, and letE : {0, 1}n ×

{0, 1}d → {0, 1}m be a(k, ǫ)-extractor withǫ ≤ 1/(2t2).
Then any one-pass algorithmA that computesE requires
spaceS ≥ (m − d)/(t − 1) − 2 log t(1 + 1/(t − 1)).

For strong extractors a stronger lower bound holds:

Theorem 16 Let t
def
= ⌈n/(n − k)⌉, and letE : {0, 1}n ×

{0, 1}d → {0, 1}m be a (k, ǫ) strong extractor withǫ ≤
1/(2t2). Then any one-pass algorithmA that computesE
requires spaceS ≥ m/(t − 1) − 2 log t(1 + 1/(t − 1)).

4 Lower Bounds for Online Hashing

Since universal and almost universal hash functions im-
ply strong extractors (Lemma 8 and Lemma 10) we can im-
mediately deduce space lower bounds for online hashing
from Theorem 16 (the proofs are straightforward and ap-
pear in the full version of the paper).

Theorem 17 Let H = {h : {0, 1}n → {0, 1}m} be
a 2d-sized universal family of hash functions withm ≤
n−4 logn. Definek = ⌈m+4 logn⌉ andt = ⌈n/(n−k)⌉.
Then any one-pass algorithmA for H requires spaceS ≥
m/(t − 1) − 2 log t(1 + 1/(t − 1)).

Theorem 18 Let H = {h : {0, 1}n → {0, 1}m} be a2d-
sized(1+ǫ2)/2m-almost universal family of hash functions
with ǫ < 1/2 satisfying⌈m + 2 log(1/ǫ)⌉ ≤ n(1 −

√
2ǫ).

Define k = ⌈m + 2 log(1/ǫ)⌉ and t = ⌈n/(n − k)⌉.
Then any one-pass algorithmA for H requires spaceS ≥
m/(t − 1) − 2 log t(1 + 1/(t − 1)).

Remark 19 A somewhat strange aspect of Theorem 17 and
Theorem 18 is that the bounds onS may deteriorate when
the output sizem increases. Such anomalies disappear
when we consider stronger notions of hashing such as pair-
wise independence:H = {h : {0, 1}n → {0, 1}m} is a
family of pair-wise independent hash functions if for ev-
ery x 6= x′ ∈ {0, 1}n, and for everyy, y′ ∈ {0, 1}m,
Prh∈H(h(x) = y ∧ h(x′) = y′) = 1/22m. Observe that
for everym′ < m, the familyH ′ = {h′ : {0, 1}n →
{0, 1}m′}, whereh′(x) is them′-bit prefix ofh(x), is also a
family of pair-wise independent hash functions. The space
required for online evaluation ofH ′ is a lower bound for
the space required for online evaluation ofH .

5 Upper Bounds for Extractors and Hashing

We give several constructions of extractors that can
be computed by one-pass algorithms in space that almost
matches our lower bounds. These constructions cover many
settings of the parameters (i.e. the input min-entropy, the
output length and the seed length). For lack of space, we
omit most of the technical details of the section from this
extended abstract.

5.1 Upper Bound for Low Entropies

Universal Hashing The simplest bounds on the online
evaluation of extractors for “low” min-entropies (e.g.,k ≤
n/2) can be obtained by universal hashing and almost uni-
versal hashing.

Theorem 20 For all integers m < k < n, and ǫ ≥
2(m−k)/2−1, there exists a(k, ǫ)-extractorE : {0, 1}n ×
{0, 1}d → {0, 1}d+m that can be evaluated by a one-pass
algorithm with spacem + O(log n).

The extractor we use to prove Theorem 20 employs the
family of universal hash functions that is based on matrix
multiplication. That is, we defineE(x, r) = Mr ◦ (Mr ·x),
(where the seedr of E is interpreted as anm by n Binary
matrixMr). ThatE is an extractor follows from Lemma 8.
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We define a space efficient one-pass algorithmA that eval-
uatesE. The algorithmA works in phases. After phasei
it has in memory the product of the firsti columns ofMr

with the firsti bits of x. Almost all of the space used byA
is dedicated to holding this partial product.

Remark 21 Note that fork ≤ n/2 (assuming thatǫ ≤
1/8) the space ofA is optimal up to the additiveO(log n)
factor. In fact, in the “right model” (e.g., that of branching
programs),A would only use spacem + O(1) that would
be optimal up to an additive factor ofO(1).

As mentioned above, the seed length of extractors that
are based on hashing can be reduced using almost universal
hashing. Many such families can be evaluated by space effi-
cient one-pass algorithms, implying the following theorem
(details are deferred to the full version):

Theorem 22 For all integersk < n, and everyǫ > 0,
there exists a(k, ǫ)-extractor E : {0, 1}n × {0, 1}d →
{0, 1}d+m, with m = k − 2 log 1/ǫ − O(1) and d =
O(m + log n/ǫ) that can be evaluated by a one-pass al-
gorithm with spaceO(d).

Trevisan/RRV Extractors The disadvantage of the hash-
ing based extractors defined above is that their seed length
is rather large. Here we show that Trevisan’s extractors [41]
and their extensions by Raz, Reingold, and Vadhan [30] can
also be computed by a one-pass algorithm with space that
is close to match our upper bounds. More specifically, we
show that the extractors of [30] using the weak designs of
Hartman and Raz [17], can be computed by a one-pass al-
gorithm with spacem + O(d). Fork ≤ n/2, this matches
the lower bound up to an additive factor ofO(d). We note
that these extractors can extract the entire entropy of the
source usingpoly(log(n/ǫ)) bits. We also note that these
extractors arestrong extractors. This is true for all the ex-
tractors used for upper bounds in this paper (that is, the ex-
tractors based on hashing described above and the extractors
for high min-entropy described below).

Trevisan’s construction is based on error-correcting
codes anddesigns. Raz, Reingold and Vadhan [30] improve
Trevisan’s construction for some setting of the parameters
by usingweak designsinstead of designs. A family ofm
subsetsS1, . . . , Sm ⊆ [d] is called a weak(ℓ, ρ)-design, if
for all i, |Si| = ℓ, and

∑

j<i 2|Si∩Sj | ≤ ρ(m − 1). We will
use the explicit family of weak designs of Hartman and Raz
[17]; for these designs there is anO(log m)-space algorithm
that given an index1 ≤ i ≤ m, outputsSi.

Given n, ǫ > 0, k ≤ n, and m ≤ k/2, the
Trevisan/RRV construction uses any efficiently encodable
(n, n, (1

2 + ǫ
m )n) binary codeC with n = poly(n/ǫ) and a

(log n, (k−O(log(m/ǫ)+d))/m) weak designS1, . . . , Sm

with d = O(log2(n/ǫ) log k). For an inputx ∈ {0, 1}n and

a seedr ∈ {0, 1}d, the value of the extractor isE(x, r) =
(x(r|S1

), . . . , x(r|Sm
)), wherex is the encoding ofx under

C, x(j) is thej-th coordinate ofx, andr|Si
is the projection

of r on the coordinates designated bySi.
In the full version, we show that if the Binary code used

in the construction is the concatenation of Reed-Solomon
and Hadamard and the weak designs are those of Hartman-
Raz, then the Trevisan/RRV extractor can be computed
space efficiently in one pass. A similar (slightly weaker)
construction was suggested by D. Sivakumar [35].

Theorem 23 The Trevisan/RRV construction with con-
catenated Reed-Solomon and Hadamard code and the
Hartman-Raz weak designs is computable by anm + O(d)
space one-pass algorithm.

5.2 Upper Bound for High Entropies

For the case where bothk andm are large, our upper
bound is obtained using the Goldreich–Wigderson construc-
tion [14]. The “heavy” computation in their extractors is a
random walk on an expander graph [1]. Bar-Yossef, Gol-
dreich, and Wigderson [4] presented a space-efficient one-
pass algorithm for computing neighborhoods in Margulis-
Gabber-Galil expanders [25, 11, 23]. Using this algorithm,
we show in the full version how to evaluate the extractors
of [14] by anO(n − k) + O(log(1/ǫ)) space one-pass al-
gorithm. This is optimal up to a constant factor in the case
wherem = Ω(n) (which is the interesting setting of param-
eters for [14]).

Upper bound for smaller m To match the lower bound
for largek and smallerm, we use a watered down variant of
[14] (that does not use expanders and has a smaller output
length).

One of the main observations of [14] is that any high
min-entropy source is also a “block source” [8]. When the
source is divided into blocks of lengtha, then each of them
contains roughlya − (n − k) bits of “independent” ran-
domness. Since extracting randomness from block sources
is much easier than from general sources [28], we can use
them for the following simplified variant of [14]:

On input x ∈ {0, 1}n and seedr ∈ {0, 1}d, the
(k, O(ǫ)) extractorE first divides the input into blocks
x = x1 ◦ x2 ◦ . . . xt′ , where each block is of length
a = O((n − k) + log n/ǫ). The output ofE is now defined

as: E(x, r)
def
= r ◦ E′(x1, r) ◦ E′(x2, r) ◦ . . . E′(xt′ , r),

whereE′ : {0, 1}a × {0, 1}d → {0, 1}m/t′ is an(a− (n−
k) − O(log n/ǫ), ǫ) strong extractor. Since the space for
computingE online is roughly the space needed for com-
putingE′ online, then by takingE′ to be one of the space-
efficient extractors for small min-entropy,E requires space
roughlym/t′ + O(log(n/ǫ)).
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6 Upper Bound for Online Dispersers

In this section we construct online dispersers which beat
the lower bounds we give in section 3 on online extractors.
Recall that whenk < n/2 any online extractor has to have
space roughlym − d. The space in our disperser construc-
tion can be arbitrarily smaller (m/t for anyt). However, to
achieve such small space we use seeds of lengthO(t log n).

The idea of the construction is best explained if we as-
sume that the source is abit-fixing source. By that we mean
thatn− k of the bits are fixed, and the remainingk bits are
uniformly distributed. The first kind of bits are called “bad
bits” and the second kind “good bits”. For a parametert, let
1 = i0 < i1 < · · · it−1 < it = n+1 be indices such that in
any interval[ij , ij+1) there are exactlyk/t good bits. If we
know suchi’s we can easily extract many bits online using
small space. We simply run an online extractor on each one
of the blocks and concatenate the outputs. Each application
of an online extractor outputs onlym/t bits, (wherem is
the total number of bits we output). Thus, the space used
by any application of the online extractor can be aboutm/t.
We can reuse this space for the next application and thus the
total space of this construction is aboutm/t. By increasing
t we can arbitrarily reduce the space.

In practice, we do not know the indices that yield a par-
tition with k/t good bits in each block. We therefore add
more bits to the seed and use them to choose randomt − 1
indices. The rational is that we will hit a “correct” choice
of indices with positive probability, and when that happens
we extract randomness from the source. It follows that our
construction is a disperser as we hit almost all outputs when
choosing “correct” indices.

More precisely, we constructE : {0, 1}n × {0, 1}d →
{0, 1}m given a parametert and a (k̄, ǭ)-extractor Ē :
{0, 1}n̄ × {0, 1}d̄ → {0, 1}m̄ which can be evaluated by
a one pass algorithm with spaces̄. It gets an inputx ∈
{0, 1}n and a seedr = (ℓ1, · · · , ℓt−1; y1, · · · , yt), where
ℓj ∈ {0, 1}logn andyj ∈ {0, 1}d̄, and outputsz1, · · · , zt ∈
{0, 1}m̄, where for everyj, zj = Ē(x[ℓj−1,ℓj], yj).2 Here
x[i,j] stands forxi, xi+1, · · · , xj−1.

E can be evaluated by a one pass algorithm with space
s̄ + O(log n) if the seed is given in the following order:
ℓ1, y1, ℓ2, y2, · · · , ℓt−1, yt−1, yt. At stepj we readℓj and
run Ē on thej’th block usingyj as seed.

Theorem 24 E is a (k, ǫ)-disperser withk = t(k̄ +
2 logn + O(1)), ǫ = tǭ, n = n̄, d = (t − 1) log n + td̄
andm = tm̄. Furthermore,E can be evaluated by a one-
pass algorithm with spaces = s̄ + O(log n).

2Formally, we cannot usēE on stringsx of length smaller thann. In
such a case we assume that the too shortx is padded with zeroes. Note that
this can be done online, and that ifx is chosen from a source withk bits of
min-entropy, the extractor will extract randomness from the source.

The following corollary follows by plugging in the upper
bound from Theorem 23.

Corollary 25 For everyn, k, ǫ and t, there exists a(k, ǫ)-
disperserE : {0, 1}n × {0, 1}O(t log2(n/ǫ) log k) → {0, 1}m

for m = k − O(t log(n/ǫ)). Furthermore,E can be eval-
uated by a one-pass algorithm with spaces = m/t +
O(log n).

To extend the argument above from bit-fixing sources to
general sources we use methods from [28, 32, 37, 38] to
argue that any (general) source contains a sub-source on
which it resembles a bit fixing source in the sense thatE
works for such a sub-source. Exact details appear in the full
version3.

7 Online Error-Correcting Codes

We prove space lower bounds for both online encoding
and online decoding of error-correcting codes. We then
show simple (almost) matching upper bounds. We provide
only sketches of the proofs. The full proofs appear in the
full version of the paper.

Theorem 26 Let C be an (n, k, d)q-ECC with encoding
functionE : IFk

q → IFn
q . Then any one-pass algorithmA

for E requires spaceS ≥ k · d/n · log q − log(k log q + 1).

Proof sketch.For simplicity, we assume the code is binary.
We divide each codeword inton/d blocks of sized. We iter-
atively construct a chain of codeword setsC = F0 ⊇ F1 ⊇
· · · ⊇ Fn/d, such that all the codewords inFi share their last
i blocks and such that|Fi|/|Fi+1| ≤ (k + 1)2S . It follows
that |Fn/d| ≥ |C|/((k + 1)2S)n/d = 2k−(S+log(k+1))(n/d).
On the other hand, necessarily|Fn/d| ≤ 1, implying the
lower bound.

The construction of the chain works by inductively ex-
tractingFi from Fi−1 as follows. The encoding algorithm
has at most(k + 1)2S configurations(s, t), wheres is a
state of the algorithm andt is a location on the input tape.
Consider all the configurations of the algorithm right before
starting to write thei-th from the last block of the output
on each of the codewords inFi−1. A fraction of at least
1/((k + 1)2S) of them share the same configuration. We
define these to be the codewords inFi. By induction, all the
codewords inFi share their lasti − 1 blocks. To show they
share also thei-th from the last block we use a cut & paste
argument to show that otherwise there are two codewords

3Many previous extractors and dispersers constructions [28, 36, 32, 37,
43, 38, 31] take this route and start by “partitioning” a source into a “block
source”. It should be noted that whereas most of the previousworks were
interested int = O(log n), we are also interested in largert’s, (like

√
k)

and our proof works by tailoring techniques from previous work to this
setup.
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that differ only in the lastd− 1 bits of thei-th from the last
block, contradicting the distance property of the code.✷

Theorem 27 Let C be an (n, k, d)q-ECC with encoding
functionE : IFk

q → IFn
q and decoding functionD : IFn

q →
IFk

q . Then any one-pass algorithm forD requires space
S ≥ k · (d − 1)/(2n) · log q − log(k log q + 1).

Proof sketch. The proof is similar to the previous one. We
divide each received wordw ∈ IFn

q into 2n/(d − 1) blocks
of size(d− 1)/2. We divide the decoding ofw, D(w), into
2n/(d − 1) corresponding blocks (not necessarily of equal
size): thei-th block ofD(w) is the part ofD(w) written to
the output tape while the decoding algorithm reads thei-th
block ofw.

We show that there exists a chain of codeword setsC =
F0 ⊇ F1 ⊇ · · · ⊇ F2n/(d−1), such that the decodings of all
the codewords inFi share their firsti blocks and such that
|Fi|/|Fi+1| ≤ (k + 1)2S . As before, this implies the lower
bound, since|F2n/(d−1)| ≤ 1.

The construction of the chain of codeword sets is similar
in flavor to the one outlined in the proof of Theorem 26.
The difference is that in order to reach a contradiction, we
use a cut & paste argument to construct a corrupted received
word that decodesnot to its closest codeword. ✷

We now give a construction of an error-correcting code
that matches the encoding lower bound and almost matches
the decoding lower bound. Our construction is a block code,
in which each block is encoded by the expander code of
Guruswami and Indyk [16]. The Guruswami-Indyk code is
a linear-time encodable and decodable binary code that has
relative minimum distanceδ′ = 1/2− ǫ and rateR′ ≥ ǫ4/c
for anyǫ > 0 (c is a universal constant).

For our construction, we fixn, k, d as parameters, with
the restriction thatk/n is not too large. We setǫ = 4

√

ck/n

and defineγ
def
= (d/n) · 1/(1/2 − ǫ). Our code uses1/γ

blocks, each of sizek′ = γk. It is easy to verify that
this is indeed an(n, k, d)2 code. Our encoding algorithm
encodes each block at a time; this encoding runs in lin-
ear time and therefore also in linear space, and thus re-
quires spaceO(k′) = O(k · (d/n)). The decoding algo-
rithm decodes each block at a time, and thus requires space
O(n′) = O((n/k) · k′) = O(d). If we choosek = Ω(n),
then this decoding is optimal.

8 Conclusions and Open Problems

An interesting open problem is whether the space–seed
length tradeoff in our online disperser construction (S ·
d ≈ m) is the best possible. In fact, we have no lower
bound for online dispersers. Two natural approaches to re-
duce the seed length in the construction (recall that we use

(t − 1) log n random bits in “partitioning” the source) are:
(1) use randomness extracted from the source in the parti-
tioning process; this randomness, however, is only close to
uniform, which is not sufficient for the current proof; (2) de-
randomize the choice of the partition; this has already been
achieved fort = O(log n) by [32, 38], and a disperser with
Sd << m would follow if we could do it fort >> log n.

We have not resolved so far the space complexity of on-
line extractors for high entropies (k > n/2) that have a large
error (ǫ > (n−k)/n). Our lower bound proofs fail to imply
anything for this range of parameters, possibly because they
apply to the stronger model of extractors that work against
block fixing sources (sources of the formXi,α).

Our online hashing lower bounds deteriorate as the out-
put length increases. This may be an artifact of the reduc-
tion from the extractor lower bound. A direct lower bound
for universal hashing might circumvent this problem.

Finally, our online decoding upper bound for error-
correcting codes is not tight for small rates. It remains open
to find a better construction in this sense.
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