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Abstract

We consider the problem of testing 3-colorability in the
bounded-degree model.

We show that, for small enough every tester for 3-
colorability must have query complexi®}(n). This is the
first linear lower bound for testing a natural graph property
in the bounded-degree model. &,/n) lower bound was
previously known.

For one-sided error testers, we also show(afn) lower
bound for testers that distinguish 3-colorable graphs from
graphs that are(1/3 — «)-far from 3-colorable, for arbi-
trarily small . In contrast, a polynomial time algorithm by
Frieze and Jerrum distinguishes 3-colorable graphs from
graphs that arel /5-far from 3-colorable.

As a by-product of our techniques, we obtain tight
unconditional lower bounds on the approximation ratios
achievable by sublinear time algorithms for Max E3SAT,
Max E3LIN-2 and other problems.

1 Introduction

A property testing algorithm for a graph propertf is
an algorithm that, given an approximation parametand
oracle access to the representation of a gr@placcepts
with probability2/3 if G has propertyP and rejects with
probability2/3 if G is e-far from every graph having prop-
erty P. There is no requirement af if G satisfies neither
condition. Graph&s and H aree-close if a representation
of H can be obtained by modifying anfraction of the rep-
resentation o€z,

The complexity of graph property testing problems is
highly dependent on the representation. In #ugacency
matrix representation, introduced in the original paper on
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graph property testing [10], two graphs arelose if they
differ in at most aboutn?/2 edges. This model is inter-
esting for studying properties of dense graphs. To study
sparse graph properties, Goldreich and Ron [11] considered
the model where a bounded-degree graph is represented by
its adjacency list In this model, the vertex degrees are
bounded by a constadtindependent on the number of ver-
ticesn. Two graphs are-close if they differ by at most
edn/2 edges.

The difference in complexity between the two models
can be striking. For example, far = 1/100, bipartite-
ness can be tested in constant time in the adjacency matrix
representation [10] but it requir€X/n) queries in the ad-
jacency list representation [11], even foe= 3.

Indeed, a wide variety of graph properties are known
to be testable in time constant in the number of vertices
(dependent only on) in the adjacency matrix representa-
tion,! while much fewer algorithms running even in sub-
linear time (let alone constant time) are known for the ad-
jacency list representation. This is particularly unfoete
considering that bounded degree graphs are more likely to
occur in settings where sublinear time testing algorithen ar
useful. Even fewer lower bounds are known for the adja-
cency list model. Apart from th@(,/n) lower bound on the
query complexity of bipartiteness (which extends via sim-
ple reductions to 3-colorability and other problems), ¢her
is anQ(n'/?) lower bound for testing acyclicity in directed
graphs [4] and arf)(y/n) lower bound for the problem
of testing strong connectivity in directed graph4], and
we are not aware of any other nontrivial query complexity
bound in this model.

In this paper, we prove a tigh(n) lower bound on
the query complexity of testing 3-colorability in bounded-
degree graphs.

The problem of 3-colorability is interesting not only as
a natural extension of bipartiteness (whose query complex-
ity was resolved in [11, 12]), but also as a canonical prob-

1For example, all graph properties recognized by finiteestat-
tomata [2] and all properties expressed by a certain fragofdirst-order
logic [1] can be tested in time dependent onlyson

2The lower bound for strong connectivity assumes that thacadicy
list representation only contains outgoing edges; on tieroband, a
constant-time algorithm exists for the representationrevt®th outgoing
and incoming edges are contained in each adjacency list [4].



lem whose complexity can be shown to be equivalent to thequery complexity ofd is at leastdin, wheren is the num-
complexity of several other problems using appropriate re- ber of vertices.

ductions. . ) ]
Notice that no graph is more than 1/3-far from being 3-

colorable, so our result applies to the full spectrum of gaps
for which the testing problem is well defined.

Goldreich, Goldwasser and Ron [10] present a tester for Furthermore, for small enough, the testing problem
3-colorability in the adjacency matrix representationttha is solvable deterministically in polynomial time with the
makes@(l/gfv‘) queries and runs i201/*) time. Alon and Frieze-Jerrum algorithm [7]. This gives a separation of the

Krivelevich [3] improve the number of queries (1 /%) testing ability of polynomial time versus (one-sided eyror
and the running time 901/ sublinear time algorithms for a natural problem.

In the bounded-degree model, a testing algorithm o )
must tell apart 3-colorable bounded-degree graphs fromAn Explicit Construction
bounded-degree graphs where every 3-coloring violates an
e-fraction of the edges. For sufficiently smallthis prob- We consider the problem of constructing graphs that
lem is NP-hard for general graphs [16]. Using the reduction are simultaneously far from being 3-colorable, and free of
from Section 5 (that we introduce for a different purpose), Small non-3-colorable subgraphs as an independently inter
this problem can be shown to be NP-hard when restricted®Sting combinatorial question. In Section 5 we giveean
to bounded-degree graphs. This provides strong evidencélicit construction ofi-regular graphs that aeefar from 3-
against the existence of polynomial-time algorithms (and colorable, yetany subgraph induced by&action of edges
consequently, sublinear time algorithms) for this prohlem 1S 3-colorable, wheré, « > 0,6 > 0 are absolute constants.
Using our reduction, together with the Polishuck-Spielman To this end, we first construct an instancet@SP (a set of
version of the PCP theorem [17], it can be shown that the CONStraints over binary variables, withvariables per con-
testing problem has query Comp|exm<n1*56) for some Straint) that i$’-fal’ from being Satisﬁable, yet eVe&yfraC'
Constant, assuming 3SAT omn variables has circuit com- tion of constraints is satisfiable (Wmh 6/, 5/ ConStantS, and
plexity gn' 7o) each variable occurring in exactly two constraints). Wathe
Goldreich and Ron [11] prove an unconditiofi(,/7) apply a reduction fronkCSP to SSAT_ and from BSA'I_' to
lower bound on query complexity for sufficiently small 3-co|or|n.g,. anloll argue that_ the reduction preserves distanc
On the positive side, Frieze and Jerrum [7] give a polyno- from satisfiability (respectively, 3-colorability) andettsat-

mial time algorithm that distinguishes between 3-cologabl Sfiability (respectively, 3-colorability) of small enobgub-
graphs and graphs that arg-far from 3-colorable. sets of the instance. The reduction fréf8SP to 3SAT is

the standard approximation-preserving reduction between

the two problems [15], while the reduction from 3SAT to

3-coloring is a new one (the new reduction is needed to pro-

Our goal is to prove that no property tester with one-sided duce a constant-degree graph).

error, given a degreé-graph withn, vertices, can look at While natural in our context, the use of an

fewer thardn entries of the adjacency list representation of approximation-preserving reduction in the explicit con-

the graph, yet reject with constant probability graphs that struction of a combinatorial object is an unusual approach,

arees-far from 3-colorable. A simple observation is that a which may be applicable to other problems.

one-sided error tester must accept whenever its “view” of

the graph is 3-colorable. In other words, it is sufficient to Lower bound for two-sided error testers

construct a graply that ise-far from 3-colorable, yet every . ,

one of its induced subgraphs 6n edges is 3-colorable. To prove a lower bound for two-sided error testers, by Yao’s
In Section 3 we give a probabilistic construction of such Principle, it is enough to produce two distributioggc.;

graphs, based on a technique due to Erd6s [6]. For every'j‘ndgf‘" over bounded-degree graphs, such that _graphs n

a > 0, there are constants= O(1/a?) andé > 0 such  Yscol are always 3-colorable, graphs @y, are typically

that somel-regular graph om vertices is(1/3—a)-far from fgr f_rom_belng 3-colorable, and th_e two distributions are in

3-colorable, yet every subgraph induced<yn edges is dlstmgwshabl_e fortesters_ of sublinear qu_ery_complexny

3-colorable. The consequence is the following result. Towards this goal, we first create two dlstr!butlons oflln-

stances of E3LIN-2D,,: andDy,,, such that instances in
Theorem 1 For everya > 0 there are constantg and D, are always satisfiable and instancesDp,, are typ-
§ > 0 such that if4 is a one-sided error tester for degrele- ically far from satisfiablé, yet the two distributions look

graphs that distinguishes 3'Co!orab|e graphs from graphs — sg3| N-2 is the problem of deciding the satisfiability of a &y of
that are (1/3 — «)-far from being 3-colorable, then the linear equations modulo 2, with three variables per eqnatio

Related results

Lower bound for one-sided error testers




the same to sublinear time algorithms with oracle accessPTAS, such as Max SAT and Max CUT? Can one achieve
to their input. We then reduce E3LIN-2 to 3SAT and then reasonably good approximation factors in sublinear time?
3SAT to 3-coloring and argue that the transformation pre- Can unconditional inapproximability results be proved?
serves satisfiability/3-colorability, as well as farnessni In Section 7 we shownconditionalinapproximability
satisfiability/3-colorability. Moreover, an oracle for a-r  results for sublinear time approximation algorithms that
duced instance can be implemented in constant time givermatch the inapproximability results proved by Hastad [13]
the original instance. for polynomial time algorithms assumirdg# N P.

In order to defineD,,; andDy,.., we first show that for Specifically, we prove that no sublinear time approxi-
everyc there is & such that there is a ESLIN-2 instanfe ~ mation algorithm can approximate Max E3SAT better than
with n variables andn equations such that any subsebof 718, Max E3LIN-2 better than 1/2, Vertex Cover better than
equations are linearly independent. We do so using a proba7/6, Max CUT better than 16/17, or Max 2SAT better than
bilistic argument. Then we defirfe,,; to be the distribution ~ 21/22.
of instances obtained by first picking an assignment to the
variables, and then setting the right-hand sidé tofbe con-
sistent with the assignment. M., we set the right-hand
side of I uniformly at random. For algorithms that look ) ) ) ) ) )
at less than a fraction of equations, the two distributions Let A’ be a collection of combinatorial objects with dis-
are identical, however instancesin,; are always satisfi- t@nce functionl : X g — [0,1]. AninstanceX € X ise-far
able and instances i, are about1/2 — O(1/,/c))-far ~ from propertyP C X if forany P € P, d(X, P) > e.
from satisfiable, except with negligibly small probability AN e-testerfor property” is a randomized algorithm that,
summary, we have a proof of the following theorem. given oracle access to an objefte A

e If X € P, acceptsX with probability at least 2/3,

2 Preliminaries and Definitions

Theorem 2 Constants), ¢, d exist such that ifd is a two-

sided error tester for degreé-graphs that distinguishes 3- o If X ise-far fromP, rejectsX with probability at least

colorable graphs from graphs that aeefar from being 3- 2/3.

colorable, then the query complexity dfis at leaston,

wheren is the number of vertices. A tester isone-sidedf the accepting probability above is
1. We are interested in testers for the following problems:

Other applications 3-colorability in bounded degree grapl(8, ¢)SAT (3CNF

) o ) satisfiability where each literal occurs in at mestiauses),
Given a graph optimization problem, one can derive a prop- 5 H3, ¢)LIN-2 (satisfiability of E3LIN-2 systems where
erty testing problem by first turning the optimization prob- o5ch variable occurs in at masequations).
lem into a decision problem. For example, in the property  \ye represent-vertex graphs with degree boutdy an
testing version of Max CUT, one is given a fractipmand a adjacency lisfc : [n] x [d] — [n]U{@}, wherefc[v, i] =
parametee and wants to distinguish graphs whose optimal , it vertex w the i-th neighbor of vertex, or & if v has
cut cuts at least a fraction of edges from graphs that are ¢oer thani neighbors. A grapli is e-far from 3-colorable

e-far from having the above property. _ ifno graph that is obtained by deletingn /2 edges of7 is
A more natural (and often equivalent) way of studying 3_qlorable.

sublinear time algorithms for graph optimization problems Similarly, we represent(3,¢)CNF formulas (resp.
is to consider algorithms that produce in output an approx- E(3 c)LIN-é systems), as a m’embership list/.. which
imation of the cost of an optimal solution. For example, pro{/ides for each variable and index) < i < g’thez‘—th
G_oIdremh, Goldwasser and Ron [10] give an algorithm run- clause (resp. equation) in whickappears, o® if v appears
ning in2P°(1/*) time that returns an estimate of the cost of i ta\ver than; clauses (resp. equations). A formula (resp.

) > < s 5
the max cut of a given graph within aditiveerroren”, system)y is e-far from satisfiable if no subformula (resp.

which is a good approximation for dense graphs. Similar subsystem) of» obtained by removinge ccn/3 clauses
results are known for other problems in dense graphs [8]. (resp. equations) is satisfiable.

Chazelle, Rubinfeld and Trevisan [5] show how to ap-
proximate within a multiplicative erraor + ¢ the cost of a L .
minimum spanning tree in a given bounded-degree graph;3 Probabilistic Constructions
the algorithm runs in timé (dws~2) whered is the maxi-
mum degree and the edge weights are integers in the range In this section we provide probabilistic constructions of
{1,...,w}. combinatorial objects (graphs and 3-hypergraphs) that wil
What about problems that can be approximated to within be used to obtain problem instances for 3-colorability and
some constant in polynomial time but that do not have a E3LIN-2 that are difficult to test.



Graphs and Hypergraphs with no Small Dense Sub-
graph

It will be somewhat more convenient to work with multi-
graphsinstead of graphs. We consider a distribuficm -
vertex multigraphgs (wheren is even) obtained as follows:
Let Cy,...,Cy be independent random perfect matchings
on the vertices ofs. The edge set af is the multiset union

of the(;, so that the multiplicity of an edge equals the num-
ber of matching€’; in which it appears. Ifu,v) € C;, we
say thaw is thei-th neighbor ofu in G.

We denote by~|s the restriction of multigrapty on ver-
tex setS C V(G). Let X be the number of edges @|s.
ThenE[Xs] = d(1§) -15. Fix a partition{S;, S5, S3} of
V(G). We are interested in bounding the probability that
this partition is1/3-close to a valid coloring of. Let
X = X51 + st + XSg'

Lemma 3 For every partition{S;, Sz, S5} of V(G) and
every constant > 0,

Pr[X < (1/6 — a)dn] < exp(—(a — o(1))?*dn).

Proof  Consider the random process . .., I4, /2 ONG,
which reveals the edges @ one by one. For a fixed
partition {S1, S2, S5}, the random variablé& determines

a Doob martingale with respect to this process. A simple

computation shows that fdr< j < dn/2,

[EX|L,...,L] - EX|L,..., L[] < 1.

By convexity, E[X] > 42=3 (this value is attained

when|S;| = |S2] = |S5] = n/3). Azuma’s inequality
yields

ln—?)

6n—1

The conclusion follows, witly = o +

- a’) dn} < exp(—a’?dn).

—3(n1—1)' u
Denote byG the graph obtained by identifying every
multiedge ofG with an ordinary edge.

Lemma 4 For any constanty > 0 there exists a constant
d such that with probabilityl — o(1) any 3-coloring of the
vertices ofG has at least1/6 — «)dn violating edges.

Proof First we show that the conclusion holds t&r The
number of tri-partitions oft’(G) is 3". By combining a
union bound with the bound from Lemma 3, it follows that
any such partition hagl /6 — «)dn violating edges il >
In3/a?.

For any pair of verticeéu, v), let M,, , indicate the event
that (u,v) is an edge of7 with multiplicity two or more.
ThenPr[M,,, = 1] = O(d/n?). By Markov's inequality,
the probability that there arélogn or more pairs(u, v)

with M, , = 1iso(1). Since no edge aff has multiplicity
more thand, it follows that| E(G)| — |E(G)| < d?logn =
o(n). Therefore the conclusion of the lemma carries over to
G. [ |
Lemma 5 For everyK > 1 there exists @& > 0 such that
with probability1 —o(1) all graphsG|s with |S| < én have
at mostK|S| edges.

Proof Suppose some sétof cardinalitys containsk s
edges(uy,vy), ..., (uks, vis). Denote byX; x,Y; i the
vertices matched to; andv;, respectively, in the matching
Cy. Then

Pr[ﬂk : Xi,k =v; /\Y;,k — ull
XpgsYpg:1<p<i—1,1<qg<d] <d/(n—2s),

since for any fixed,, the variables¥,, , andY,, , determine
the neighbors of at mo&t vertices in matching’y. It fol-
lows that

Privi,1<i<d:3k:X;,=b;ANYir = a
d Ks
<
- (n— 28)
Ks
< ((1_25)n) ‘

d
For fixeds, the setS can be chosen ifi?) ways, while the

set{(u1,v1),..., (uks, vis)} can be chosen |ﬁg§2) ways.
Therefore for some constasy,

Pr[3S,s0 < |S] < dn : |E(G|s)|K]S|]
d

: Z () ()
< ; () ( ) ((1 —d25)n) S
|7 ) ()]

It is easy to see that the contribution of sétef size less
thansg is alsoo(1). |

s%e/2
Ks

ed

(2K(1 ~29) o1)-

We define an analogous distributiahon 3-hypergraphs
(hypergraphs with multiple hyperedges where each hyper-
edge has cardinality 3) with vertices, where is a multiple
of 3. To obtain a graptif ~ H, we choosel indepen-
dent uniformly random partitions of the vertex dé{H)
into 3-hyperedges (i.e., 3-element subsets). With prébabi
ity 1 — o(1), all hyperedges off have multiplicity one. An
argument similar to the proof of Lemma 5 shows the fol-
lowing property:



Lemma 6 For every K > 1/2 there exists & > 0 such
that with probabilityl — o(1) all 3-hypergraphsH|s with
|S| < dn have at mosk | S| edges.

Hard Instances

We show the existence of graphs that are alnmigstfar
from 3-colorable, yet for somé& > 0 all their subgraphs of
sizedn are 3-colorable. Choose a multigraghaccording
to the distributiorg of Section 3, and lef’ denote the graph
obtained fromG by ignoring multiplicities. We show that

every element o must appear in at least two rows Bf
Therefore,R contains at leas|S|/3 hyperedges. Contra-
diction. ]

4 Reductions

In this section, we define a notion of reducibility be-
tween constraint satisfaction problems which preserves, u
to modification of constants, the property that a decision
problem has a sublinear testing algorithm, and we ex-

the graphG has the desired property. As in [6], we use nhibit such a reduction fronf3, k)SAT to 3-colorability in
the fact that in a minimal non-3-colorable subgraph every pounded degree graphs.

vertex has degree at least three.

Theorem 7 For everya > 0 there exists @ > 0 such
that with probabilityl — o(1), the graphG'is (1/3 — a)-far
from 3-colorable, yet all subgraphG|s with |S| < dn are
3-colorable.

Proof By Lemma 4 (with parametet/2), every tri-
partition of V(G) has at leas{1/3 — a)dn/2 violating
edges, s@ is 1/3-far from 3-colorable.

Suppose that there exists a Setf sizes < dn such that
G|s is not 3-colorable. We may assume tias a minimal
set with this property. Suppose th@ts contains a vertex
v of degree two or less (with respect@s). By the min-
imality of S, there is a 3-coloring of the gra@LS_{v}.
However, this coloring extends to a 3-coloring@fs, by
picking a color forv that does not match any of its neigh-
bors. It follows that any vertex if|s must have degree at
least 3. Therefore(:|s must contain at leasts/2 edges.
By Lemma 5 withK = 3/2, this is not possible. ]

Using the 3-hypergraph construction, we prove the exis-
tence of certain matrices that will be used as the left hand

side of E3LIN-2 instances.

Theorem 8 For everyc > 0 there exists & > 0 such that
for everyn there exists a matrid € {0,1}™*°" with n

columns andn rows, such that each row has exactly three

non-zero entries, each column has exagtynon-zero en-
tries, and every collection a¥n rows is linearly indepen-
dent.

Proof By Lemma 6, there exists &c-regular 3-
hypergraphH onn vertices such that an¥f | s with |S| <
3dn has strictly fewer tha2|S|/3 edges. Letd be the in-
cidence matrix off: The columns of4 correspond to ver-
tices of H, the rows ofA correspond to hyperedges Hf,
andA,. = 1ifand only if v € e. Suppose that there is a
setR of on rows of A (or hyperedges off) that are linearly
dependent. We may assume tlat a minimal set with this
property. LetS C V(H) denote the set of vertices incident
to hyperedges i, so that.S| < 36n. By minimality of R,

For our purposes, the following notion of reduction will
be appropriate:

Definition 9 (Gap-preserving local reduction) Let A, B
be decision problems. We say that a mappinfyis a gap-
preserving local reduction from to B if there exist univer-
sal constantsy, co > 0 such that the following properties
hold:

e If 2 is a YES-instance ofi, then ¢(x) is a YES-
instance ofB.

e If x ise-far from being a YES-instance dftheny(z)
is /¢y -far from being a YES-instance 6f

e The answer to an oracle query to(z) can be com-
puted by making, oracle queries ta.

Since we will be dealing frequently with partially sat-
isfiable constraint satisfaction problems, we introduee th
following notation:

Definition 10 ((4, 1 — ¢)-satisfiability) A constraint satis-
faction problem onn clauses ig9, 1 — ¢)-satisfiabldf any
subset of at mosim constraints is satisfiable, but no as-
signment satisfies more th@h — ¢)m constraints.

We note three easy lemmas, which will allow us to move
between various CSP formulations:

Lemma 11 Let H be an arbitrary fixed set of boolean pred-
icates on a finite number of variables. There exists a gap-
preserving local reduction from CSPs defined@rwhich
carries an instancg with n variables andn clauses into a
3CNF formula withO(n +m) variables and)(m) clauses.

Proof Itis a basic fact that an arbitrary boolean predicate
on a finite number of variables can be expressed as a 3CNF
formula, possibly with introduction of a constant number
of auxiliary variables. It is easy to check that applyingsthi
transformation to each clause ffgives a reduction which
has the claimed properties. |



Lemma 12 Gap-preserving local reductions are closed un- with ; % 5 (similarly forxg anda:{/). We fix some one-to-

der composition. one correspondence between the literal nodes and the color
class nodes for each color class (we can do so since we have
2kn nodes in each color class). Since literal nodes should
be colored only with “true” or “false”, every literal node is
connected to its corresponding noBg Since only one of

x;,T; can be true, we introduce edges, =) for all , ;.

) ) Finally, for each clause irf, we introduce a clause gadget
Lemma 13 If ¢ : A — B is a gap-preserving local reduc-  (Figure 1.b) on the literals appearing in the clause. We can
tion with distortion constants;,c; and f is a (4,1 — ¢)- do so in such a way that each literal node is used in at most
satisfiable CSP, thep(f) is a(%, 1 — =)-satisfiable CSP.  gne clause gadget since we havditeral nodes for each
literal, and each variable appears in at mostauses. Sim-
ilarly, we can have each node used in at most one clause
gadget, since the gadgets consume at mkask 2kn T
nodes. The clause gadget allows any coloring of the lit-
eral nodes with “true” or “false” other than the coloring

Proof Clearly, if ¢, are gap-preserving local reduc-
tions with distortion constants, c; andd}, ¢, respectively,
theny o ¢’ is a gap-preserving local reduction with distor-
tion constants; ¢}, cach. [ |

Proof Let f4 be a(d,1 — ¢)-satisfiable instance oA,
andfp = ¢(fa). Thatthe problenfy is =-far from satis-
fiable is immediate from the definition of a gap-preserving
local reduction. Now, letn be the number of clauses in

H i )
g;ct)r?(leesrg{; ?al?;]:sC%r;/stlﬁzrlc?ggliti/u:;rsﬁér.t.y. }%éeozlgugs ar which corresponds to an assignment where all literals are
a function of some set of clausés, ..., Cy of f4 with false (and the clause goes unsatisfied).
k < caZm = dm. Sincefa is (5,1 — e)-satisfiable, the  Theorem 14 The mappingp is a gap-preserving local re-
clauseg, ..., C}, are satisfiable, and we can extend these duction from (3, £)SAT to 3-coloring in bounded degree
clauses to a new, satisfiable instarf¢eof A by setting ev-  graphs. In particular, if f is a (6,1 — &)-satisfiable
ery clause other tha@’, ..., C}, to a satisfiable clause on (3, k)CNF formula, then the graphp(f) has degree

fresh variablesy must sendf’, into a satisfiable instance, bounded by some universal constarand the 3-coloring
and this instance contains clausgs ..., C,,. In particu- CSP ofp(f)is (£.1— < )-satisfiable.

be?
lar, the clause€’], . . ., C}, must be satisfiable. ] ) ‘ ) )
Proof It is clear by observation that the mappipgal-

We now exhibit a gap-preserving local reductio) ways produces graphs bounded by some constant degree
from (3, k)SAT to 3-coloring in bounded degree graphs. We  and that there exists a constansuch thaty converts
comment that a reduction with essentially the same proper-5 (3, k)CNF formula onn variables to a graph on at most
ties was given by Petrank in [16]. However, Petrank’s con- ., nodes. Furthermore, one can answer a query for an edge

struction does not yield a bounded degree graph, which isof ,( £) making at most one query intf, namely, for the
essential in our context. Also, our constructionis someéwha c|ause in which the queried edge is a part (if any). Wite

simpler to describe and analyze. for the number of nodes in(f), andm’ < bn’ < ben for
) the number of edges.
Construction: Let f be the (3,k)CNF formula onn Suppose that the originé, k) CNF formulais(s, 1 —¢)-

variables andn clauses to be _mapped_. First, we intro- gatisfiable. Clearly any subgraph @f f) induced byén
duce a large set of nodes which are independent of thegqges is 3-colorable — such a subgraph contains nodes “in-
clauses off which we labelD;, Ti, and F; for i = yolyed” with at mostsn clause gadgets, where a node is
1,...,2kn. The nodesD; will all assume the color cor-  inyolved with a clause gadget if it is contained in the clause
responding to the “dummy” color (this color is used as in gadget, or is a color class node corresponding to a literal
the standard 3-coloring reductioriy; to the “true” color,  node contained in the clause gadget. By definition, there ex-
and F; to the “false” color. To assure that nodes in a jsts a boolean assignment satisfying théseslauses off.
givencolor classare the same color, we introduce equal- The coloring which sets all color classes to their intended
ity gadgets (Figure 1.a) between nodBs and D; for colors and colors the literal nodes “true” or “false” as in
all (i,j) € Eakn WhereGan (Vain, Earn) is @ (2kn,d)-  this assignment satisfies these > Zm’ 3-coloring con-
expander as in Lemma 2 (similarly for the clas§ésind straints. ¢

F). To assure that nodes in distinct color classes have Npote that if we deletet edges from the expander graph

distinct colors, fori = 1,...,2kn we introduce triangles ¢, with 4 < 1, then there must remain a connected com-
{(Ds, T0), (Di, F2), (T3, F) ). . ponent of size at leagl — ~)t, for disconnecting a set of

For each variable; in f, we introducezk literal nodes  nodes with S| < 1t requires at leagt’(S)| edge deletions
x}, ..., 2F xl ... 2. Literal nodes for a particular vari- which, by the expansion property, is at legSt. Applying

able and sign should be colored identically, so we introducethis to the equality gadgets between color class nodes, we
equality constraints betweer} andz? forall1 <i,j <k see that deletion of/(2kn) edges leaves each color class



(@) x1=x2 (b) X1V x2Vx3

x1 X2

Figure 1. Gadgets for Theorem 14

with at least(1 — v)(2kn) color class nodes in a connected degree graphé& on n vertices andn edges such that ev-
component with equality constraints intact. Therefore, it ery subgraph induced by edges is 3-colorable, but any

leaves at leastl — 3v)(2kn) triples{D;, T}, F; };cs such
that the D; must be colored the same &% for i,j5 € S
(similarly for T; and F;). The disconnected tripleSare in-
volved in at mose - 3v(2kn) clause gadgets. Furthermore,
deletingy(2kn) edges modifies constraints about nodes in-
volved with at mos® - y(2kn) clauses off. Summing up,
deletion ofy(2kn) edges leaves the 3-coloring construction
for at leastm — (2 - 3v(2kn) + 2 - v(2kn)) = m — 16vkn
clauses off intact. If f is (3,1 — ¢)-satisfiable, then no
coloring of the remaining graph can be valid if

m — 16vkn > (1 —e)m

=

or, equivalentlyy < &

Changing notation so that
y'm' = (2kn)

(i.e. we have deleted a fractioyi of the edges of(f) in
the above discussion) and noting that > n, we get that

Tor "

ory < g.

Combining the conclusions of the previous two para-
graphs, we see that the graph 3-coloring problefy) is
(Z,1 - g)-satisfiable. [ |

5 Explicit Constructions

In this section, we give an explicit construction of an
infinite family of (J,1 — ¢)-satisfiable CSPs om vari-
ables andn = O(n) clauses over a fixed boolean predi-

cate. By applying the gap-preserving local reductions pre-
sented in Section 4, we achieve an explicit construction of

an infinite family of(3, £)CNF formulas om variables and

3-coloring of G has at leastm monochromatic edges. (In
the proof of Theorem 7 we used the probabilistic method to
prove only theexistencef such graphs.)

For a fixedd, we will consider 2d-ary constraints
of the form h {0,1}¢ x {0,1}¢ {0,1},
whereh(zy,...,2z4,11,...,y4) iS satisfied exactly when
¢z =%, yi+1, and we identify the booleaf, 1}
inputs with the integers 0 and 1 in the obvious way.

—

Let G(V, E) be an undirected multigraph. We writ¢v)
for the neighbor set of vertex € V, I'(v, ) for the i-th
neighbor ofv (where we index’(v) in an arbitary way),
andI'(S) for the neighbor set of a vertex-subset V.

Definition 15 ((n, d)-Expander) A multigraph G is an
(n,d)-expander if it isd-regular and if, for every subset
S c Vwith|S| < 3|V, [T(9)] = |S].

Explicit constructions of(n, d)-expanders are known
[14, 9], and we assume that we are given an infinite fam-
ily of (n, d)-expanders for some universal constént

Define the constraint satisfaction problgmon dn vari-
ables and: clauses oveh as follows: LetG(V, E) be an
(n,d)-expander. Begin by converting into a directed
multigraph G’ (V, E’) by replacing each undirected edge
(i,7) € F with two directed edge§, j), (7,7) € E’. Each
edge(i, j) € E' is identified with a boolean variable ; in
fn- One constraink is introduced for each € V, with the
predicate variables mapped to the edges incident to

fn = /\ h(xu,F(v,l)a <oy Ty T(v,d)) LT(v,1),05 - - - 7xF(v,d),v)
veV

Theorem 16 There exist constani§ e > 0 such that the

O(n) clauses with analogous properties, and of boundedCSP formulag,, are (4,1 — ¢)-satisfiable.



Proof We begin by finding: such that no subset of more

than(1 — )n constraints can be satisfied. Suppose there is

an assignment satisfying some subSedf constraints with
|S| > (1 — e)n. Then the following network flow prob-
lem is solvable: Contract the vertices corresponding to
into a single sink vertex create a source vertexwith unit
capacity edges from to every vertex inS, and interpret
the remaining edges a¥ as unit capacity edges. The as-
signment can then be interpreted ag ai)-flow of weight
greater thar(1 — ¢)n on this network. However, the cut
(t, G\t) has weight at mosisn, so this is impossible if we

1
chooses < 1

On the other hand, far < % any subses of constraints
with |S| = on can be satisfied. To see this, we define the
following network flow problem: Contract the vertices@f
corresponding to thél — §)n constraints irS to a sink ver-
text, create a source vertaxwith unit capacity edges from
s to every node inS, and interpret the remaining edges of
G as unit capacity edges. We claim that there is a flow of
weight at leastn in this system. By the max-flow/min-cut
theorem, it is enough to show that there is(agt)-cut with
weight less thamn (the cut(s, G\s) has weightyn). Let
C be an arbitrarys, t)-cut, and denote by, C; the ver-
tices of S in the partitions containing and¢ respectively.
Each node irC; incurs a cut cost of weight one due to the
unit constraint edges we added fram By the expansion
property,|I'(Cs)| > |Cs|, and each of the edges connecting
C, toT'(Cy) also incurs a cut cost of weight one. Summing
up,|C| > |Cs| + |C¢| = dn, so there must exist an flow of
weightdn in this system. Furthermore, tirgegrality prop-
erty of flows implies that we can assume the flow solution
is (0,1)-valued. Assigning this flow to the edge variables
gives a satisfying assignment to the constraintS.in W

Corollary 17 Let p3cnr be the gap-preserving local re-
duction of Lemma 11, angds;_¢,; that of Theorem 14. The
(explictly constructed) sefvs—coi(@senr(fn))}n is an
infinite family of bounded-degree grapts, on m,, edges
such that, for universal constanise > 0, every subgraph
induced byym,, edges is 3-colorable, but every 3-coloring
of G,, has at leastm,, monochromatic edges.

Proof We need only note that the 3CNF formulas
{esenr(fn)}n arein fact(3, k)CNF formulas. This is be-
cause the variable; ; corresponding to edge, j) appears
only in the constraints around verticeand;. In particular,

6 Lower Bounds
We now prove Theorems 1 and 2.

Lower Bound for One-Sided Error Algorithms

To prove Theorem 1, we observe that any testing algo-
rithm with one-sided error must accept whenever the sub-
graph it has queried is 3-colorable. In particular, when pre
sented with the graph from Theorem 7, any algorithm with
query complexity at mosin will accept with probability
one. However, this graph id /3 — «)-far from being 3-
colorable, so the algorithm cannot béla3 — a)-tester for
3-colorability.

Lower Bounds for Two-Sided Error Algorithms

Our distinguishing instances for two-sided error algarith
are based on the matrikfrom Theorem 8. We consider the
following two distributions on instances of E3LIN-2 with
n variables,cn equations, and each variable appearing in
exactly3c equations:

1. DistributionDy,, consists of instance4z = b, where
b € {0,1}°" is chosen uniformly at random.

2. Distribution D,,; consists of instancedz = Az,
wherez € {0,1}" is chosen uniformly at random.

By construction, every instance B, is satisfiable. On
the other hand, instances®y,, are far from satisfiable:

Lemma 18 For everya > 0, there is ac such that, with
probability 1 — o(1), an instance sampled frorfs,, is
(1/2 — «)-far from satisfiable.

Proof For a fixed assignment, the vectorAz — b is
uniformly distributed in{0,1}°". By a Chernoff bound,
with probability 1 — exp(—Q(a?cn)), Az — b has Ham-
ming weight at leasf1/2 — «)cn. A union bound over all
2™ possible assignments faryields the desired result, as
long asc = ©(1/a?). [ ]

Lemma 19 For everya > 0 there are constants and

0 > 0 such that every algorithm that distinguishes satis-
fiable instances of E3LIN-2 with variables and at most

¢ occurrences from instances that are/2 — «)-far from
satisfiable must have query complexity at least

Proof Consider aninstancéz = b of cn E3LIN-2 equa-

if is the number of clauses in a 3CNF representation of thetions. Obtain a subinstancé’z’ = ¥’ by choosingany

predicate, thenz; ; can appear in at mogt clauses. The
claim then follows from Lemmas 12 and 13.

subset obn equations. By Theorem 8, the rows 4f are
linearly independent. Therefore, for a uniformly random
2 € {0,1}", A’2' is uniformly distributed in{0,1}°".
It follows that the instanced’a’ = ¥ and A'z’ = A’z



are generated with the same probabilityPar, [A'z" =
b =Prp,,,[A2 =V].

Let D be any algorithm of query complexity less than
If D can decide whether a given instandée = b is satisfi-
able with any constant probability, théhhas an advantage
at distinguishing instances picked frab,; (that are al-
ways satisfiable) from instances picked fr@m,, (that are
(1/2 — «)-far from satisfiable with high probability). How-
ever, the queries ab only reveal a subinstanc&’z’ = bV’
of at mostin equations, and the two distributions are statis-
tically indistinguishable on such a subinstance. |

The canonical reduction from E3LIN-2 to E3SAT is a
gap-preserving local reduction with = ¢ = 4. This
observation immediately yields the following lower bound
for E3SAT:

Lemma 20 For everya > 0 there are constants and

0 > 0 such that every algorithm that distinguishes satis-
fiable instances of E3SAT with variables and at most
occurrences from instances that die/8 — a)-far from sat-
isfiable must have query complexity at leést

The proof of Theorem 2 now follows from the hardness
result of Lemma 20 and from the reduction from 3SAT to
3-coloring described in Section 4.

7 Approximation Algorithms

The following theorem follows directly from Lemmas 19
and 20.

Theorem 21 For every e > 0, every (1/2 + ¢)-
approximate algorithm for Max E3LIN-2 and every/8 +
¢)-approximate algorithm for Max E3SAT has query com-
plexityQ(n+m), wheren is the number of variables and

Theorem 22 For everye > 0, there are constant$, ¢ such
that every(7/6 + ¢)-approximate algorithm for Minimum
Vertex Cover in graphs of degreed has query complexity
at leastin.

Similarly, we have a linear query complexity lower
bound for every(21/22 + ¢)-approximate algorithm for
Max 2SAT, even for the restricted case where every vari-
able occurs irO(1) clauses.

Regarding Max CUT, the reduction used in [13] does
not create a bounded-degree graph, even if in the origi-
nal E3LIN-2 instance every variable occurred in a bounded
number of equations. However the randomization reduc-
tion in [18] can be used to show that evei6/17 + ¢)-
approximate algorithm for Max CUT in bounded-degree
graphs has linear query complexity.

8 Conclusions

We proved a linear query complexity lower bound for the
problem of testing 3-colorability in bounded-degree gsaph
and also linear lower bounds for other property testing and
approximation problems.

Our results are the first linear lower bounds for property
testing in the bounded-degree model for natural graph prop-
erties.

It is still open whether it is possible to distinguish 3-
colorable graphs from graphs that are, shy-far from
being 3-colorable witlv(n) queries in the bounded-degree
model; we have shown it is impossible for one-sided error
algorithms, but the question is still open for two-sidederr
algorithms.

We observed that several unconditional inapproximabil-

the special case where every variable occur®ii) equa-
tions/clauses aneh = O(n).

Indeed, Lemma 19 is the unconditional version for sub-

The results for Vertex Cover, Max CUT and Max 2SAT
are not tight, and it would be interesting to strengthen our
bounds. We mention that one can modify the bipartiteness
lower bound argument in [11] to prove that distinguishing

linear time algorithms of the hardness of approximation bipartite graphs from graph that afe/2 — «)-far from be-

proved in [13] for Max E3LIN-2. Hastad [13] then uses

approximation preserving reductions to show that the hard-

ing bipartite require$§(y/n) queries, which in turn implies
that Max CUT cannot be approximated withih/2 + ¢)

ness of Max E3LIN-2 implies hardness of approximation \yith 4(,/n) queries, and, by reductions, that Max E2SAT
results for other problems. Since the reductions used inang, for a stronger reason, Max SAT) cannot be approxi-

[13] preserve the existence of sublinear time algorithross (f
proper instance representation), we also have uncondition
inapproximability results for other problems, with respec
to sublinear time algorithms.

The standard FGLSS reduction from Max E3LIN-2 to
Vertex Cover is such that if every variable occurslil)

mated within(3/4 + ) and Vertex Cover cannot be approx-
imated within (3/2 — ¢) with o(y/n) queries. It remains
an open question to prove such stronger inapproximability
results for algorithms that makén) queries.

equations in the E3LIN-2 instance, then the graph producedREf(:"n:"nceS

by the reduction has constant degree. Therefore, the fol-

lowing result also follows from Lemma 19 (see [13] for a
calculation of the inapproximability factor).
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