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Abstract. In this paper we study the problem of computing approx-

imate vertex covers of a graph on the basis of partial information and

we consider the distributed decision-making and the communication com-

plexity frameworks. In the �rst framework we do not allow communica-

tion among the processors: in this case, we show an optimal algorithm

whose performance ratio is equal to p where p is the number of proces-

sors. In the second framework two processors are allowed to communicate

in order to �nd an approximate solution: in this latter case, we show a

linear lower bound on the communication complexity of the problem.

1 Introduction

The minimum vertex cover (MVC) problem consists of �nding, given a graph

G, a minimum cardinality set of nodes V

0

such that, for any edge (u; v), either

u 2 V

0

or v 2 V

0

. This is a well-studied problem which appeared in the �rst list of

NP-complete problems presented by Karp [10]. A straightforward approximation

algorithm, based on the idea of a maximalmatching, was successively developed

by Gavril (according to [5]) with a performance ratio no greater than 2. Several

other approximation algorithms are presented in the lecture notes of Motwani

[13]. In this paper we analyse the complexity of �nding approximate solutions

for the MVC problem under two basic frameworks.

In the �rst one, we study this problem as one of distributed decision-making

with incomplete information [4, 15, 16, 17], that is, we assume that the vertex

cover is chosen by independent processors, each knowing only a part of the

graph and acting in isolation. In particular, we assume that the adiacency list

of each node of the graph is known by only one processor which has to decide

whether the node should belong to the vertex cover. We then want to develop

?
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distributed algorithms that always produce feasible solutions (that is, vertex

covers) and achieve, in the worst case, a reasonable performance ratio (that is,

the ratio of the cardinality of the solution computed by the algorithm to the

optimum cardinality should be as small as possible). In Sect. 2 we show that a

simple double-matching algorithm which essentially performs Gavril's algorithm

�rst on the `bridge' edges and then on the `inner' edges achieves a performance

ratio of p where p is the number of processors. We also show, by means of a

quite involved counting technique, that this algorithm is optimal, that is, no

distributed algorithm can achieve a ratio smaller than p. These results �t into a

more general context in which an optimization graph problem has to be solved in

a distributed fashion and neither a centralized control nor a complete information

are available. Moreover, it has been argued that this kind of results `can be

seen as part of a larger project aiming at an algorithmic theory of the value of

information' [17]. Intuitively, this theory should allow to compare in terms of

performance ratios two di�erent information regimes, that is, two di�erent ways

of distributing the input among the processors.

In the second framework, instead, we study the communication complexity

of the MVC problem. In standard communication complexity, two processors

interact in order to compute a function f of their respective inputs x and y. The

question is: how much information do the two processors need to exchange to

correctly compute the value f(x; y)? The minimumnumber of bits that must be

communicated is the deterministic communication complexity of f . This com-

plexity measure was introduced by Yao [22] and has been shown to be tightly

related to time-area tradeo�s in VLSI [1, 7, 8, 11, 12, 19, 21], circuit complexity

[9], and combinatorial optimization [20]. It has also been studied for its own sake

as an interesting model of computation. Indeed, non-deterministic, probabilis-

tic, and alternating variants have been considered and several complexity classes

analogous to the more notorius ones in Turing machine complexity have been

de�ned [2, 14, 18]. In this paper we consider the communication complexity of

computing, for any graph G and for any rational � > 1, a vertex cover for G whose

performance ratio is smaller than �. In particular, we assume that � is known by

both processors and the adiacency list of each node of G is known by only one

processor. In Sect. 3 we prove that the communication complexity of this func-

tion is at least (1�H(8(��1)))n=8 where H(x) = �(x logx+(1�x) log(1�x))

is the entropy of x and n denotes the number of nodes of the graph. The proof is

based on an interesting relation with the area of error-correcting codes. We also

observe that in the case of planar graphs n logn bits are su�cient to compute

an optimum solution so that, for these graphs, our lower bound is not far from

being tight.

2 MVC and distributed decision-making

Suppose that a graph G is described by the n adjacency lists of its n nodes.

Given p processors with p � 2, the ith processor knows the adjacency lists of

a subset V

i

of nodes (without loss of generality, we shall assume that, for any i



and j, V

i

\ V

j

= ;). Let G

i

be the subgraph of G induced by the set of edges

(u; v) such that either u or v belongs to V

i

.

A distributed decision algorithm A is an algorithm which, for any graph G

and for any i, on the basis of the subgraph G

i

produces a subset A(G

i

) of V

i

such that A(G) =

S

p

i=1

A(G

i

) is a vertex cover of G. Moreover, let opt(G) be

the cardinality of a minimum vertex cover for G. The performance ratio of A is

R(A) = max

G

jA(G)j

opt(G)

:

Theorem1. A distributed decision algorithm A exists whose performance ratio

is at most p.

Proof. Consider the following algorithm where the edges are supposed to be

lexicographically ordered.

begin

A(G

i

) := ;; B

i

:= ;;

for each edge (u; v) such that u 2 V

i

and v 62 V

i

do

if u 62 A(G

i

) and v 62 B

i

then

begin

A(G

i

) := A(G

i

) [ fug;

B

i

:= B

i

[ fvg;

end;

for each edge (u; v) such that u; v 2 V

i

do

if u 62 A(G

i

) and v 62 A(G

i

) then

A(G

i

) := A(G

i

) [ fu; vg;

end.

Let A

1

(G

i

) and A

2

(G

i

) be the set of nodes included in A(G

i

) during the

�rst and the second for instruction, respectively. Clearly, all edges `seen' by

processor P

i

are covered by the set A

1

(G

i

) [ A

2

(G

i

) [ B

i

. Then, in order to

prove that A(G) is a vertex cover for G it su�ces to show that, for any i,

B

i

� A

1

(G) =

S

p

k=1

A

1

(G

k

). The proof is by induction on the number b of

bridge edges, that is, edges whose extremes are known by di�erent processors

(observe that each B

i

contains only extremes of bridge edges). If b = 0, then

the proof is trivial. Suppose that we have b + 1 bridge edges and that (u; v) is

the last of these edges in the lexicographic order with u 2 V

i

and v 2 V

j

. Let

A

1

(G

0

i

), B

0

i

, A

1

(G

0

j

), and B

0

j

be the sets computed by the algorithm on input

G

0

= (V;E � (u; v)). By induction hypothesis, B

0

i

; B

0

j

� A

1

(G

0

) =

S

p

k=1

A

1

(G

0

k

).

We shall now prove that B

i

� A

1

(G) (the proof for B

j

is similar). To this aim,

we distinguish the following two cases.

1. u 2 A

1

(G

0

i

) _ v 2 B

0

i

: in this case B

i

= B

0

i

� A

1

(G

0

) � A

1

(G).

2. u 62 A

1

(G

0

i

)^v 62 B

0

i

: in this case B

i

= B

0

i

[fvg and u 62 B

0

j

(since u 62 A

1

(G

0

i

)

and B

0

j

� A

1

(G

0

)). If v 2 A

1

(G

0

j

) then, clearly, B

i

� A

1

(G

0

) � A

1

(G),

otherwise v will be put into A

1

(G

j

) when considering edge (u; v) so that

B

i

� A

1

(G).



We have thus shown that A(G) is a feasible solution. In order to prove that its

performance ratio is at most p, let n

k

=

P

p

i=1

jA

k

(G

i

)j for k = 1; 2. Clearly, an

index i must exist such that jA

1

(G

i

)j � n

1

=p. This set A

1

(G

i

) then corresponds

to a set of at least n

1

=p disjoint edges. Moreover, the set

S

p

i=1

A

2

(G

i

) corresponds

to another set of n

2

=2 disjoint edges. It is also clear that the union of these

two sets is still a set of disjoint edges. That is, G contains a matching of at

least n

1

=p + n

2

=2 edges. Thus, any vertex cover for G must contain at least

n

1

=p+ n

2

=2 � (n

1

+ n

2

)=p nodes, that is,

jA(G)j

opt(G)

�

n

1

+ n

2

(n

1

+ n

2

)=p

= p:

We can conclude that the performance ratio of A is at most p. ut

In order to prove that the result of the previous theorem is tight, let us

�rst show that, for any distributed decision algorithm A, R(A) � 2. Let K

m;n

i;j

denote the instance in which the complete bipartite graph K

m;n

with vertex

classes V

1

and V

2

is distributed in the following way: V

1

is assigned to processor

P

i

, V

2

is assigned to processor P

j

, and all other processors know nothing. Then,

for any algorithm A, either P

i

or P

j

has to choose all its nodes when running

algorithmA with inputK

m;n

i;j

(otherwise, an uncovered edge exists). Without loss

of generality, we can assume that P

i

chooses all its nodes. Let us then consider

the new instance in which vertices in V

2

are pairwise connected, thus forming a

clique of order n. Clearly, P

i

still chooses all its nodes since its subinstance is

not changed. Moreover, P

j

is also forced to choose at least n� 1 of its nodes. If

m = n, then the optimum solution contains n nodes while the solution computed

by the algorithm contains at least 2n� 1 nodes. That is, the performance ratio

is at least 2.

In order to improve the above bound, we will show in the next theorem how

to �nd, for any distributed decision algorithm A, an instance G

A

in which a

processor P

j

knows n nodes and the other processors P

i

share at least (p �

1)(n � 1) nodes which are all connected to the n nodes of P

j

. Moreover, each

P

i

with i 6= j chooses all its nodes when running algorithm A with input G

A

.

We can then modify the instance by pairwise connecting all nodes of P

j

. The

optimum thus contains n nodes while the solution computed by the algorithm

contains at least p(n� 1) nodes. That is, the performance ratio is at least p.

Lemma2. For any distributed decision algorithm A and for any integer N

0

, a

graph G, an index j, and an integer n

0

> N

0

exist such that

1. jV

j

j = n

0

.

2.

P

i 6=j

jV

i

j � (p� 1)(n

0

� 1).

3. For any i 6= j, V

i

and V

j

are the two vertex classes of a complete bipartite

graph.

4. For any i 6= j, A(G

i

) = V

i

.



Proof. Recall that, for any i, j, m, and n, K

m;n

i;j

denotes the instance in which

the complete bipartite graphK

m;n

with vertex classes V

1

and V

2

is distributed in

the following way: V

1

is assigned to processor P

i

, V

2

is assigned to processor P

j

,

and all other processors know nothing. Given a distributed decision algorithm

A and an integer n, let c

n

i;j

be the maximumm such that A(G

i

) = V

1

(see Fig.

1 where the black nodes have been chosen and the white nodes may or may not

have been chosen).
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Fig. 1. The de�nition of c

n

i;j

Observe that, for any i, j, and n, if c

n

i;j

= m < n � 1 then c

k

j;i

� n for

k = m + 1; : : : ; n � 1. This observation intuitively suggests that the sum of all

these quantities is large enough. Indeed, in the Appendix we prove the following

result.

Proposition3. For any i, j, and N , the following inequality holds:

N

X

n=1

(c

n

i;j

+ c

n

j;i

) � 2

N

X

n=1

(n� 1):

From the above proposition it then follows that

N

X

n=1

p

X

j=1

p

X

i=1

i 6=j

c

n

i;j

=

p

X

i;j=1

i<j

N

X

n=1

(c

n

i;j

+ c

n

j;i

) � p(p � 1)

N

X

n=1

(n � 1): (1)

Assume now that an N

0

exists such that, for any n > N

0

and for any j,

p

X

i=1

i 6=j

c

n

i;j

< (p� 1)(n� 1)

and let



� =

N

0

X

n=1

p

X

j=1

p

X

i=1

i 6=j

c

n

i;j

:

Then, for any N > N

0

, we have that

N

X

n=1

p

X

j=1

p

X

i=1

i 6=j

c

n

i;j

= �+

N

X

n=N

0

+1

p

X

j=1

p

X

i=1

i 6=j

c

n

i;j

� �+p(p�1)

N

X

n=N

0

+1

(n�1)�(N�N

0

)p

which, for N su�ciently large, contradicts (1).

Thus, for any integer N

0

, an index j and an integer n

0

> N

0

exist such that

p

X

i=1

i 6=j

c

n

0

i;j

� (p� 1)(n

0

� 1):

The graph G is then de�ned as a star of bipartite graphs in which processor

P

j

knows n

0

nodes and each processor P

i

with i 6= j knows c

n

0

i;j

nodes which are

all connected to each node of P

j

. Clearly, this graph satis�es Conditions 1-4. ut

As a consequence of the above lemma, we then have the following result.

Theorem4. No distributed decision algorithm has a performance ratio smaller

than p.

3 MVC and communication complexity

Let V

1

and V

2

be two set of nodes, E

i

� (V

1

� V

2

) [ V

2

i

, for i = 1; 2, be two set

of edges, and G = (V

1

[ V

2

; E

1

[ E

2

) be a graph. For any �, let V (G; �) be the

set of vertex covers V

0

of G such that

jV

0

j

opt(G)

� �

where opt(G) denotes the cardinality of a minimumvertex cover. Roughly speak-

ing, V (G; �) is the set of approximate solutions within performance ratio � with

respect to the instance G of the MVC problem.

TheMVC communication problem with error � is then as follows. Two proces-

sors P

1

and P

2

get inputs G

1

= (V

1

[V

2

; E

1

) and G

2

= (V

1

[V

2

; E

2

), respectively.

Their task is to choose two sets V

0

i

� V

i

for i = 1; 2 such that V

0

1

[V

0

2

2 V (G; �).

The communication complexity of this problem is the minimum number of bits

exchanged by the best protocol on a worst case input.

Let us consider the two instances shown in Fig. 2, that is, two rings of eight

nodes such that the subinstance held by P

1

is the same in the two cases. The

main di�erence is the `parity' of the nodes seen by P

1

so that, in the �rst case,
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Fig. 2. Two rings of 8 nodes

node 2 belongs to the optimum solution if and only if node 3 does not belong to

it while, in the second case, node 2 belongs to the optimum solution if and only

if node 3 belongs to it. This means that if the processors execute a protocol that

always yields an optimum solution, than P

1

will compute di�erent subsolutions

in the two cases, even if its subinstance is the same. This implies that at least one

bit of communication is required. This reasoning can be generalized as follows:

let G

n

be the set of graphs G containing n disjoint rings R

1

; : : : ; R

n

where each

of these rings can be of one of the two types shown in Fig. 2. Clearly, jG

n

j = 2

n

and all these graphs are equal from P

1

's point of view. On the other hand, an

optimum solution for a graph G 2 G

n

cannot be an optimum solution for any

other graph in G

n

. Thus, while executing a protocol yielding optimum solutions,

P

1

will �nd di�erent subsolutions for any instance in G

n

, that is, 2

n

di�erent

computations are performed with respect to the same P

1

's input. This, in turn,

implies that di�erent sequences of messages must be exchanged every time and

that a sequence of messages exists whose length is at least n.

Let us now consider the case of �-approximate solutions. Since the optimum

solutions of any instance in G

n

contains 4n nodes, an �-approximate solution

will contain at most 4n� = 4n + 4n(� � 1) nodes. Thus, the number of rings

that are not optimally covered is at most 4n(� � 1). It is also easy to see that

if V (G; �) \ V (G

0

; �) 6= ; where G;G

0

2 G

n

, then G di�ers from G

0

in at most

8n(��1) rings. Let G

0

n

be a subset of G

n

such that any two instances in G

0

n

di�er

in less than 8n(��1) rings. Then log jG

0

n

j is a lower bound on the communication

complexity of approximating the MVC problem within factor � on graphs with

8n nodes. The problem of �nding a large set G

0

n

with the required property

is equivalent to the problem of �nding a large set C � f0; 1g

n

such that for

any two strings s

1

; s

2

2 C, the Hamming distance d(s

1

; s

2

) (i.e., the number

of bits where s

1

di�ers from s

2

) is smaller than 8n(� � 1). Such a set C is

indeed an error correcting code and a classical result of Gilbert [3, 6] allows

us to state that, for any � < 17=16, an error correcting code C exists with

log jCj > (1�H(8(��1)))n=8 where H is the entropy function de�ned as H(x) =

�x logx� (1� x) log(1� x), for 0 < x < 1=2.



We have thus shown the following result

Theorem5. For any � < 17=16, the communication complexity of the MVC

communication problem with error � is at least (1�H(8(�� 1)))n=8.

For any �xed � < 17=16 we thus have a linear lower bound. This result clearly

holds even if we restrict ourselves to planar graphs. Since any planar graph

with n nodes contains O(n) edges, a trivial upper bound on the communication

complexity of exactly solving the MVC problem is O(n logn), so that our lower

bound is not far from being tight.

4 Conclusion and open problems

We studied the problem of computing approximate vertex covers of a graph on

the basis of partial information and we analysed two basic frameworks. In the

�rst one we do not allow communication among the processors: in this case, we

showed an optimal algorithm whose performance ratio is equal to the number of

processors. In the second framework two processors are allowed to communicate

in order to �nd an approximate solution: in this latter case, we showed a linear

lower bound on the communication complexity of the problem.

Some problems are left open by this work. From the distributed decision-

making point of view, it would be interesting to �nd tradeo�s between the quan-

tity of information available to each processor and the performance ratio, that is,

to compare two di�erent information regimes. From the communication complex-

ity point of view, it would be interesting to pin down the precise communication

complexity of approximating the MVC problem. For example, is the linear lower

bound optimal? What about � > 17=16?
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Appendix: Proof of Proposition 1

We shall prove the following. Let a

1

; : : : ; a

N

; b

1

; : : : ; b

N

be 2N nonnegative num-

bers such that, for any n,

1. 0 � a

n

; b

n

� N .

2. If a

n

< n� 1, then b

k

� n for k = a

n

+ 1; : : : ; n� 1.

3. If b

n

< n � 1, then a

k

� n for k = b

n

+ 1; : : : ; n� 1.

Then

N

X

n=1

(a

n

+ b

n

) � 2

N

X

n=1

(n� 1): (2)

The proof is by induction on N . For N = 1 the proof is trivial since, by

property 1,



a

1

+ b

1

� 0:

Assume that (2) has been proven for any N

0

< N + 1 and let a

1

; : : : ; a

N

; a

N+1

,

b

1

; : : : ; b

N

; b

N+1

be 2(N +1) nonnegative numbers satisfying conditions 1-3. Let

us consider the case in which both a

N+1

and b

N+1

are smaller than N (the other

cases are proved similarly). Then a

N+1

= N�h and b

N+1

= N�k with h; k > 0.

From properties 1-3 it follows that

a

N�k+1

; : : : ; a

N

= N + 1 and b

N�h+1

; : : : ; a

N

= N + 1:

For any n with N � k+1 � n � N and for any m with N � h+ 1 � m � N , let

us de�ne a

0

n

= N and b

0

m

= N . The 2N numbers a

1

; : : : ; a

N�k

; a

0

N�k+1

; : : : ; a

0

N

,

b

1

; : : : ; b

N�h

; b

0

N�h+1

; : : : ; b

0

N

clearly satisfy conditions 1-3. This, in turn, implies

that

N+1

X

n=1

(a

n

+ b

n

) � 2

N

X

n=1

(n� 1) + (h+ k) + (a

N+1

+ b

N+1

) = 2

N+1

X

n=1

(n � 1):

The proposition thus follows. ut


