
A Lower Bound for Testing 3-Colorability in Bounded-degreeGraphs

Andrej Bogdanov∗ Kenji Obata† Luca Trevisan‡

Abstract

We consider the problem of testing 3-colorability in the
bounded-degree model.

We show that, for small enoughε, every tester for 3-
colorability must have query complexityΩ(n). This is the
first linear lower bound for testing a natural graph property
in the bounded-degree model. AnΩ(

√
n) lower bound was

previously known.
For one-sided error testers, we also show anΩ(n) lower

bound for testers that distinguish 3-colorable graphs from
graphs that are(1/3 − α)-far from 3-colorable, for arbi-
trarily small α. In contrast, a polynomial time algorithm by
Frieze and Jerrum distinguishes 3-colorable graphs from
graphs that are1/5-far from 3-colorable.

As a by-product of our techniques, we obtain tight
unconditional lower bounds on the approximation ratios
achievable by sublinear time algorithms for Max E3SAT,
Max E3LIN-2 and other problems.

1 Introduction

A property testing algorithmA for a graph propertyP is
an algorithm that, given an approximation parameterε and
oracle access to the representation of a graphG, accepts
with probability2/3 if G has propertyP and rejects with
probability2/3 if G is ε-far from every graph having prop-
ertyP . There is no requirement onA if G satisfies neither
condition. GraphsG andH areε-close if a representation
of H can be obtained by modifying anε-fraction of the rep-
resentation ofG.

The complexity of graph property testing problems is
highly dependent on the representation. In theadjacency
matrix representation, introduced in the original paper on
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graph property testing [10], two graphs areε-close if they
differ in at most aboutεn2/2 edges. This model is inter-
esting for studying properties of dense graphs. To study
sparse graph properties, Goldreich and Ron [11] considered
the model where a bounded-degree graph is represented by
its adjacency list. In this model, the vertex degrees are
bounded by a constantd independent on the number of ver-
ticesn. Two graphs areε-close if they differ by at most
εdn/2 edges.

The difference in complexity between the two models
can be striking. For example, forε = 1/100, bipartite-
ness can be tested in constant time in the adjacency matrix
representation [10] but it requiresΩ(

√
n) queries in the ad-

jacency list representation [11], even ford = 3.
Indeed, a wide variety of graph properties are known

to be testable in time constant in the number of vertices
(dependent only onε) in the adjacency matrix representa-
tion,1 while much fewer algorithms running even in sub-
linear time (let alone constant time) are known for the ad-
jacency list representation. This is particularly unfortunate
considering that bounded degree graphs are more likely to
occur in settings where sublinear time testing algorithm are
useful. Even fewer lower bounds are known for the adja-
cency list model. Apart from theΩ(

√
n) lower bound on the

query complexity of bipartiteness (which extends via sim-
ple reductions to 3-colorability and other problems), there
is anΩ(n1/3) lower bound for testing acyclicity in directed
graphs [4] and anΩ(

√
n) lower bound for the problem

of testing strong connectivity in directed graphs2 [4], and
we are not aware of any other nontrivial query complexity
bound in this model.

In this paper, we prove a tightΩ(n) lower bound on
the query complexity of testing 3-colorability in bounded-
degree graphs.

The problem of 3-colorability is interesting not only as
a natural extension of bipartiteness (whose query complex-
ity was resolved in [11, 12]), but also as a canonical prob-

1For example, all graph properties recognized by finite-state au-
tomata [2] and all properties expressed by a certain fragment of first-order
logic [1] can be tested in time dependent only onε.

2The lower bound for strong connectivity assumes that the adjacency
list representation only contains outgoing edges; on the other hand, a
constant-time algorithm exists for the representation where both outgoing
and incoming edges are contained in each adjacency list [4].



lem whose complexity can be shown to be equivalent to the
complexity of several other problems using appropriate re-
ductions.

Related results

Goldreich, Goldwasser and Ron [10] present a tester for
3-colorability in the adjacency matrix representation that
makesÕ(1/ε6) queries and runs in2Õ(1/ε3) time. Alon and
Krivelevich [3] improve the number of queries tõO(1/ε4)

and the running time to2Õ(1/ε2).
In the bounded-degree model, a testing algorithm

must tell apart 3-colorable bounded-degree graphs from
bounded-degree graphs where every 3-coloring violates an
ε-fraction of the edges. For sufficiently smallε, this prob-
lem is NP-hard for general graphs [16]. Using the reduction
from Section 5 (that we introduce for a different purpose),
this problem can be shown to be NP-hard when restricted
to bounded-degree graphs. This provides strong evidence
against the existence of polynomial-time algorithms (and
consequently, sublinear time algorithms) for this problem.
Using our reduction, together with the Polishuck-Spielman
version of the PCP theorem [17], it can be shown that the
testing problem has query complexityΩ(n1−εc

) for some
constantc, assuming 3SAT onn variables has circuit com-
plexity 2n1−o(1)

.
Goldreich and Ron [11] prove an unconditionalΩ(

√
n)

lower bound on query complexity for sufficiently smallε.
On the positive side, Frieze and Jerrum [7] give a polyno-
mial time algorithm that distinguishes between 3-colorable
graphs and graphs that are1/5-far from 3-colorable.

Lower bound for one-sided error testers

Our goal is to prove that no property tester with one-sided
error, given a degree-d graph withn vertices, can look at
fewer thanδn entries of the adjacency list representation of
the graph, yet reject with constant probability graphs that
areε-far from 3-colorable. A simple observation is that a
one-sided error tester must accept whenever its “view” of
the graph is 3-colorable. In other words, it is sufficient to
construct a graphG that isε-far from 3-colorable, yet every
one of its induced subgraphs onδn edges is 3-colorable.

In Section 3 we give a probabilistic construction of such
graphs, based on a technique due to Erdős [6]. For every
α > 0, there are constantsd = O(1/α2) andδ > 0 such
that somed-regular graph onn vertices is(1/3−α)-far from
3-colorable, yet every subgraph induced by≤ δn edges is
3-colorable. The consequence is the following result.

Theorem 1 For everyα > 0 there are constantsd and
δ > 0 such that ifA is a one-sided error tester for degree-d
graphs that distinguishes 3-colorable graphs from graphs
that are (1/3 − α)-far from being 3-colorable, then the

query complexity ofA is at leastδn, wheren is the num-
ber of vertices.

Notice that no graph is more than 1/3-far from being 3-
colorable, so our result applies to the full spectrum of gaps
for which the testing problem is well defined.

Furthermore, for small enoughα, the testing problem
is solvable deterministically in polynomial time with the
Frieze-Jerrum algorithm [7]. This gives a separation of the
testing ability of polynomial time versus (one-sided error)
sublinear time algorithms for a natural problem.

An Explicit Construction

We consider the problem of constructing graphs that
are simultaneously far from being 3-colorable, and free of
small non-3-colorable subgraphs as an independently inter-
esting combinatorial question. In Section 5 we give anex-
plicit construction ofd-regular graphs that areε-far from 3-
colorable, yet any subgraph induced by aδ-fraction of edges
is 3-colorable, whered, ε > 0, δ > 0 are absolute constants.
To this end, we first construct an instance ofkCSP (a set of
constraints over binary variables, withk variables per con-
straint) that isε′-far from being satisfiable, yet everyδ′ frac-
tion of constraints is satisfiable (withk, δ′, ε′ constants, and
each variable occurring in exactly two constraints). We then
apply a reduction fromkCSP to 3SAT and from 3SAT to
3-coloring, and argue that the reduction preserves distance
from satisfiability (respectively, 3-colorability) and the sat-
isfiability (respectively, 3-colorability) of small enough sub-
sets of the instance. The reduction fromkCSP to 3SAT is
the standard approximation-preserving reduction between
the two problems [15], while the reduction from 3SAT to
3-coloring is a new one (the new reduction is needed to pro-
duce a constant-degree graph).

While natural in our context, the use of an
approximation-preserving reduction in the explicit con-
struction of a combinatorial object is an unusual approach,
which may be applicable to other problems.

Lower bound for two-sided error testers

To prove a lower bound for two-sided error testers, by Yao’s
principle, it is enough to produce two distributionsG3col

andGfar over bounded-degree graphs, such that graphs in
G3col are always 3-colorable, graphs inGfar are typically
far from being 3-colorable, and the two distributions are in-
distinguishable for testers of sublinear query complexity.

Towards this goal, we first create two distributions of in-
stances of E3LIN-2,Dsat andDfar, such that instances in
Dsat are always satisfiable and instances inDfar are typ-
ically far from satisfiable,3 yet the two distributions look

3E3LIN-2 is the problem of deciding the satisfiability of a system of
linear equations modulo 2, with three variables per equation.



the same to sublinear time algorithms with oracle access
to their input. We then reduce E3LIN-2 to 3SAT and then
3SAT to 3-coloring and argue that the transformation pre-
serves satisfiability/3-colorability, as well as farness from
satisfiability/3-colorability. Moreover, an oracle for a re-
duced instance can be implemented in constant time given
the original instance.

In order to defineDsat andDfar, we first show that for
everyc there is aδ such that there is a E3LIN-2 instanceI
with n variables andcn equations such that any subset ofδn
equations are linearly independent. We do so using a proba-
bilistic argument. Then we defineDsat to be the distribution
of instances obtained by first picking an assignment to the
variables, and then setting the right-hand side ofI to be con-
sistent with the assignment. InDfar we set the right-hand
side of I uniformly at random. For algorithms that look
at less than aδ fraction of equations, the two distributions
are identical, however instances inDsat are always satisfi-
able and instances inDfar are about(1/2 − O(1/

√
c))-far

from satisfiable, except with negligibly small probability. In
summary, we have a proof of the following theorem.

Theorem 2 Constantsδ, ε, d exist such that ifA is a two-
sided error tester for degree-d graphs that distinguishes 3-
colorable graphs from graphs that areε-far from being 3-
colorable, then the query complexity ofA is at leastδn,
wheren is the number of vertices.

Other applications

Given a graph optimization problem, one can derive a prop-
erty testing problem by first turning the optimization prob-
lem into a decision problem. For example, in the property
testing version of Max CUT, one is given a fractionρ and a
parameterε and wants to distinguish graphs whose optimal
cut cuts at least aρ fraction of edges from graphs that are
ε-far from having the above property.

A more natural (and often equivalent) way of studying
sublinear time algorithms for graph optimization problems
is to consider algorithms that produce in output an approx-
imation of the cost of an optimal solution. For example,
Goldreich, Goldwasser and Ron [10] give an algorithm run-
ning in2poly(1/ε) time that returns an estimate of the cost of
the max cut of a given graph within anadditiveerrorεn2,
which is a good approximation for dense graphs. Similar
results are known for other problems in dense graphs [8].

Chazelle, Rubinfeld and Trevisan [5] show how to ap-
proximate within a multiplicative error1 + ε the cost of a
minimum spanning tree in a given bounded-degree graph;
the algorithm runs in timẽO(dwε−2) whered is the maxi-
mum degree and the edge weights are integers in the range
{1, . . . , w}.

What about problems that can be approximated to within
some constant in polynomial time but that do not have a

PTAS, such as Max SAT and Max CUT? Can one achieve
reasonably good approximation factors in sublinear time?
Can unconditional inapproximability results be proved?

In Section 7 we showunconditionalinapproximability
results for sublinear time approximation algorithms that
match the inapproximability results proved by Håstad [13]
for polynomial time algorithms assumingP 6= NP .

Specifically, we prove that no sublinear time approxi-
mation algorithm can approximate Max E3SAT better than
7/8, Max E3LIN-2 better than 1/2, Vertex Cover better than
7/6, Max CUT better than 16/17, or Max 2SAT better than
21/22.

2 Preliminaries and Definitions

Let X be a collection of combinatorial objects with dis-
tance functiond : X 2 → [0, 1]. An instanceX ∈ X is ε-far
from propertyP ⊆ X if for any P ∈ P , d(X, P ) > ε.
An ε-testerfor propertyP is a randomized algorithm that,
given oracle access to an objectX ∈ X :

• If X ∈ P , acceptsX with probability at least 2/3,

• If X is ε-far fromP , rejectsX with probability at least
2/3.

A tester isone-sidedif the accepting probability above is
1. We are interested in testers for the following problems:
3-colorability in bounded degree graphs,(3, c)SAT (3CNF
satisfiability where each literal occurs in at mostc clauses),
and E(3, c)LIN-2 (satisfiability of E3LIN-2 systems where
each variable occurs in at mostc equations).

We representn-vertex graphs with degree boundd by an
adjacency listfG : [n]× [d] → [n]∪{∅}, wherefG[v, i] =
w if vertex w the i-th neighbor of vertexv, or ∅ if v has
fewer thani neighbors. A graphG is ε-far from 3-colorable
if no graph that is obtained by deletingεdn/2 edges ofG is
3-colorable.

Similarly, we represent(3, c)CNF formulas (resp.
E(3, c)LIN-2 systems)ϕ as a membership listMϕ, which
provides for each variablev and index0 ≤ i < c the i-th
clause (resp. equation) in whichv appears, or∅ if v appears
in fewer thani clauses (resp. equations). A formula (resp.
system)ϕ is ε-far from satisfiable if no subformula (resp.
subsystem) ofϕ obtained by removing≤ εcn/3 clauses
(resp. equations) is satisfiable.

3 Probabilistic Constructions

In this section we provide probabilistic constructions of
combinatorial objects (graphs and 3-hypergraphs) that will
be used to obtain problem instances for 3-colorability and
E3LIN-2 that are difficult to test.



Graphs and Hypergraphs with no Small Dense Sub-
graph

It will be somewhat more convenient to work with multi-
graphs instead of graphs. We consider a distributionG onn-
vertex multigraphsG (wheren is even) obtained as follows:
Let C1, . . . , Cd be independent random perfect matchings
on the vertices ofG. The edge set ofG is the multiset union
of theCi, so that the multiplicity of an edge equals the num-
ber of matchingsCi in which it appears. If(u, v) ∈ Ci, we
say thatv is thei-th neighbor ofu in G.

We denote byG|S the restriction of multigraphG on ver-
tex setS ⊆ V (G). Let XS be the number of edges inG|S .
ThenE[XS ] = d

(

|S|
2

)

1
n−1 . Fix a partition{S1, S2, S3} of

V (G). We are interested in bounding the probability that
this partition is1/3-close to a valid coloring ofG. Let
X = XS1 + XS2 + XS3 .

Lemma 3 For every partition{S1, S2, S3} of V (G) and
every constantα > 0,

Pr[X < (1/6 − α)dn] ≤ exp(−(α − o(1))2dn).

Proof Consider the random processI1, . . . , Idn/2 on G,
which reveals the edges ofG one by one. For a fixed
partition {S1, S2, S3}, the random variableX determines
a Doob martingale with respect to this process. A simple
computation shows that for1 < j ≤ dn/2,

|E[X |I1, . . . , Ij ] − E[X |I1, . . . , Ij−1]| ≤ 1.

By convexity, E[X ] ≥ dn
6

n−3
n−1 (this value is attained

when |S1| = |S2| = |S3| = n/3). Azuma’s inequality
yields

Pr

[

X <

(

1

6

n − 3

n − 1
− α′

)

dn

]

≤ exp(−α′2dn).

The conclusion follows, withα = α′ + 1
3(n−1) .

Denote byḠ the graph obtained by identifying every
multiedge ofG with an ordinary edge.

Lemma 4 For any constantα > 0 there exists a constant
d such that with probability1 − o(1) any 3-coloring of the
vertices ofḠ has at least(1/6 − α)dn violating edges.

Proof First we show that the conclusion holds forG. The
number of tri-partitions ofV (G) is 3n. By combining a
union bound with the bound from Lemma 3, it follows that
any such partition has(1/6 − α)dn violating edges ifd >
ln 3/α2.

For any pair of vertices(u, v), letMu,v indicate the event
that (u, v) is an edge ofG with multiplicity two or more.
ThenPr[Mu,v = 1] = O(d/n2). By Markov’s inequality,
the probability that there ared log n or more pairs(u, v)

with Mu,v = 1 is o(1). Since no edge ofG has multiplicity
more thand, it follows that|E(G)| − |E(Ḡ)| ≤ d2 log n =
o(n). Therefore the conclusion of the lemma carries over to
Ḡ.

Lemma 5 For everyK > 1 there exists aδ > 0 such that
with probability1−o(1) all graphsḠ|S with |S| ≤ δn have
at mostK|S| edges.

Proof Suppose some setS of cardinalitys containsKs
edges(u1, v1), . . . , (uKs, vKs). Denote byXi,k, Yi,k the
vertices matched toui andvi, respectively, in the matching
Ck. Then

Pr[∃k : Xi,k = vi ∧ Yi,k = ui|

Xp,q, Yp,q : 1 ≤ p ≤ i − 1, 1 ≤ q ≤ d] ≤ d/(n − 2s),

since for any fixedq, the variablesXp,q andYp,q determine
the neighbors of at most2s vertices in matchingCk. It fol-
lows that

Pr[∀i, 1 ≤ i ≤ d : ∃k : Xi,k = bi ∧ Yi,k = ai]

≤
(

d

n − 2s

)Ks

<

(

d

(1 − 2δ)n

)Ks

.

For fixeds, the setS can be chosen in
(

n
s

)

ways, while the

set{(u1, v1), . . . , (uKs, vKs)} can be chosen in
((s

2)
Ks

)

ways.
Therefore for some constants0,

Pr[∃S, s0 ≤ |S| < δn : |E(G|S)|K|S|]

≤
δn
∑

s=s0

(

n

s

)(
(

s
2

)

Ks

) (

d

(1 − 2δ)n

)Ks

≤
δn
∑

s=s0

(ne

s

)s
(

s2e/2

Ks

)Ks (

d

(1 − 2δ)n

)Ks

=

[

e2d

2

(

ed

2K(1 − 2δ)

)K
( s

n

)K−1
]s

= o(1).

It is easy to see that the contribution of setsS of size less
thans0 is alsoo(1).

We define an analogous distributionH on 3-hypergraphs
(hypergraphs with multiple hyperedges where each hyper-
edge has cardinality 3) withn vertices, wheren is a multiple
of 3. To obtain a graphH ∼ H, we choosed indepen-
dent uniformly random partitions of the vertex setV (H)
into 3-hyperedges (i.e., 3-element subsets). With probabil-
ity 1− o(1), all hyperedges ofH have multiplicity one. An
argument similar to the proof of Lemma 5 shows the fol-
lowing property:



Lemma 6 For everyK > 1/2 there exists aδ > 0 such
that with probability1 − o(1) all 3-hypergraphsH |S with
|S| ≤ δn have at mostK|S| edges.

Hard Instances

We show the existence of graphs that are almost1/3-far
from 3-colorable, yet for someδ > 0 all their subgraphs of
sizeδn are 3-colorable. Choose a multigraphG according
to the distributionG of Section 3, and let̄G denote the graph
obtained fromG by ignoring multiplicities. We show that
the graphḠ has the desired property. As in [6], we use
the fact that in a minimal non-3-colorable subgraph every
vertex has degree at least three.

Theorem 7 For everyα > 0 there exists aδ > 0 such
that with probability1− o(1), the graphḠ is (1/3−α)-far
from 3-colorable, yet all subgraphsG|S with |S| < δn are
3-colorable.

Proof By Lemma 4 (with parameterα/2), every tri-
partition of V (Ḡ) has at least(1/3 − α)dn/2 violating
edges, sōG is 1/3-far from 3-colorable.

Suppose that there exists a setS of sizes < δn such that
Ḡ|S is not 3-colorable. We may assume thatS is a minimal
set with this property. Suppose thatḠ|S contains a vertex
v of degree two or less (with respect tōG|S). By the min-
imality of S, there is a 3-coloring of the graph̄G|S−{v}.
However, this coloring extends to a 3-coloring ofḠ|S , by
picking a color forv that does not match any of its neigh-
bors. It follows that any vertex in̄G|S must have degree at
least 3. Therefore,̄G|S must contain at least3s/2 edges.
By Lemma 5 withK = 3/2, this is not possible.

Using the 3-hypergraph construction, we prove the exis-
tence of certain matrices that will be used as the left hand
side of E3LIN-2 instances.

Theorem 8 For everyc > 0 there exists aδ > 0 such that
for everyn there exists a matrixA ∈ {0, 1}n×cn with n
columns andcn rows, such that each row has exactly three
non-zero entries, each column has exactly3c non-zero en-
tries, and every collection ofδn rows is linearly indepen-
dent.

Proof By Lemma 6, there exists a3c-regular 3-
hypergraphH on n vertices such that anyH |S with |S| ≤
3δn has strictly fewer than2|S|/3 edges. LetA be the in-
cidence matrix ofH : The columns ofA correspond to ver-
tices ofH , the rows ofA correspond to hyperedges ofH ,
andAve = 1 if and only if v ∈ e. Suppose that there is a
setR of δn rows ofA (or hyperedges ofH) that are linearly
dependent. We may assume thatR is a minimal set with this
property. LetS ⊆ V (H) denote the set of vertices incident
to hyperedges inR, so that|S| ≤ 3δn. By minimality ofR,

every element ofS must appear in at least two rows ofR.
Therefore,R contains at least2|S|/3 hyperedges. Contra-
diction.

4 Reductions

In this section, we define a notion of reducibility be-
tween constraint satisfaction problems which preserves, up
to modification of constants, the property that a decision
problem has a sublinear testing algorithm, and we ex-
hibit such a reduction from(3, k)SAT to 3-colorability in
bounded degree graphs.

For our purposes, the following notion of reduction will
be appropriate:

Definition 9 (Gap-preserving local reduction) Let A, B
be decision problems. We say that a mappingϕ() is a gap-
preserving local reduction fromA to B if there exist univer-
sal constantsc1, c2 > 0 such that the following properties
hold:

• If x is a YES-instance ofA, then ϕ(x) is a YES-
instance ofB.

• If x is ε-far from being a YES-instance ofA thenϕ(x)
is ε/c1-far from being a YES-instance ofB.

• The answer to an oracle query toϕ(x) can be com-
puted by makingc2 oracle queries tox.

Since we will be dealing frequently with partially sat-
isfiable constraint satisfaction problems, we introduce the
following notation:

Definition 10 ((δ, 1 − ε)-satisfiability) A constraint satis-
faction problem onm clauses is(δ, 1 − ε)-satisfiableif any
subset of at mostδm constraints is satisfiable, but no as-
signment satisfies more than(1 − ε)m constraints.

We note three easy lemmas, which will allow us to move
between various CSP formulations:

Lemma 11 LetH be an arbitrary fixed set of boolean pred-
icates on a finite number of variables. There exists a gap-
preserving local reduction from CSPs defined onH which
carries an instancef with n variables andm clauses into a
3CNF formula withO(n+m) variables andO(m) clauses.

Proof It is a basic fact that an arbitrary boolean predicate
on a finite number of variables can be expressed as a 3CNF
formula, possibly with introduction of a constant number
of auxiliary variables. It is easy to check that applying this
transformation to each clause off gives a reduction which
has the claimed properties.



Lemma 12 Gap-preserving local reductions are closed un-
der composition.

Proof Clearly, if ϕ, ϕ′ are gap-preserving local reduc-
tions with distortion constantsc1, c2 andc′1, c

′
2 respectively,

thenϕ ◦ ϕ′ is a gap-preserving local reduction with distor-
tion constantsc1c

′
1, c2c

′
2.

Lemma 13 If ϕ : A → B is a gap-preserving local reduc-
tion with distortion constantsc1, c2 and f is a (δ, 1 − ε)-
satisfiable CSP, thenϕ(f) is a ( δ

c2
, 1− ε

c1
)-satisfiable CSP.

Proof Let fA be a(δ, 1 − ε)-satisfiable instance ofA,
andfB = ϕ(fA). That the problemfB is ε

c1
-far from satis-

fiable is immediate from the definition of a gap-preserving
local reduction. Now, letm be the number of clauses in
problemfB and consider any subsetC′

1, . . . , C
′
k′ of δ

c2
m

of these clauses. By the locality property, these clauses are
a function of some set of clausesC1, . . . , Ck of fA with
k ≤ c2

δ
c2

m = δm. SincefA is (δ, 1 − ε)-satisfiable, the
clausesC1, . . . , Ck are satisfiable, and we can extend these
clauses to a new, satisfiable instancef ′

A of A by setting ev-
ery clause other thanC1, . . . , Ck to a satisfiable clause on
fresh variables.ϕ must sendf ′

A into a satisfiable instance,
and this instance contains clausesC′

1, . . . , C
′
k′ . In particu-

lar, the clausesC′
1, . . . , C

′
k′ must be satisfiable.

We now exhibit a gap-preserving local reductionϕ()
from (3, k)SAT to 3-coloring in bounded degree graphs. We
comment that a reduction with essentially the same proper-
ties was given by Petrank in [16]. However, Petrank’s con-
struction does not yield a bounded degree graph, which is
essential in our context. Also, our construction is somewhat
simpler to describe and analyze.

Construction: Let f be the (3, k)CNF formula on n
variables andm clauses to be mapped. First, we intro-
duce a large set of nodes which are independent of the
clauses off which we labelDi, Ti, and Fi for i =
1, . . . , 2kn. The nodesDi will all assume the color cor-
responding to the “dummy” color (this color is used as in
the standard 3-coloring reduction),Ti to the “true” color,
and Fi to the “false” color. To assure that nodes in a
given color classare the same color, we introduce equal-
ity gadgets (Figure 1.a) between nodesDi and Dj for
all (i, j) ∈ E2kn whereG2kn(V2kn, E2kn) is a (2kn, d)-
expander as in Lemma 2 (similarly for the classesT and
F ). To assure that nodes in distinct color classes have
distinct colors, fori = 1, . . . , 2kn we introduce triangles
{(Di, Ti), (Di, Fi), (Ti, Fi)}.

For each variablexi in f , we introduce2k literal nodes
x1

i , . . . , x
k
i , x1

i , . . . , x
k
i . Literal nodes for a particular vari-

able and sign should be colored identically, so we introduce
equality constraints betweenxj

i andxj′

i for all 1 ≤ i, j ≤ k

with i 6= j (similarly for xj
i andxj′

i ). We fix some one-to-
one correspondence between the literal nodes and the color
class nodes for each color class (we can do so since we have
2kn nodes in each color class). Since literal nodes should
be colored only with “true” or “false”, every literal node is
connected to its corresponding nodeDi. Since only one of

xi, xi can be true, we introduce edges(xj
i , x

j
i ) for all i, j.

Finally, for each clause inf , we introduce a clause gadget
(Figure 1.b) on the literals appearing in the clause. We can
do so in such a way that each literal node is used in at most
one clause gadget since we havek literal nodes for each
literal, and each variable appears in at mostk clauses. Sim-
ilarly, we can have eachT node used in at most one clause
gadget, since the gadgets consume at mostkn < 2kn T
nodes. The clause gadget allows any coloring of the lit-
eral nodes with “true” or “false” other than the coloring
which corresponds to an assignment where all literals are
false (and the clause goes unsatisfied).

Theorem 14 The mappingϕ is a gap-preserving local re-
duction from(3, k)SAT to 3-coloring in bounded degree
graphs. In particular, if f is a (δ, 1 − ε)-satisfiable
(3, k)CNF formula, then the graphϕ(f) has degree
bounded by some universal constantb and the 3-coloring
CSP ofϕ(f) is

(

δ
bc , 1 − ε

8

)

-satisfiable.

Proof It is clear by observation that the mappingϕ al-
ways produces graphs bounded by some constant degree
b, and that there exists a constantc such thatϕ converts
a (3, k)CNF formula onn variables to a graph on at most
cn nodes. Furthermore, one can answer a query for an edge
of ϕ(f) making at most one query intof , namely, for the
clause in which the queried edge is a part (if any). Writen′

for the number of nodes inϕ(f), andm′ < bn′ ≤ bcn for
the number of edges.

Suppose that the original(3, k)CNF formula is(δ, 1−ε)-
satisfiable. Clearly any subgraph ofϕ(f) induced byδn
edges is 3-colorable – such a subgraph contains nodes “in-
volved” with at mostδn clause gadgets, where a node is
involved with a clause gadget if it is contained in the clause
gadget, or is a color class node corresponding to a literal
node contained in the clause gadget. By definition, there ex-
ists a boolean assignment satisfying theseδn clauses off .
The coloring which sets all color classes to their intended
colors and colors the literal nodes “true” or “false” as in
this assignment satisfies theseδn > δ

bcm′ 3-coloring con-
straints.

Note that if we deleteγt edges from the expander graph
Gt with γ ≤ 1

2 , then there must remain a connected com-
ponent of size at least(1− γ)t, for disconnecting a setS of
nodes with|S| ≤ 1

2 t requires at least|Γ(S)| edge deletions
which, by the expansion property, is at least|S|. Applying
this to the equality gadgets between color class nodes, we
see that deletion ofγ(2kn) edges leaves each color class
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Figure 1. Gadgets for Theorem 14

with at least(1 − γ)(2kn) color class nodes in a connected
component with equality constraints intact. Therefore, it
leaves at least(1 − 3γ)(2kn) triples{Di, Ti, Fi}i∈S such
that theDi must be colored the same asDj for i, j ∈ S
(similarly for Ti andFi). The disconnected triplesS are in-
volved in at most2 · 3γ(2kn) clause gadgets. Furthermore,
deletingγ(2kn) edges modifies constraints about nodes in-
volved with at most2 · γ(2kn) clauses off . Summing up,
deletion ofγ(2kn) edges leaves the 3-coloring construction
for at leastm − (2 · 3γ(2kn) + 2 · γ(2kn)) = m − 16γkn
clauses off intact. If f is (δ, 1 − ε)-satisfiable, then no
coloring of the remaining graph can be valid if

m − 16γkn > (1 − ε)m

or, equivalently,γ < ε
16k . Changing notation so that

γ′m′ = γ(2kn)

(i.e. we have deleted a fractionγ′ of the edges ofϕ(f) in
the above discussion) and noting thatm′ > n, we get that

ε

16k
> γ =

γ′m′

2kn
>

γ′

2k

or γ′ < ε
8 .

Combining the conclusions of the previous two para-
graphs, we see that the graph 3-coloring problemϕ(f) is
(

δ
bc , 1 − ε

8

)

-satisfiable.

5 Explicit Constructions

In this section, we give an explicit construction of an
infinite family of (δ, 1 − ε)-satisfiable CSPs onn vari-
ables andm = O(n) clauses over a fixed boolean predi-
cate. By applying the gap-preserving local reductions pre-
sented in Section 4, we achieve an explicit construction of
an infinite family of(3, k)CNF formulas onn variables and
O(n) clauses with analogous properties, and of bounded

degree graphsG on n vertices andm edges such that ev-
ery subgraph induced byδm edges is 3-colorable, but any
3-coloring ofG has at leastεm monochromatic edges. (In
the proof of Theorem 7 we used the probabilistic method to
prove only theexistenceof such graphs.)

For a fixed d, we will consider 2d-ary constraints
of the form h : {0, 1}d × {0, 1}d → {0, 1},
whereh(x1, . . . , xd, y1, . . . , yd) is satisfied exactly when
∑d

i=1 xi =
∑d

i=1 yi+1, and we identify the boolean{0, 1}
inputs with the integers 0 and 1 in the obvious way.

LetG(V, E) be an undirected multigraph. We writeΓ(v)
for the neighbor set of vertexv ∈ V , Γ(v, i) for the i-th
neighbor ofv (where we indexΓ(v) in an arbitary way),
andΓ(S) for the neighbor set of a vertex-subsetS ⊆ V .

Definition 15 ((n, d)-Expander) A multigraph G is an
(n, d)-expander if it isd-regular and if, for every subset
S ⊂ V with |S| ≤ 1

2 |V |, |Γ(S)| ≥ |S|.

Explicit constructions of(n, d)-expanders are known
[14, 9], and we assume that we are given an infinite fam-
ily of (n, d)-expanders for some universal constantd.

Define the constraint satisfaction problemfn ondn vari-
ables andn clauses overh as follows: LetG(V, E) be an
(n, d)-expander. Begin by convertingG into a directed
multigraphG′(V, E′) by replacing each undirected edge
(i, j) ∈ E with two directed edges(i, j), (j, i) ∈ E′. Each
edge(i, j) ∈ E′ is identified with a boolean variablexi,j in
fn. One constrainth is introduced for eachv ∈ V , with the
predicate variables mapped to the edges incident tov:

fn =
∧

v∈V

h(xv,Γ(v,1), . . . , xv,Γ(v,d), xΓ(v,1),v, . . . , xΓ(v,d),v)

Theorem 16 There exist constantsδ, ε > 0 such that the
CSP formulasfn are (δ, 1 − ε)-satisfiable.



Proof We begin by findingε such that no subset of more
than(1 − ε)n constraints can be satisfied. Suppose there is
an assignment satisfying some subsetS of constraints with
|S| > (1 − ε)n. Then the following network flow prob-
lem is solvable: Contract the vertices corresponding toS
into a single sink vertext, create a source vertexs with unit
capacity edges froms to every vertex inS, and interpret
the remaining edges ofG as unit capacity edges. The as-
signment can then be interpreted as an(s, t)-flow of weight
greater than(1 − ε)n on this network. However, the cut
(t, G\t) has weight at mostdεn, so this is impossible if we
chooseε < 1

d+1 .

On the other hand, forδ ≤ 1
2 , any subsetS of constraints

with |S| = δn can be satisfied. To see this, we define the
following network flow problem: Contract the vertices ofG
corresponding to the(1− δ)n constraints inS to a sink ver-
tex t, create a source vertexs with unit capacity edges from
s to every node inS, and interpret the remaining edges of
G as unit capacity edges. We claim that there is a flow of
weight at leastδn in this system. By the max-flow/min-cut
theorem, it is enough to show that there is no(s, t)-cut with
weight less thanδn (the cut(s, G\s) has weightδn). Let
C be an arbitrary(s, t)-cut, and denote byCs, Ct the ver-
tices ofS in the partitions containings andt respectively.
Each node inCt incurs a cut cost of weight one due to the
unit constraint edges we added froms. By the expansion
property,|Γ(Cs)| ≥ |Cs|, and each of the edges connecting
Cs to Γ(Cs) also incurs a cut cost of weight one. Summing
up, |C| ≥ |Cs| + |Ct| = δn, so there must exist an flow of
weightδn in this system. Furthermore, theintegrality prop-
erty of flows implies that we can assume the flow solution
is (0, 1)-valued. Assigning this flow to the edge variables
gives a satisfying assignment to the constraints inS.

Corollary 17 Let ϕ3CNF be the gap-preserving local re-
duction of Lemma 11, andϕ3−Col that of Theorem 14. The
(explictly constructed) set{ϕ3−Col(ϕ3CNF (fn))}n is an
infinite family of bounded-degree graphsGn on mn edges
such that, for universal constantsδ, ε > 0, every subgraph
induced byδmn edges is 3-colorable, but every 3-coloring
of Gn has at leastεmn monochromatic edges.

Proof We need only note that the 3CNF formulas
{ϕ3CNF (fn)}n are in fact(3, k)CNF formulas. This is be-
cause the variablexi,j corresponding to edge(i, j) appears
only in the constraints around verticesi andj. In particular,
if l is the number of clauses in a 3CNF representation of the
predicateh, thenxi,j can appear in at most2l clauses. The
claim then follows from Lemmas 12 and 13.

6 Lower Bounds

We now prove Theorems 1 and 2.

Lower Bound for One-Sided Error Algorithms

To prove Theorem 1, we observe that any testing algo-
rithm with one-sided error must accept whenever the sub-
graph it has queried is 3-colorable. In particular, when pre-
sented with the graph from Theorem 7, any algorithm with
query complexity at mostδn will accept with probability
one. However, this graph is(1/3 − α)-far from being 3-
colorable, so the algorithm cannot be a(1/3− α)-tester for
3-colorability.

Lower Bounds for Two-Sided Error Algorithms

Our distinguishing instances for two-sided error algorithm
are based on the matrixA from Theorem 8. We consider the
following two distributions on instances of E3LIN-2 with
n variables,cn equations, and each variable appearing in
exactly3c equations:

1. DistributionDfar consists of instancesAx = b, where
b ∈ {0, 1}cn is chosen uniformly at random.

2. Distribution Dsat consists of instancesAx = Az,
wherez ∈ {0, 1}n is chosen uniformly at random.

By construction, every instance inDsat is satisfiable. On
the other hand, instances inDfar are far from satisfiable:

Lemma 18 For everyα > 0, there is ac such that, with
probability 1 − o(1), an instance sampled fromDfar is
(1/2 − α)-far from satisfiable.

Proof For a fixed assignmentx, the vectorAx − b is
uniformly distributed in{0, 1}cn. By a Chernoff bound,
with probability 1 − exp(−Ω(α2cn)), Ax − b has Ham-
ming weight at least(1/2 − α)cn. A union bound over all
2n possible assignments forx yields the desired result, as
long asc = Θ(1/α2).

Lemma 19 For everyα > 0 there are constantsc and
δ > 0 such that every algorithm that distinguishes satis-
fiable instances of E3LIN-2 withn variables and at most
c occurrences from instances that are(1/2 − α)-far from
satisfiable must have query complexity at leastδn.

Proof Consider an instanceAx = b of cn E3LIN-2 equa-
tions. Obtain a subinstanceA′x′ = b′ by choosingany
subset ofδn equations. By Theorem 8, the rows ofA′ are
linearly independent. Therefore, for a uniformly random
z′ ∈ {0, 1}n, A′z′ is uniformly distributed in{0, 1}δn.
It follows that the instancesA′x′ = b′ andA′x′ = A′z′



are generated with the same probability, orPrDfar
[A′x′ =

b′] = PrDsat
[A′x′ = b′].

LetD be any algorithm of query complexity less thanδn.
If D can decide whether a given instanceAx = b is satisfi-
able with any constant probability, thenD has an advantage
at distinguishing instances picked fromDsat (that are al-
ways satisfiable) from instances picked fromDfar (that are
(1/2−α)-far from satisfiable with high probability). How-
ever, the queries ofD only reveal a subinstanceA′x′ = b′

of at mostδn equations, and the two distributions are statis-
tically indistinguishable on such a subinstance.

The canonical reduction from E3LIN-2 to E3SAT is a
gap-preserving local reduction withc1 = c2 = 4. This
observation immediately yields the following lower bound
for E3SAT:

Lemma 20 For everyα > 0 there are constantsc and
δ > 0 such that every algorithm that distinguishes satis-
fiable instances of E3SAT withn variables and at mostc
occurrences from instances that are(1/8−α)-far from sat-
isfiable must have query complexity at leastδn.

The proof of Theorem 2 now follows from the hardness
result of Lemma 20 and from the reduction from 3SAT to
3-coloring described in Section 4.

7 Approximation Algorithms

The following theorem follows directly from Lemmas 19
and 20.

Theorem 21 For every ε > 0, every (1/2 + ε)-
approximate algorithm for Max E3LIN-2 and every(7/8 +
ε)-approximate algorithm for Max E3SAT has query com-
plexityΩ(n+m), wheren is the number of variables andm
is the number of equations/clauses. The theorem applies to
the special case where every variable occurs inO(1) equa-
tions/clauses andm = O(n).

Indeed, Lemma 19 is the unconditional version for sub-
linear time algorithms of the hardness of approximation
proved in [13] for Max E3LIN-2. Håstad [13] then uses
approximation preserving reductions to show that the hard-
ness of Max E3LIN-2 implies hardness of approximation
results for other problems. Since the reductions used in
[13] preserve the existence of sublinear time algorithms (for
proper instance representation), we also have unconditional
inapproximability results for other problems, with respect
to sublinear time algorithms.

The standard FGLSS reduction from Max E3LIN-2 to
Vertex Cover is such that if every variable occurs inO(1)
equations in the E3LIN-2 instance, then the graph produced
by the reduction has constant degree. Therefore, the fol-
lowing result also follows from Lemma 19 (see [13] for a
calculation of the inapproximability factor).

Theorem 22 For everyε > 0, there are constantsd, δ such
that every(7/6 + ε)-approximate algorithm for Minimum
Vertex Cover in graphs of degree≤ δ has query complexity
at leastδn.

Similarly, we have a linear query complexity lower
bound for every(21/22 + ε)-approximate algorithm for
Max 2SAT, even for the restricted case where every vari-
able occurs inO(1) clauses.

Regarding Max CUT, the reduction used in [13] does
not create a bounded-degree graph, even if in the origi-
nal E3LIN-2 instance every variable occurred in a bounded
number of equations. However the randomization reduc-
tion in [18] can be used to show that every(16/17 + ε)-
approximate algorithm for Max CUT in bounded-degree
graphs has linear query complexity.

8 Conclusions

We proved a linear query complexity lower bound for the
problem of testing 3-colorability in bounded-degree graphs,
and also linear lower bounds for other property testing and
approximation problems.

Our results are the first linear lower bounds for property
testing in the bounded-degree model for natural graph prop-
erties.

It is still open whether it is possible to distinguish 3-
colorable graphs from graphs that are, say,1/4-far from
being 3-colorable witho(n) queries in the bounded-degree
model; we have shown it is impossible for one-sided error
algorithms, but the question is still open for two-sided error
algorithms.

We observed that several unconditional inapproximabil-
ity results follow as corollaries of our main construction.
The results for Vertex Cover, Max CUT and Max 2SAT
are not tight, and it would be interesting to strengthen our
bounds. We mention that one can modify the bipartiteness
lower bound argument in [11] to prove that distinguishing
bipartite graphs from graph that are(1/2 − α)-far from be-
ing bipartite requiresΩ(

√
n) queries, which in turn implies

that Max CUT cannot be approximated within(1/2 + ε)
with o(

√
n) queries, and, by reductions, that Max E2SAT

(and, for a stronger reason, Max SAT) cannot be approxi-
mated within(3/4+ε) and Vertex Cover cannot be approx-
imated within(3/2 − ε) with o(

√
n) queries. It remains

an open question to prove such stronger inapproximability
results for algorithms that makeo(n) queries.
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