
Weak Random Sources, Hitting Sets,

and BPP Simulations

�

Alexander E. Andreev

y

Andrea E. F. Clementi

z

Jos�e D. P. Rolim

x

Luca Trevisan

{

January 26, 1998

Abstract

We show how to simulate any BPP algorithm in polynomial time using a weak random

source of r bits and min-entropy r

for any > 0. This follows from a more general result

about sampling with weak random sources. Our result matches an information-theoretic lower

bound and solves a question that has been open for some years. The previous best results were

a polynomial time simulation of RP [Saks, Srinivasan and Zhou 1995] and a quasi-polynomial

time simulation of BPP [Ta-Shma 1996].

Departing signi�cantly from previous related works, we do not use extractors; instead, we

use the OR-disperser of [Saks, Srinivasan, and Zhou 1995] in combination with a tricky use of

hitting sets borrowed from [Andreev, Clementi, and Rolim 1996].

AMS Subject Classi�cation: 68Q10, 11K45.

Key Words and Phrases: Derandomization, Imperfect Sources of Randomness, Hitting Sets,

Randomized Computations, Expander Graphs.

Abbreviated Title: BPP Simulations using Weak Random Sources.

1 Introduction

Randomized algorithms are often the simpler ones to solve a given problem, or the most e�cient,

or both (see [MR95]). For some problems, including primality testing and approximation of # P-

complete counting problems, only randomized solutions are known.

The practical applicability of such randomized methods depends on the e�ective possibility for

an algorithm to access truly random bits. Since it is questionable whether truly random sources

really exist, much research has been devoted in the last decade to �nd weaker notions of randomness

that are still su�cient to run BPP algorithms in polynomial time [VV85, SV86, Vaz86, Vaz87, CG88,

Zuc90]. Several de�nitions of weak random source have been proposed in the literature, the most

general being the following [CG88, Zuc90]: for > 0, an (r; r

)-source is a random source that

�

An extended abstract of this paper appears in the Proceedings of the 38-th IEEE Symposium on Foundations of

Computer Science.

y

andreev@mntn.msk.su. University of Moscow.

z

clementi@dsi.uniroma1.it. University of Rome La Sapienza.

x

rolim@cui.unige.ch. University of Geneva.

{

trevisan@theory.lcs.mit.edu. MIT.

1

outputs a string in f0; 1g

r

and no string has probability of being output larger than 2

�r

(such

object is also called random source of min-entropy r

). An information-theoretic argument shows

that a black-box simulation of BPP using an (r; r

o(1)

)-source is impossible when r is polynomial in

the number of random bits used by the simulated algorithm.

Dispersers and Extractors

The usual method to simulate a BPP algorithm using a weak random source is as follows. Say

that, for a given input, the algorithm requires m (truly) random bits; then we ask the source r

bits (note that it is required to make only one access to the weak random) and we use them to

produce a sample space (a set of m-bit strings). Such strings are fed into the algorithm and then

the majority rule is used to decide whether to accept or reject. The procedure that computes the

sample space starting from the output of the source is independent of the algorithm that we want

to derandomize. This simulation is basically equivalent [Zuc90, Zuc96b, NZ96, SZ94, SSZ95, TS96]

to a bipartite graph G = (V;W;E) having 2

r

nodes in the left component V , 2

m

nodes in the right

component W , degree d and such that if we select a node v in the left component according to

an (r; r

)-source, and then a random neighbour of v, the induced distribution in W is �-close to

the uniform distribution over W . Such graph is a (2

r

; 2

m

; d; r

; �)-extractor. The left nodes are

seen as possible outcomes of the random source, the right nodes as possible random strings for the

algorithm to be simulated. The simulation amounts to select a node in the left side according to

the weak random source and then select as sample space the set of its neighbours. If, for some �xed

, one could achieve d and r polynomial in m, then a polynomial time simulation of BPP would

be possible using an (r; r

)-source. However, the best present construction of extractors for �xed

 > 0 and r = poly(m) has d = n

log

(k)

n

[TS96]. This implies a quasi-polynomial time simulation of

BPP. A polynomial-time simulation of BPP using weak random sources of min-entropy r

for any

�xed > 0 was one of the major open questions in the �eld.

It is not di�cult to show that to simulate RP by means of a weak random source, OR dispersers

[CW89] (from now on, we will simply call them dispersers) are su�cient. A (2

r

; 2

m

; 2

r

)-disperser is

again a bipartite graph G = (V;W;E) with parameters r, m, and d as before, but now the property

is that for any set V

0

� V of at least 2

r

vertices on the left side and any set W

0

� W of more than

2

m

=2 vertices on the right side, there is at least one edge joining V

0

and W

0

. This construction is

somewhat easier to obtain, and Saks et al. [SSZ95] give indeed a disperser with d = poly(n), for

any constant > 0, allowing for a polynomial time simulation of RP.

See [Nis96] for a complete survey on extractors, dispersers, and weak random sources.

Pseudorandom Generators and Hitting Sets

A more ambitious goal than simulating BPP with weak random sources is the deterministic sim-

ulation of BPP. Research on this subject tries to isolate reasonable complexity assumptions un-

der which deterministic simulations of randomized algorithms are possible [Y82, BM84, Nis90,

BFNW93, NW94, IW97, ACR97b].

In some cases, combinatorial objects developed in the study of weak random sources have been

used to give derandomization [NZ96]. Here we revert this connection, and use a derandomization

method to take full advantage from a weak random source.

Two basic combinatorial objects are studied in the theory of derandomization: pseudorandom

generators (whose e�cient construction immediately implies a deterministic simulation of BPP)

and hitting set generators (whose e�cient construction allows to simulate RP algorithms). Infor-

mally speaking, in the context of derandomization, pseudorandom generators play the same role

2

of extractors and hitting sets generators play that of dispersers. A recent result of Andreev et

al. [ACR97a] shows how to deterministically simulate BPP algorithms using hitting set generators.

This suggests that perhaps dispersers could be used to simulate BPP with weak random sources.

A quick �-hitting set generator (quick �-HSG) is an algorithm that, given a parameter n, �nds

in poly(n) time a set H

n

� f0; 1g

�

such that, for any �nite Boolean function f of circuit complexity

n, if Pr

x

[f(x) = 1] > � then f(a) = 1 for some a 2 H

n

1

, where the probability is taken uniformly

over f0; 1g

n

. The main technical result of [ACR97a] can be stated as follows.

Lemma 1 ([ACR97a]) For any choice of constants �; � > 0, there is a deterministic algorithm

that, given access to a quick �-HSG, and given in input any circuit C of size n returns in poly(n)

time a value D such that jPr

x

[C(x) = 1] � Dj � �, where the probability is taken uniformly over

all possible x 2 f0; 1g

n

.

Lemma 1 immediately implies the following general derandomization result.

Theorem 2 If for some � > 0 a quick �-HSG exists, then P = BPP.

Andreev et al. [ACR97a] prove Lemma 1 by constructing a set S of size poly(n) that is �-

discrepant for C, i.e. such that Pr

x2S

[C(x) = 1] approximates the value Pr

x

[C(x) = 1] up to an

additive error �. A basic ingredient is the de�nition of a discrepancy test that, given a circuit C, a

\candidate" set S and a parameter �, tests whether S is �-discrepant for C. The test also needs an

auxiliary set H in input, and, provided that H has a certain hitting property, the test is \sound",

that is if the set S is accepted, then S is �-discrepant for C. The fact that the test is sound only if

the auxiliary set H is hitting is not a major restriction | since we are assuming that a hitting set

generator exists, we can use it to generate H . Thus, proving the theorem amounts to �nd a set S

that passes the test. This task is solved in [ACR97a] by means of a rather involved (and inherently

sequential) algorithm. The algorithm indeed proves a somewhat stronger result than Lemma 1 and

has been also used in [ACR97b] in a di�erent context. For the sake of proving Lemma 1 it might

however be over-kill.

Our Results

We show how to use dispersers and weak random sources to simulate BPP in polynomial time and

to even solve a more general sampling problem.

The sampling problem we are interested in is as follows: Given oracle access to a function

f : f0; 1g

n

! f0; 1g and a weak source of randomness, we want to �nd a set S of size poly(n)

that with high probability is �-discrepant for f . It should be clear that simulating a given BPP

algorithm reduces to the above problem: the computation of a BPP algorithm on a �xed input is

an (easy to compute) function f of the outcomes of the random coins. Being able to approximate

the fraction of random coin outcomes that make f accept, allows to decide whether the algorithm

accepts or not the input.

We show that dispersers are su�cient for the above sampling problem. The starting point is the

observation that using a disperser and a weak random source it is possible to generate polynomially

many small sets S

1

; : : : ; S

k

and H

1

; : : : ; H

k

such that, with high probability, one of the S

i

's is �-

discrepant for f , and one of the H

i

's has the hitting property required by the discrepancy test (see

Theorem 21). Then, we de�ne H =

S

H

i

. Since the hitting property is monotone (adding elements

to a set cannot decrease its hitting properties), we have that H will be a hitting set with high

1

In the next section we will give a seemingly weaker (but in fact equivalent) formal de�nition.

3

probability. We can thus run the discrepancy test on the sets S

1

; : : : ; S

k

using H as the reference

hitting set. We shall then prove that, with high probability, one of the S

i

's will pass the test and

thus be �-discrepant for f as required.

The main di�erence between our method and the extractor-based one (mentioned in the begin-

ning) is that the �-discrepant set that is given in output depends on the speci�c function f that

is accessed as oracle. The source of this non-obliviousness is the selection of a good set S

j

among

the candidates S

1

; : : : ; S

k

. As a result, our sampling algorithm is not oblivious according to the

de�nition of Bellare and Rompel [BR94], however it is non-adaptive. See [G97] for de�nitions of

these notions and for a survey on sampling.

Our main result can be stated in the following way

Theorem 3 (Main Theorem) For any > 0, there exist a polynomial p and a deterministic

algorithm A such that the following holds. For any � > 0, n > 0, any (p(n=�); p(n=�)

)-source

X, and any f : f0; 1g

n

! f0; 1g, on input (�; n;X) and oracle access to f , A computes, in time

polynomial in n=�, a value D such that with probability at least 1� 2

�poly(n)

over the outcomes of

the source,

jPr

x

[f(x) = 1]�Dj � � :

Note that since the algorithm runs in polynomial time it will make poly(n=�) queries to f .

Corollary 4 For any > 0, any BPP algorithm can be simulated in polynomial time using an

(r; r

)-source.

The idea of generating candidate discrepancy sets S

1

; : : : ; S

k

and then applying the discrepancy

test to them also yields a simple proof of Lemma 1. This simpli�ed proof is presented in a prelim-

inary version of this paper [ACRT97] and also in an appendix of the �nal version of the paper of

Andreev et al. [ACR97b]. More recently, Lance Fortnow has observed that an even simpler proof

of Theorem 2 can be given by using a previous result of Lautemann [L83]. Fortnow's proof of

Theorem 2 does not use the discrepancy test. To the best of our understanding, this new proof

does not extend to the context of dispersers and weak random sources, and it seems that we still

need the discrepancy test in order to prove Theorem 3. An additional, and fairly surprising result

observed by Fortnow is that BPP can be simulated by an RP machine having oracle access to a

promise-RP problem. We present both Fortnow's results in Section 5.

Overview of the Paper

We give some de�nitions in Section 2. In Section 3 we describe the discrepancy test and its

properties. In Section 4 we prove Theorem 3. Fortnow's proof of Theorem 2 is presented in

Section 5. Section 6 is devoted to some concluding remarks.

2 Preliminaries

Unless otherwise stated, probabilities are with respect to the uniform distribution. For any positive

integer n we denote by F

n

the set of all n-ary Boolean functions f : f0; 1g

n

! f0; 1g. For a vector

a 2 f0; 1g

n

, and a function f : f0; 1g

n

! f0; 1g, we de�ne a function f

�a

: f0; 1g

n

! f0; 1g as

f

�a

(x) = f(x� a).

We say that a Boolean function f accepts x if f(x) = 1.

4

De�nition 5 (Weak random source) A probability distribution D over the set f0; 1g

r

is an

(r; r

)-source (weak random source of min entropy r

) if for any x 2 f0; 1g

r

, D(x) � 2

�r

.

For a vertex v of a graph G = (V;E) we let �(v) � V be the set of vertices that are adjacent to

v. For a subset S � V , we de�ne �(S) =

S

v2S

�(v). We give here a de�nition of dispersers which

is more convenient than that given in the Introduction to describe our results. It is easy to verify

that the two de�nitions are in fact equivalent.

De�nition 6 (Disperser) A bipartite multigraph G(V;W;E) with jV j = R and jW j = N is said

to be an (R;N; T)-disperser if for any subset S � V such that jSj � T , it holds �(S) � N=2.

De�nition 7 (Circuit complexity) For a Boolean function f : f0; 1g

n

! f0; 1g we denote by

L(f) the minimum size of a circuit computing f (here, for circuit we mean a circuit whose gates

have fan-in at most 2 and arbitrary fan-out.)

De�nition 8 (Kolmogorov Complexity) Let us �x a universal Turing machine U with alphabet

f0; 1g for programs allowing oracle queries. Given two Boolean functions f : f0; 1g

k

! f0; 1g and

g : f0; 1g

n

! f0; 1g, we de�ne the conditional Kolmogorov complexity of g given f , denoted

K

U

(gjf), as the length of the shortest program for U that evaluates g having oracle access to f .

For example, K

U

(f jf) = O(1). As usual, if we �x another universal Turing machine U

0

it holds

K

U

0

(gjf) = K

U

(gjf)+�(1). We will usually omit the subscript. See e.g. [LV90] for an introduction

to Kolmogorov complexity. In this paper we only use the obvious fact that, for any �xed f , the

number of functions g such that K(gjf) � k is at most 2

k

.

De�nition 9 (Hitting set) A (multi)set H � f0; 1g

n

is said to be �-hitting for a family of func-

tions G � F

n

if for any f 2 G with Pr

x

[f(x) = 1] > � there exists x 2 H such that f(x) = 1.

Recall that by our convention Pr

x

(�) = Pr

x2f0;1g

n

(�).

De�nition 10 (Discrepancy set) A (multi)set S � f0; 1g

n

is said to be �-discrepant for a family

of functions G � F

n

if for any f 2 G,

jPr

x2S

[f(x) = 1]�Pr

x

[f(x) = 1]j � � :

Note that if a set is �-discrepant for a family G then it is also �-hitting for G, but the converse is

not necessarily true.

The de�nition below is a slight variant of the de�nition of quick �-HSG of price O(logn) given

in [ACR97a].

De�nition 11 (Hitting Set Generator) A quick �-HSG is a polynomial-time algorithm H that,

on input a number n in unary, returns a multiset H(n) � f0; 1g

n

that is �-hitting for the set

ff : f0; 1g

n

! f0; 1g : L(f) � ng.

It may seem awkward to restrict the above de�nition to functions having circuit complexity equal

to the number of inputs. However any n-ary function of circuit complexity N can be seen as a

N -ary function of circuit complexity N whose value is independent of N�n of its inputs (this point

of view does not change the fraction of satisfying inputs as long as we consider constant fractions

as done below). As a consequence of this observation, the set H(n) returned by the HSG hits any

function of circuit complexity at most n.

Using straightforward ampli�cation, it is easy to show the following useful property of HSG's.

5

Lemma 12 ([ACR97a]) let �(n) and k(n) be polynomial-time computable functions such that

0 < �(n) < 1 and k(n) � poly(n). Then if a quick (1� �(n))-HSG exists then there exists a quick

�

1� (�((k(n) + 1) � n))

1=k(n)

�

-HSG. In particular, for any two constants 0 < �; �

0

< 1, if there

exists a quick �-HSG, then there exists a quick �

0

-HSG.

Proof: We use the standard sequential repetition method. For an input n, H

0

�rst computes

(using H) a set H � f0; 1g

(k(n)+1)�n

that is (1 � �((k(n) + 1) � n))-hitting for all the functions

g : f0; 1g

(k(n)+1)n

! f0; 1g such that L(g) � (k(n) + 1)n. Then, it generates a set H

0

� f0; 1g

n

by

\parsing" each element of H into k(n) + 1 strings of length n.

We claim that H

0

is

�

1� (�((k(n) + 1) � n))

1=k(n)

�

-hitting for functions of circuit size n. Let

f : f0; 1g

n

! f0; 1g be such that L(f) � n and

Pr

x

[f(x) = 1] > 1� (�((k(n) + 1) � n))

1=k(n)

:

Let f

k

: f0; 1g

(k(n)+1)n

! f0; 1g be the function that takes k(n) + 1 strings of f0; 1g

n

and whose

value is 1 if and only if f evaluates to one on at least one of the �rst k(n) strings. Note that

L(f

k

) � k(n)L(f) + k(n) = k(n) � (n+ 1). We have

Pr

y

[f

k

(y) = 1] = 1� (Pr

x

[f(x) = 0])

k(n)

> 1� �((k(n) + 1) � n) :

Due to its hitting property, H contains an input that satis�es f

k

and thus H

0

contains an input

that satis�es f . The main claim follows.

For the second claim, if �

0

� � then there is nothing to prove since, by de�nition, a �-HSG is

also a �

0

-HSG for any �

0

� �. If �

0

< �, then we take a large enough k such that �

0

� (1� (1��)

1=k

)

and then we use the main claim. 2

Observe that by applying the above Lemma with k(n) = poly(n), it is possible to show that, for

any 0 < � < 1, the existence of a quick (1 � 2

�n

1��

)-HSG implies to the existence of a quick

(1=poly(n))-HSG. By using random walks on expander graphs instead that simple repetition, An-

dreev et al. [ACR97b] show that, for c > 1=2, even the existence of a (1�2

�cn

)-HSG is an equivalent

condition.

3 The Discrepancy Test

In this section we describe the discrepancy test of Andreev et al. [ACR97a]. We present a slight

variation of the proof of [ACR97a] that the test is sound, and also prove a \completeness" property

of the test.

For any vector a 2 f0; 1g

n

, function f : f0; 1g

n

! f0; 1g, and set S � f0; 1g

n

, de�ne

p(a; f; S) = Pr

x2S

[f(x� a) = 1] : (1)

For any two subsets S;H � f0; 1g

n

, constant � > 0, and function f : f0; 1g

n

! f0; 1g, we de�ne

in Figure 1 a discrepancy test, denoted disc-test(f; S;H; �). In this test, the set S is tested to be

�-discrepant for f by using the auxiliary (hitting) set H .

Theorem 13 (Soundness of disc-test [ACR97a]) A constant c

1

exists such that, for any � >

0, integer n, function f : f0; 1g

n

! f0; 1g, sets S;H � f0; 1g

n

, if disc-test(f; S;H; �) = 1 and H

is �-hitting for the set of functions g such that K(gjf) � c

1

� jSj �n, then S is (�+ �)-discrepant for

f .

6

disc-test(f; S;H; �)

begin

p

min

:= minfp(a; f; S) : a 2 H [f

~

0gg;

p

max

:= maxfp(a; f; S) : a 2 H [f

~

0gg;

if p

max

� p

min

� � then return (1)

else return (0)

end

Figure 1: The discrepancy test.

Theorem 13 is the core of the results of [ACR97a]. Note that it says that a set H with a certain

one-sided pseudorandom property (the hitting property) can be used to test S for a two-sided

pseudorandom property (the discrepancy property). However H has to be hitting for a whole set

of functions while S is tested for discrepancy on a single function (i.e. f). So, roughly speaking,

the theorem trades-o� \globality" versus \two-sidedness". The version of Theorem 13 proved in

[ACR97a] requires f to be computable by a small circuit and H to be �-hitting for a family of

functions of low circuit complexity. Here we have no requirement on f and H is required to be

hitting for a set of functions directly \related" to f .

Proof: [Of Theorem 13] Let f , S = fs

1

; : : : ; s

m

g, H , � be �xed throughout the proof, and suppose

H is �-hitting for all g's with K(gjf)� c

1

mn. Let us de�ne the function bad : f0; 1g

n

! f0; 1g as

follows

bad

f;S;H

(a)

def

= bad(a) =

(

0 if p

min

� p(a; f; S) � p

max

;

1 otherwise.

where p

min

and p

max

are as de�ned in Figure 1.

Claim 14 K(badjf) � mn + 2 logm+O(1).

Proof: We observe that bad can be computed with the pseudo-code depicted in Figure 2.

Let us bound the length of such a program. All the elements of S have to be de�ned explicitly,

and this can be done using mn bits; p

min

and p

max

have to be de�ned too, and since they are

integral multiples of 1=m, logm bits are su�cient to encode each of them. The rest of the program

has constant length. We can conclude that the total length of the program is mn+ 2 logm+O(1).

2

We �x c

1

large enough so that, using the hypothesis of the theorem, H is �-hitting for bad.

Claim 15 Pr

a2f0;1g

n

[bad(a) = 1] � �.

Proof: Assume, by contradiction, that Pr

a2f0;1g

n

[bad(a) = 1] > �, then by the hitting property

of H , there exists some a 2 H such that bad(a) = 1, which is impossible by de�nition of bad, p

min

and p

max

(as for any a 2 H , we have p

min

� p(a; f; S)� p

max

). 2

Let E [p(a; f; S)] be the average of p(a; f; S) over all the choices of a 2 f0; 1g

n

.

Claim 16 E [p(x; f; S)] = Pr

x

[f(x) = 1].

7

function bad(a)

constants

p

min

, p

max

, m;

s

1

, . . . , s

m

;

begin

count := 0;

for i := 1 to m do

count := count + f(a� s

i

);

if count > mp

max

or count < mp

min

then

return (1)

else

return (0)

end.

Figure 2: How to compute bad. The algorithm has oracle access to f . It �rst computes the number

of 1's of f(a� s

i

) for i = 1; : : : ; m, and then decides whether to accept or reject by comparing this

number with p

min

and p

max

.

Proof:

E [p(x; f; S)] = Pr

x2f0;1g

n

; y2S

[f(x� y) = 1]

=

1

jSj

X

y2S

Pr

x

[f(x� y) = 1]

=

1

jSj

X

y2S

Pr

x

[f(x) = 1]

= Pr

x

[f(x) = 1] :

2

From Claim 15 we have the following inequalities (where the �rst term is due to a's for which

bad(a) = 0 and the second term is due to the rest):

E [p(a; f; S)]� (1� �) � p

max

+ � � 1 � p

max

+ � (2)

E [p(a; f; S)]� (1� �) � p

min

� p

min

� � (3)

Recall that whenever the test accepts, p

max

� p

min

� �. Also, by de�nition,

p

min

� p(0; f; S) = Pr

x2S

[f(x) = 1] � p

max

:

By Claim 16 and Eq. 2, we obtain

Pr

x

[f(x) = 1]�Pr

x2S

[f(x) = 1] � (p

max

+ �)� p

min

� � + �

and, similarly,

Pr

x2S

[f(x) = 1]�Pr

x

[f(x) = 1] � p

max

� (p

min

� �) � �+ � :

8

Thus, S is indeed (�+ �)-discrepant for f , and Theorem 13 follows. 2

We now give a su�cient condition for disc-test to accept.

Theorem 17 (Completeness of disc-test) If S is (�=2)-discrepant for the set ff

�a

: a 2

f0; 1g

n

g, then disc-test(f; S;H; �) = 1, for any set H � f0; 1g

n

.

Proof: Fix H � f0; 1g

n

and let a

1

(respectively, a

2

) be a point where p

min

= p(a

1

; f; S) (resp.

p

max

= p(a

2

; f; S)).

p

min

= Pr

x2S

[f

�a

1

(x) = 1]

� Pr

x

[f

�a

1

(x) = 1]� �=2

= Pr

x

[f(x) = 1]� �=2 :

Where the �rst inequality is due to the discrepancy property of S. Similarly, we have

p

max

= Pr

x2S

[f

�a

2

(x) = 1]

� Pr

x

[f

�a

2

(x) = 1] + �=2

= Pr

x

[f(x) = 1] + �=2 :

and thus p

max

� p

min

� �. 2

4 Proof of Theorem 3

The starting point of our proof is the following easy observation: If we have a set I � f0; 1g

N

such that Pr

x

[x 2 I] > 1=2, then using a weak random source and the dispersers of [SSZ95], we

can generate a polynomial-sized (in N) set of vectors x

1

; : : : ; x

k

such that, with high probability,

fx

1

; : : : ; x

k

g \ I 6= ;. This is formalized in Corollary 19 below.

A naive way of using this fact would be to take the set I as the family of �-discrepant sets

S for f of size m. For large enough m (m = O(1=�

2

) would su�ce) the set I will be such that

Pr

S�f0;1g

m [S 2 I] > 1=2 and so we can use the weak random source and the disperser to generate

a family of sets S

1

; : : : ; S

k

such that, with high probability, one of them is �-discrepant for f .

But now the problem is that we are not able to recognize which of these sets has the discrepancy

property (note that an e�cient Las Vegas algorithm to test the discrepancy property would imply

ZPP = BPP). Theorem 13 gives indeed a way to test for discrepancy, provided that we have a

hitting set at hand.

We thus de�ne I � f0; 1g

(m+M)�n

as the family of pairs of sets (H;S) such that H has M

elements and the hitting property as in the hypothesis of Theorem 13 and S has m elements and

the discrepancy property as in the hypothesis of Theorem 17. As shown in Lemma 20 below, for

an appropriate choice of m and M , the set I is such that Pr

(H;S)

[(H;S) 2 I] > 1=2. Using the

weak random source we can thus obtain a set of pairs (H

1

; S

1

); : : : ; (H

k

; S

k

) such that, for some

j, the set S

j

has the required discrepancy property and H

j

the required hitting property (with

high probability). The next important observation is that the hitting property is monotone, that

is, if a set H has a certain hitting property, and J is any set, then H [J has at least the same

hitting property of H (the reader may note that the discrepancy property is not monotone). As a

consequence, the set

S

i

H

i

has (with high probability) the hitting property required by Theorem 13.

We start by quoting the disperser construction of Saks, Srinivasan, and Zhou.

9

Theorem 18 (Construction of dispersers [SSZ95]) For any 0 < � < � � 1, for any su�-

ciently large r, and for any 2

r

�

� T � 2

r

, there exists an e�cient construction of a (2

r

; 2

r

�

; T)-

disperser G = (V;W;E) of degree poly(r).

In the previous theorem, by \e�cient construction" we mean the existence of an algorithm that for

any vertex of V �nds its neighbours in time poly(r).

Corollary 19 For any choice of constants 0 < < 1 and c > 0 there exist a polynomial p and

an algorithm A such that the following property holds. For any n > 0, any set I � f0; 1g

n

with

jI j > 2

n�1

, and any (p(n); p(n)

)-source X, algorithm A, on input (n;X), outputs a set C � f0; 1g

n

of size poly(n

c=

) such that

Pr[C \ I = ;] � 2

�n

c

where the probability is taken over the outcomes of the source.

We will use Corollary 19 by taking I as the set of pairs (S;H) such that S has a certain discrepancy

property and H has a certain hitting property. Observe that algorithm A computes the set of

\candidates" C without \knowing" which set I has been �xed.

Proof: [Of Corollary 19] Fix constants � and � such that 0 < � < � < and n

c�

� n

� n

�

. Let

r = n

1=�

. Consider a (2

r

; 2

n

; 2

r

�

)-disperser G = (V;W;E), that can be e�ciently constructed as

in Theorem 18. We identify V with f0; 1g

r

and W with f0; 1g

n

. Let B � V be the set of \bad"

vertices v such that �(v) � W � I . We claim that jBj < 2

r

�

: otherwise we reach a contradiction

since, by de�nition of disperser, we would have j�(B)j � 2

n

=2, while jW � I j < 2

n

=2. Let us select

an element v of V using an (r; r

)-source, and let C be the set of its neighbours. The probability

that we picked a bad vertex v 2 B is at most 2

r

�

� 2

�r

= 2

n

�=�

�n

=�

� 2

�n

c

. On the other hand,

if v 62 B, then C \ I 6= ;; the corollary thus follows. 2

As a preparation to using Corollary 19, we show that, for a randomly chosen pair of sets (S;H)

of su�ciently large sizes, with high probability S has a certain discrepancy property and H has a

certain hitting property.

Lemma 20 There exists two constants c

2

and c

3

such that for any � > 0, n > 0, f : f0; 1g

n

!

f0; 1g, c > 0 and for m = c

2

n=�

2

and M = c

3

cmn=�, for a randomly chosen element (v; u) (where

v 2 f0; 1g

Mn

and u 2 f0; 1g

mn

) the following holds with probability larger than 1=2:

1. v, regarded as a multiset of f0; 1g

n

of size M , is �=2-hitting for the set of functions g such

that K(gjf)� cmn

2. u, regarded as a multiset of f0; 1g

n

of size m, form a set that is �=4-discrepant for ff

�a

: a 2

f0; 1g

n

g.

Proof: It su�ces to prove that each event holds with probability larger than 3=4.

Regarding the �rst event, the number of functions g 2 F

n

such that K(gjf) � cmn is clearly at

most 2

cmn

. If one such g has Pr

x

[g(x) = 1] � �=2, then the probability that M randomly chosen

elements from f0; 1g

n

do not hit g is at most

(1� �=2)

M

� e

��M=2

:

10

Since M = c

3

cmn=�, it follows that, for an appropriate choice of c

3

, the probability that all the

functions g are hit is at least

1� 2

cmn

e

��M=2

> 3=4 :

For the second claim, observe that a set of m randomly chosen elements from f0; 1g

n

is not

�=4-discrepant for a given function with probability at most 2

�
(m�

2

)

(this follows from the Cherno�

bound). Since

jff

�a

: a 2 f0; 1g

n

gj � 2

n

;

we have that the probability that a randomly chosen set of m =

1

�

2

c

2

n elements of f0; 1g

n

is not

�=4-discrepant for ff

�a

: a 2 f0; 1g

n

g is at most

2

n

� 2

�
(m�

2

)

� 1=4

for an appropriate choice of c

2

. 2

The next theorem gives a method to generate (with high probability) a hitting set and a sequence

of candidates for the discrepancy test by using the output of a weak random source.

Theorem 21 For any > 0, there exist a polynomial p and an algorithm which for any � > 0,

c > 0, n > 0, and (p(cn=�); p(cn=�)

)-source X, given in input (�; c; n;X) and having oracle access

to a function f : f0; 1g

n

! f0; 1g, computes, in time polynomial in n=�, sets H;S

1

; : : : ; S

k

� f0; 1g

n

such that the following holds with probability at least 1� 2

�poly(n)

:

1. jS

1

j = jS

2

j = � � �= jS

k

j.

2. H is �=2-hitting for the set of functions g such that K(gjf) � cjS

1

jn;

3. for some j 2 f1; : : : ; kg, S

j

is �=4-discrepant for the set of functions ff

�a

: a 2 f0; 1g

n

g.

We will use Theorem 21 by taking c as the constant c

1

introduced in the statement of Theorem 13

(Soundness of disc-test).

Proof:[Of Theorem 21] Let us apply Corollary 19 to the set I of binary strings (u; v)'s satisfying

Properties 1 and 2 in Lemma 20. Then we can use a weak random source to generate sets S

1

; : : : ; S

k

and H

1

; : : : ; H

k

such that, with probability at least 1�2

�poly(n)

, for some j, the set S

j

(respectively,

H

j

) has the required discrepancy (respectively, hitting) property stated in Item 2 (respectively, 1)

of Lemma 20. Since the hitting property is monotone we also have that, with at least the same

probability, H =

S

j

H

j

is �=2-hitting for the set of functions g with K(gjf) � cjS

1

jn. 2

We are now ready to prove Theorem 3.

Proof: [Of Theorem 3] We generate a setH and sets S

1

; : : : ; S

k

as in Theorem 21. With probability

at least 1� 2

�poly(n)

these sets satisfy Properties 1� 3 of Theorem 21. From this point we assume

that this is the case. We then run disc-test(f; S

i

; H; �=2) for i = 1; : : : ; k and we return S

j

where

j is the smallest index such that disc-test(f; S

j

; H; �) accepts. From Theorem 17 (Completeness

of disc-test) and Condition 3 of Theorem 21 we have that at least one such index exists, and from

Theorem 13 (Soundness of disc-test) we have that the selected set is �-discrepant for f . We then

output D = Pr

x2S

[f(x) = 1]. 2

11

5 A New Proof of Theorem 2 and More (by L. Fortnow)

In this section we will present a simple proof of Theorem 2 due to Lance Fortnow. We �rst have

to introduce some new notation.

For a set S and a property � we denote by 9

+

x 2 S:�(x) the statement \at least half the

elements of S have property �." A promise problem [ESY84] is a pair of disjoint sets of strings

(Y;N). An algorithm A solves a promise problem (Y;N) if A accepts any element of Y and rejects

any element of N . Languages can be seen as a special case of promise problems where N is the

complement of Y . We denote by prRP the promise version of the class RP. That is, a promise

problem (Y;N) belongs to prRP if and only if there is a polynomial time algorithm A(�; �) and a

polynomial p(�) such that for any x of length n

x 2 Y) 9

+

y 2 f0; 1g

p(n)

:A(x; y) = 1

x 2 N) 8y 2 f0; 1g

p(n)

:A(x; y) = 0

We will use the following result of Lautemann [L83] (that is an improvement on a previous result

by Sipser [S83]).

Theorem 22 (Lautemann [L83]) If L 2 BPP then there exists a polynomial time computable

Boolean function A(�; �; �) and two polynomials p(�) and q(�) such that for any x of lenght n

x 2 L) 9

+

y 2 f0; 1g

p(n)

:8z 2 f0; 1g

q(n)

:A(x; y; z) = 1

x 62 L) 8y 2 f0; 1g

p(n)

:9

+

z 2 f0; 1g

q(n)

:A(x; y; z) = 0

It has been observed by Lance Fortnow that Theorem 22 implies that BPP � RP

prRP

, where

we denote by RP

prRP

the class of languages that are decidable by RP oracle machines having access

to a prRP oracle.

Theorem 23 (Fortnow) BPP � RP

prRP

.

Proof: Let L be a BPP language, and let A, p and q be as in Theorem 22. Consider the following

promise problem (Y;N):

Y = f(x; y) : jyj = p(jxj)^ 9

+

z 2 f0; 1g

q(n)

:[A(x; y; z) = 0]g

N = f(x; y) : jyj = p(jxj)^ 8z 2 f0; 1g

q(n)

:A(x; y; z) = 1g

By de�nition (Y;N) 2 prRP. In Figure 3 an RP oracle algorithm is described that solves L by using

one query to (Y;N).

We now prove the correctness of the algorithm. If x 2 L, then for at least half the choices of y

we have that (x; y) 2 N , thus the algorithm accepts with probability at least half. If x 62 L, then

for any y we have (x; y) 2 Y , so the algorithm accepts with probability 0. 2

Theorem 2 follows from Theorem 23, since it is easy to see that if a �-HSG exists for some

constant 0 < � < 1 then any RP problem and any prRP promise problem is solvable in P.

12

input : x;

begin

Pick a random y 2 f0; 1g

p(jxj)

;

Ask the oracle query (x; y);

if the oracle answers YES then reject

else accept;

end.

Figure 3: The RP

prRP

algorithm solving a generic BPP problem.

6 Conclusions

We have demonstrated how to simulate BPP algorithms in polynomial time using weak random

sources of r bits and min-entropy r

for any > 0.

The main novelty in our result has been the use of dispersers in a context where extractors

seemed to be necessary. Extractors have other applications besides the use of weak random sources

(see, e.g., [Nis96]). It could be the case that techniques similar to ours can give stronger results

or simpli�ed proofs in these other applications as well. It remains an open question whether it is

possible, for any > 0 and any m, to e�ciently construct a (2

r

; 2

m

; d; r

; 1=7)-extractor with r and

d polynomial in m. Such a construction would provide an alternative proof of the main result of

this paper and would have other interesting applications.

We also emphasize that our simulation runs in NC. This is due to the parallel nature of our con-

struction and to the fact that it is possible to give an NC construction of the SSZ-dispersers [SSZ97].

Thus, our method provides also an e�cient simulation of BPNC algorithms using weak random

sources.

Likewise, the proof of Lemma 1 as appeared in a preliminary version of this paper [ACRT97],

as well as the proof of Theorem 2 described in Section 5, implies an NC simulation of randomized

algorithms when both the algorithm and the hitting set are given as oracles. In contrast, the proof

of Lemma 1 appeared in [ACR97b] seems to be inherently sequential. Andreev et al. [ACR97b]

have recently used the NC proof of Theorem 2 in order to provide su�cient conditions (in terms of

worst-case circuit complexity) for NC = BPNC.

Our main result (Theorem 3) can be generalized to the case where the function f that we want

to sample is not Boolean but takes real values in the range [0; 1]. The proof of Theorem 3 contained

in this paper can be easily generalized to the case of such functions. We choose however to state

and prove only the case of Boolean functions since proofs are cleaner and since, as proved in [G97],

sampling real-valued functions is reducible to sampling Boolean functions. We can thus get the

following result as a corollary of Theorem 3 and of [G97, Theorem 5.5].

Corollary 24 For any > 0, there exist a polynomial p and a deterministic algorithm A such that

the following holds. For any � > 0, n > 0, any (p(n=�); p(n=�)

)-source X, and any f : f0; 1g

n

!

[0; 1], on input (�; n;X) and oracle access to f , A computes, in time polynomial in n=�, a value

~

f

such that with probability at least 1� 2

�poly(n)

over the outcomes of the source,

j

�

f �

~

f j � �

where

�

f = 2

�n

P

x

f(x) is the average of f .

13

Acknowledgments

We are grateful to Oded Goldreich for several valuable comments and suggestions on preliminary

versions of this paper. In particular, the use of a counting argument �a la Kolmogorov is due to

Oded. We thank Lance Fortnow for his permission to mention his results in this paper. We thank

Madhu Sudan and Avi Wigderson for helpful discussions on Fortnow's result, and Michael Saks,

Aravind Srinivasan and Shiyu Zhou for showing us that OR-dispersers can be obtained by an NC

construction, and for other helpful conversations.

References

[ACR97a] A.E. Andreev, A.E.F. Clementi, and J.D.P. Rolim. A new general de-randomization

method. Journal of the ACM, to appear, 1997. Preliminary version in Proc. of ICALP'96.

[ACR97b] A.E. Andreev, A.E.F. Clementi, and J.D.P. Rolim. Worst-case hardness su�ces for

derandomization: A new method for hardness vs randomness trade-o�s. In Proceedings

of the 24th International Colloquium on Automata, Languages and Programming, pages

177{187. LNCS 1256, Springer-Verlag, 1997.

[ACRT97] A.E. Andreev, A.E.F. Clementi, J.D.P. Rolim, and L. Trevisan. Weak random sources,

hitting sets, and BPP simulations. In Proceedings of the 38th IEEE Symposium on

Foundations of Computer Science, pages 264-272, 1997.

[BFNW93] L. Babai, L. Fortnow, N. Nisan, and A. Wigderson. BPP has subexponential time sim-

ulations unless EXPTIME has publishable proofs. Computational Complexity, 3(4):307-

318, 1993.

[BM84] M. Blum and S. Micali. How to generate cryptographically strong sequences of pseudo-

random bits. SIAM Journal of Computing, 13(4):850-864, 1984. Preliminary version in

Proc. of FOCS'82.

[BR94] M. Bellare and J. Rompel. Randomness-e�cient oblivious sampling. In Proceedings of

the 35th IEEE Symposium on Foundations of Computer Science, pages 276{287, 1994.

[CG88] B. Chor and O. Goldreich. Unbiased bits from sources of weak randomness and proba-

bilistic communication complexity. SIAM Journal on Computing, 17(2):230{261, April

1988.

[CW89] A. Cohen and A. Wigderson. Dispersers, deterministic ampli�cation, and weak random

sources. In Proceedings of the 30th IEEE Symposium on Foundations of Computer

Science, pages 14{19, 1989.

[ESY84] S. Even, A. Selman, and Y. Yacoby. The complexity of promise problems with applica-

tions to public-key cryptography. Information and Control, 2:159{173, 1984.

[G97] O. Goldreich. A sample of samplers | A computational perspective on sampling. Elec-

tronic Colloquium on Computational Complexity TR97-020, 1997.

[IW97] R. Impagliazzo and A. Wigderson. P= BPP if E requires exponential circuits: Deran-

domizing the XOR lemma. In Proceedings of the 29th ACM Symposium on Theory of

Computing, pages 220-229, 1997.

14

[L83] C. Lautemann. BPP and the Polynomial Hierarchy. Information Processing Letters,

17:215-217, 1983.

[LV90] M. Li and P. Vitany. Kolmogorov complexity and its applications. In J. van Leeuwen,

editor, Handbook of Theoretical Computer Science, Volume A, pages 187{254. Elsevier,

1990.

[MR95] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press,

1995.

[Nis90] N. Nisan. Using Hard Problems to Create Pseudorandom Generators. MIT Press, 1990.

ACM Distinguished Dissertations.

[Nis96] N. Nisan. Extracting randomness: How and why. In Proceedings of the 11th IEEE

Conference on Computational Complexity, pages 44{58, 1996.

[NW94] N. Nisan and A. Wigderson. Hardness vs randomness. Journal of Computer and System

Sciences, 49:149{167, 1994. Preliminary version in Proc. of FOCS'88.

[NZ96] N. Nisan and D. Zuckerman. Randomness is linear in space. Journal of Computer and

System Sciences, 52(1):43{52, 1996. Preliminary version in Proc. of STOC'93.

[S83] M. Sipser. A complexity theoretic approach to randomness. In Proceedings of the 15th

ACM Symposium on Theory of Computing, pages 330{335, 1983.

[SSZ95] M. Saks, A. Srinivasan, and S. Zhou. Explicit dispersers with polylog degree. In Pro-

ceedings of the 27th ACM Symposium on Theory of Computing, pages 479{488, 1995.

[SSZ97] M. Saks, A. Srinivasan, and S. Zhou. Personal communication, March 1997.

[SV86] M. Santha and U. Vazirani. Generating quasi-random sequences from slightly random

sources. Journal of Computer and System Sciences, 33:75{87, 1986.

[SZ94] A. Srinivasan and D. Zuckerman. Computing with very weak random sources. In

Proceedings of the 35th IEEE Symposium on Foundations of Computer Science, pages

264{275, 1994.

[TS96] A. Ta-Shma. On extracting randomness from weak random sources. In Proceedings of

the 28th ACM Symposium on Theory of Computing, pages 276{285, 1996.

[Vaz86] U. Vazirani. Randomness, Adversaries and Computation. PhD thesis, University of

California, Berkeley, 1986.

[Vaz87] U. Vazirani. E�ciency considerations in using semi-random sources. In Proceedings of

the 19th ACM Symposium on Theory of Computing, pages 160{168, 1987.

[VV85] U. Vazirani and V. Vazirani. Random polynomial time is equal to slightly random poly-

nomial time. In Proceedings of the 26th IEEE Symposium on Foundations of Computer

Science, pages 417{428, 1985.

[Y82] A.C. Yao. Theory and applications of trapdoor functions. In Proceedings of the 23rd

IEEE Symposium on Foundations of Computer Science, pages 80-91, 1982.

15

[Zuc90] D. Zuckerman. General weak random sources. In Proceedings of the 31st IEEE Sympo-

sium on Foundations of Computer Science, pages 534{543, 1990.

[Zuc96a] D. Zuckerman. Randomness-optimal sampling, extractors and constructive leader elec-

tion. In Proceedings of the 28th ACM Symposium on Theory of Computing, pages 286{

295, 1996.

[Zuc96b] D. Zuckerman. Simulating BPP using a general weak random source. Algorithmica,

16(4/5):367{391, 1996. Preliminary version in Proc. of FOCS'91.

16

