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Abstract. In this paper we generalize the notion of polynomial-time

approximation scheme preserving reducibility, called PTAS-reducibility,

introduced in [4]. As a �rst application of this generalization, we prove

the APX-completeness of a polynomially bounded optimization problem,

that is, an APX problem whose measure function is bounded by a poly-

nomial in the length of the instance and such that any APX problem is

reducible to it. As far as we know, no such problem was known before.

This result has been recently used in [10] to show that several natural

optimization problem are APX-complete, such as Max Cut, Max Sat,

Min Node Cover, and Min �-TSP.

Successively, we apply the notion of APX-completeness to the study

of the relative complexity of evaluating an �-approximate value and

computing an �-approximate solution for any �. We �rst show that if

P 6= NP \ coNP then the former question can be easier than the latter

even if the optimization problem is NP-hard. We therefore give strong

evidence that if an optimization problem is APX-complete then the two

questions are both hard.

1 Introduction

It is well known that for several important optimization problems, such as the

traveling salesman problem or the graph coloring problem, determining an op-

timal solution is extremely time consuming due to the inherent complexity of

such problems. For this reason when we have to solve problems of this kind

we must restrict ourselves to compute approximate solutions, that is, solutions

whose performance ratio is guaranteed to be bounded by a constant [8].

In this paper, we focus our attention on the two classes APX and PTAS, that

is, the class of problems that are approximable within a factor � for a given � and

the class of problems that are approximable within any factor �. It is well-known

that PTAS is strictly contained in APX if and only if P 6= NP.
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Several notions of approximation scheme preserving reducibilities have been

introduced in [4, 11, 12] with the aim of establishing hardness and completeness

results in APX and of deriving proofs of intractability of arbitrary approximation

from them (see also Chap. 3 of [9] for a survey on the notion of reducibility

among optimization problems). In particular, in [4] an approximation scheme

preserving reducibility, called PTAS-reducibility, was de�ned and the existence

of APX-complete problems was shown. Independently, a more restricted kind of

reducibility, called L-reducibility, was introduced in [12] and several completeness

results for a subclass of APX were proved. In Sect. 2 we generalize the PTAS-

reducibility and prove the existence of polynomially bounded APX-complete

problems, that is, APX-complete problems whose measure function is bounded

by a polynomial in the length of the input. As far as we know, this is the �rst

example of such problems. This result has been recently used in [10] in order to

prove the APX-completeness of several natural optimization problems, such as

Max Cut, Max Sat, Min Node Cover, and Min �-TSP.

Successively, we apply the notion of APX-completeness to the study of the

relative complexity of evaluating an �-approximate value and computing an �-

approximate solution for any �. The relative complexity of checking and evalu-

ating a function was �rst considered in [14]. It is well-known, for example, that

checking whether an array is already sorted is simpler than sorting it. Valiant

proved that, indeed, the two questions are equivalent if and only if P= NP. In

[13] and, successively, in [5] the relative complexity of evaluating the optimum

cost and constructing an optimum solution for optimization problems was an-

alyzed. For example, we can either compute the size of a maximum clique in

a given graph or list the nodes of a maximum clique. Crescenzi and Silvestri

gave strong evidence that the latter question may be harder than the former

even though it was known that the two questions are equivalent whenever the

optimization problem is NP-hard.

In Sect. 3 we show that if P 6= NP \ coNP then a problem exists in APX �

PTAS whose optimum cost can be approximated within any factor. Moreover,

this problem is NP-hard. Thus the property of NP-hardness is not su�cient to

guarantee the equivalence between constructive and non-constructive approxi-

mation and a di�erent notion of completeness seems to be required. Indeed, we

show that no APX-complete problem admits a non-constructive polynomial-time

approximation scheme, unless NP = coNP.

In Sect. 4, in order to strengthen the above result we characterize the class of

problems that admit non-constructive polynomial-time approximation schemes

in terms of speci�c classes of languages and of a complexity class raised in the

recent theory of parameterized complexity. Finally, further results concerning the

notion of non-constructive approximation preserving reducibility and of APX-

intermediate problem are presented.

1.1 Preliminaries

The basic ingredients of an optimization problem are the set of instances or

input objects, the set of feasible solutions or output objects associated to any



instance, and the measure de�ned for any feasible solution. We thus give the

following de�nition.

De�nition1. An NPO problem A is a fourtuple (I; sol;m; goal) such that

1. I is the set of the instances of A and it is recognizable in polynomial time.

2. Given an instance x of I, sol(x) denotes the set of feasible solutions of x.

The set sol(x) is recognizable in polynomial time and a polynomial p exists

such that, for any y 2 sol(x), jyj � p(jxj).

3. Given an instance x and a feasible solution y of x, m(x; y) denotes the

positive integer measure of y and is computable in polynomial time.

4. goal 2 fmax;ming.

If a polynomial q exists such that, for any instance x and for any solution y of

x, m(x; y) � q(jxj), then A is said to be polynomially bounded.

The class NPO is the set of all NPO problems.

The goal of an NPO problem with respect to an instance x is to �nd an

optimum solution, that is, a feasible solution y such that

m(x; y) = goalfm(x; y

0

) : y

0

2 sol(x)g :

In the following sol

�

will denote the multi-valued function mapping an in-

stance x to the set of optimum solutions, while m

�

will denote the function

mapping an instance x to the measure of an optimum solution. Moreover, in this

paper we will focus our attention on maximization problems only so that we will

not specify the goal of the problem.

De�nition2. Given an NPO problem A, the language L

A

associated with A is

de�ned as

L

A

= f(x; k) : x 2 I ^m

�

(x) � kg :

Whenever L

A

is NP-complete, A is said to be NP-hard.

It is well-known that if P 6= NP, then no NP-hard NPO problem is solvable

in polynomial time. In these cases we sacri�ce optimality and start looking for

approximate solutions computable in polynomial time.

De�nition3. Let A be an NPO problem. Given an instance x and a feasible

solution y of x, the performance ratio of y (with respect to x) is de�ned as

R(x; y) =

m(x; y)

m

�

(x)

:

De�nition4. An NPO problem A belongs to the class APX if a rational � 2

(0; 1) and a polynomial-time algorithm T exist such that, for any instance x, the

performance ratio of the feasible solution T (x) is at least �.



De�nition5. An NPO problem A belongs to the class PTAS if it admits a

polynomial-time approximation scheme, that is, an algorithm T such that, for

any instance x of A and for any rational � 2 (0; 1), T (x; �) returns a feasible

solution whose performance ratio is at least � in time bounded by q(jxj) where

q is a polynomial.

Clearly, PTAS � APX. It is also well-known that this containment is strict

if and only if P 6= NP. An extensive survey of results on these two classes is

contained in [2].

De�nition6. An NPO problem A belongs to the class ncPTAS if it admits a

polynomial-time non-constructive approximation scheme, that is, an algorithm

T such that, for any instance x of A and for any rational � 2 (0; 1), T (x; �)

returns a value between �m

�

(x) and m

�

(x) in time bounded by q(jxj) where q is

a polynomial.

Observe that the time complexity of a (non-constructive) approximation

scheme in the last two de�nitions may be exponential in the rational 1=(1� �),

that is, it may be of the type 2

1=(1��)

p(jxj) or jxj

1=(1��)

where p is a polynomial.

2 PTAS -Reducibility and APX-Completeness

The many-to-one polynomial-time reducibility is clearly inadequate to study the

approximability properties of optimization problems. Indeed, if we want to map

an optimization problem A into an optimization problem B then not only do we

need a function mapping instances of A into instances of B but also a function

mapping back solutions of B into solutions of A preserving the performance

ratio.

De�nition7. Let A and B be two NPO problems. A is said to be PTAS-

reducible to B, in symbols A � B, if three computable functions f , g, and c exist

such that:

1. For any x 2 I

A

and for any � 2 (0; 1), f(x; �) 2 I

B

is computable in time

polynomial with respect to jxj.

2. For any x 2 I

A

, for any � 2 (0; 1), and for any y 2 sol

B

(f(x; �)), g(x; y; �) 2

sol

A

(x) is computable in time polynomial with respect to both jxj and jyj.

3. c : (0; 1)! (0; 1).

4. For any x 2 I

A

, for any � 2 (0; 1), and for any y 2 sol

B

(f(x; �)),

R

B

(f(x; �); y) � c(�) implies R

A

(x; g(x; y; �)) � � :

The triple (f; g; c) is said to be a PTAS-reduction from A to B.



Remark. The PTAS-reducibility is a generalization of a reducibility introduced

in [4] and called P-reducibility. Indeed, the only di�erence between the PTAS-

reducibility and the P-reducibility is the fact that f and g may depend on �.

Moreover, in [12] a di�erent kind of reducibility between optimization problems

was de�ned which is a restriction of the P-reducibility and is called L-reducibility.

Indeed, an L-reduction turns out to be a P-reduction with c(�) = 1�

1��

��

where

� and � are constants.

Proposition8. If A � B and B 2 PTAS, then A 2 PTAS.

Proof. Let T

B

be a polynomial-time approximation scheme for B and let (f; g; c)

be a PTAS-reduction from A to B. Then

T

A

(x; �) = g(x; T

B

(f(x; �); c(�)); �)

is a polynomial-time approximation scheme for A. ut

De�nition9. An NPO problem A in APX is APX-complete if, for any other

problem B in APX, B � A.

In [11] a reducibility slightly stronger than the PTAS-reducibility was de�ned

but no APX-completeness result was proved. The following problem, calledMax

Bounded Weighted Sat or, simply, MBWS, has been instead shown to be

APX-complete in [4].

1. An instance is a Boolean formula in conjunctive normal form (in short, CNF-

formula) ' with variables x

1

; : : : ; x

n

of weights w

1

; : : : ; w

n

such that

W �

n

X

i=1

w

i

� 2W ;

where W is an integer.

2. For any CNF-formula ', a feasible solution is a truth assignment to the

variables.

3. For any CNF-formula ' and for any truth assignment � ,

m('; � ) =

�

max(W;

P

n

i=1

w

i

� (x

i

)) if � satis�es ',

W otherwise.

Let us now consider a polynomially bounded version of the above problem,

called Max Polynomially Bounded Weighted Sat or, simply, MPBWS,

which is equal to MBWS apart from the measure function which is de�ned as

follows

m

MPBWS

(x; � ) = n +

�

n(m

MBWS

(x; � )�W )

W

�

where n denotes the number of variables and m

MBWS

and m

MPBWS

denote

the measure functions of MBWS and MPBWS, respectively (this `scaled' ver-

sion of MPBWS was �rst suggested in [10]). Observe that according to the

above de�nition, for any instance x of MPBWS and for any truth-assignment

� , m

MPBWS

(x; � ) � 2n, that is, this problem is indeed polynomially bounded.



Theorem10. MBWS is PTAS-reducible to MPBWS.

Proof. Let x = (';w

1

; : : : ; w

n

;W ) denote an instance ofMBWS. The reduction

is then de�ned as follows (note that we are using the fact that g may depend on

�).

1. For any � 2 (0; 1), f(x; �) = x.

2. For any � and for any � 2 (0; 1),

g(x; �; �) =

�

� if � < (n� 1)=n,

�

�

otherwise

where �

�

denotes an optimum solution for MBWS.

3. For any � 2 (0; 1), c(�) = (�+ 1)=2.

Observe that, according to the de�nition of the PTAS-reducibility, the running

time of g can be exponential in 1=(1 � �). If � � (n � 1)=n then g has enough

time to compute �

�

so that, in this case, the fourth condition in the de�nition

of PTAS-reducibility is clearly satis�ed.

Assume now that � < (n� 1)=n and that � is any truth assignment. Let

i

�

=

�

n(m

MBWS

(x; � )�W )

W

�

:

Then

R

MPBWS

(x; � ) =

n+ i

�

n+ i

�

�

while

R

MBWS

(x; � ) =

m

MBWS

(x; � )

m

�

MBWS

(x)

�

m

�

MBWS

(x)� (i

�

�

� i

�

+ 1)W=n

m

�

MBWS

(x)

= 1�

(i

�

�

� i

�

+ 1)W=n

m

�

MBWS

(x)

� 1�

(i

�

�

� i

�

+ 1)W=n

W (1 + i

�

�

=n)

= 1�

i

�

�

� i

�

+ 1

n+ i

�

�

:

If i

�

�

� i

�

= 0 then

R

MBWS

(x; � ) �

n+ i

�

�

� 1

n+ i

�

�

�

n � 1

n

> � :

Otherwise



R

MBWS

(x; � ) � 1�

i

�

�

� i

�

+ 1

n+ i

�

�

� 1� 2

i

�

�

� i

�

n+ i

�

�

= 2R

MPBWS

(x; � )� 1 :

If R

MPBWS

(x; � ) � c(�), then R

MBWS

(x; � ) � 2c(�)� 1 = �.

We thus have that, in both cases, the fourth condition in the de�nition of

PTAS-reducibility is satis�ed and this concludes the proof. ut

Corollary11. MPBWS is APX-complete.

Proof. It follows from the APX-completeness of MBWS and from the above

theorem. ut

As far as we know, this is the �rst example of a polynomially bounded APX-

complete problem. By using this result, in [10] several other important problems

are shown to be APX-complete, such as Max Cut, Max Sat, Min Node

Cover, and Min �-TSP. Thus, each of these problems is the hardest within

APX and, as already known, does not admit a polynomial-time approximation

scheme unless P= NP. In the next section we shall see that they do not admit

a non-constructive polynomial-time approximation scheme either unless NP =

coNP.

Remark. By making use of either the P-reducibility or the L-reducibility it does

not seem possible to prove the APX-completeness of MPBWS and thus of the

other natural problems. The di�culty is mainly due to the fact that both these

two reducibilities do not allow the function g to depend on �: as a consequence,

this function is forced to map optimum solutions into optimum solutions. More

formally, it is possible to prove that the APX-completeness of a polynomially

bounded optimization problem with respect to either the P-reducibility or the

L-reducibility would imply that P

SAT

= P

SAT[logn]

where P

SAT

(respectively,

P

SAT[logn]

) denotes the class of languages decidable in polynomial time asking

a polynomial (respectively, logarithmic) number of queries to an oracle for the

satis�ability problem. This latter event seems to be unlikely and, in any case,

the relationship between these two classes is a well-known open question in

complexity theory [7].

3 Evaluating, Constructing, and APX-Completeness

Assume that P 6= NP \ coNP. Let L 2 NP \ coNP�P and let NT and NT

c

be

the non-deterministic Turing machines deciding L and L

c

in polynomial time,

respectively. We then de�ne the maximization problem A as follows.

1. I contains pairs (x; ') where x is an instance of L and ' is a CNF-formula.

2. For any pair (x; '), a feasible solution is a pair (y; � ) where y is either a

computation path of NT (x) or a computation path of NT

c

(x) and � is a

truth-assignment for '.



3. For any instance (x; ') of length n and for any feasible solution (y; � ), the

measure function is de�ned as

m((x; '); (y; � )) =

8

>

>

<

>

>

:

n=2 if y is a rejecting computation,

n if y is an accepting computation

and � does not satisfy ',

n + 1 otherwise.

Clearly, A belongs to APX and, for any CNF-formula ', ' is satis�able if

and only if ((x

yes

; '); n+ 1) 2 L

A

where x

yes

is any word in L and n is equal to

the length of (x

yes

; '). Thus A is NP-hard.

It is also easy to see that A 2 ncPTAS. Indeed, the following algorithm is a

non-constructive polynomial-time approximation scheme: for any instance (x; ')

and for any �,

T ((x; '); �) =

8

<

:

n if � � (n� 1)=n or

� > (n� 1)=n and ' is not satis�able,

n+ 1 if � > (n� 1)=n and ' is satis�able

where n denotes the length of the instance.

Finally, suppose that A admits a polynomial-time approximation scheme T

and, for any instance (x; '), consider the feasible solution (y; � ) = T ((x; '); 2=3).

Then y must be an accepting computation path and x 2 L if and only if y

is a computation path of NT (x). That is, L belongs to P contradicting the

hypothesis.

In conclusion we have proved the following result.

Theorem12. If P6= NP \ coNP then an NP-hard maximization problem exist

that belongs to APX \ ncPTAS� PTAS.

Hence, the notion of NP-hardness is not su�cient to guarantee the equiv-

alence between non-constructive and constructive approximation schemes. We

shall now see that, whenever an optimization problem is APX-complete, both

evaluating �-approximate values and computing �-approximate solutions for any

� are computationally hard.

To this aim, let us �rts recall a result obtained in [1].

Theorem13 [1]. Let L be a language in NP. Then a rational � 2 (0; 1) exists

such that, for any x, a CNF-formula '

x

is computable in polynomial time for

which the following hold.

1. If x 2 L then '

x

is satis�able.

2. If x 62 L then any truth-assignment satis�es less than � of all the clauses of

'

x

.

As a consequence of this result, it follows thatMax Sat, that is, the problem

of maximizing the number of satis�ed clauses in a given CNF-formula, does not

admit a polynomial-time approximation scheme unless P= NP (note that it is

well-known that this problem is approximable [8, 15]).



Let A be an APX-complete problem and let (f; g; c) be a PTAS-reduction

fromMax Sat to A. Moreover, let L be an NP-complete language. From The-

orem 13, it follows that, for any x, the CNF-formula '

x

satis�es the following

two implications: (a) if x 2 L then m

�

MSAT

('

x

) = m and (b) if x 62 L then

m

�

MSAT

('

x

) < �m where m denotes the number of clauses of '

x

. From the

de�nition of PTAS-reducibility it follows also that if y is a feasible solution of

f('

x

; �) whose performance ratio is at least c(�), then �

y

= g('

x

; y; �) is truth

assignment whose performance ratio is at least �.

It is then easy to verify that �

y

satis�es less than �m clauses of '

x

if and

only if x 62 L. Indeed, if x 62 L then any truth assignment satis�es less than

�m clauses. Conversely, if �

y

satis�es less than �m clauses then m

�

MSAT

('

x

) �

m

MSAT

('

x

; �

y

)1=� < m, that is, x 62 L.

If A admits a non-constructive polynomial-time approximation scheme T ,

then we can develop a polynomial-time non-deterministic algorithm to decide

the complement of L. Such an algorithm performs, for any x, the following

steps.

1. Compute '

x

and set m the number of its clauses.

2. Compute a = T (f('

x

; �); c(�)).

3. Guess a feasible solution y of f('

x

; �): if its measure is less than a then

reject. Otherwise compute �

y

= g('

x

; y; �): accept if and only if �

y

satis�es

less than �m clauses of '

x

.

In conclusion we have proved the following result.

Theorem14. If A is an APX-complete problem that admits a non-constructive

polynomial-time approximation scheme then NP = coNP.

A natural question that arises from the above theorem is whether a stronger

evidence can be given for the non-existence of non-constructive approximation

schemes for APX-complete problems. Unfortunately, the following result shows

that this is not possible.

Theorem15. If NP = coNP then an APX-complete problem exists that admits

a non-constructive polynomial-time approximation scheme.

Proof. Let L be the set of pairs ('; � ) such that ' is a CNF-formula and � is an

optimum truth-assignment, that is, a truth-assignment satisfying the maximum

number of clauses. Clearly, L 2 coNP and thus L 2 NP. Let NT be a non-

deterministic Turing machine deciding L in polynomial time and let A be the

following maximization problem.

1. An instance is a CNF-formula '.

2. For any CNF-formula ', a feasible solution is a pair (�; y) where � is a

truth-assignment for ' and y is a computation path of NT ('; � ).



3. For any CNF-formula ' and for any feasible solution (�; y),

m('; (�; y)) =

�

n=2 if y is a rejecting computation,

n otherwise

where n denotes the length of '.

Clearly, for any instance ', m

�

(') = n so that A admits a non-constructive

polynomial-time approximation scheme. We now prove that A is APX-complete

by considering the following PTAS-reduction fromMax Sat to A.

1. For any CNF-formula ' and for any � 2 (0; 1), f('; �) = '.

2. For any CNF-formula ', for any pair (�; y) and for any � 2 (0; 1),

g('; (�; y); �) =

�

�

apx

if y is a rejecting computation,

� otherwise

where �

apx

denotes a 1/2-approximate solution of ' for Max Sat (see [8]).

3. For any � 2 (0; 1), c(�) = �.

In order to prove that the above reduction is indeed a PTAS-reduction it su�ces

to observe that, for any pair (�; y), either R

A

('; (�; y)) = 1 and � is optimum

forMax Sat or R

A

('; (�; y)) � 1=2 and the performance ratio of �

apx

is at least

1/2. ut

4 Further Results

4.1 Relationships with Parameterized Complexity

In order to obtain a deeper insight on the relative complexity of constructive

and non-constructive approximation schemes, we have to de�ne a generalization

of the notion of associated language. The di�culty is that the value of an ap-

proximate solution is not exactly de�ned, since it is only expected to lay in a

certain interval. For this reason, it is necessary to de�ne a class of associated

languages for every maximization problem.

De�nition16. Let A be a maximization problem. A language L belongs to the

class L(A) if and only if the following properties hold.

1. L contains triples (x; k; d) where x is an instance of A and k and d are

positive integers.

2. If (x; k; d) 2 L then m

�

(x) > k(1� 1=d).

3. If (x; k; d) 62 L then m

�

(x) � k

De�nition17. A language whose instances have the form (x; d), where d is a

positive integer, belongs to the class SP if and only if an algorithm exists deciding

the language in time O(f(d)jxj

g(d)

), that is, in time polynomial in jxj for every

�xed d.



The notion of �xed parameter complexity and of class SP is mainly due to

Downey and Fellows (for an introduction to these ideas see [6]). The following

theorem relates the �xed parameter complexity of the languages in L(A) to the

complexity of evaluating approximate values.

Theorem18. A maximization problem A admits an ncPTAS if and only if

L(A) \ SP 6= ;.

4.2 Non-Constructive Reducibilities

The notion of non-constructiveness may also be applied to the study of reducibil-

ities among optimizations problems. The ncPTAS-reducibility can be de�ned

similarly to the PTAS-reducibility. The main property of this reducibility is that

if A is ncPTAS-reducible to B and B 2 ncPTAS, then A 2 ncPTAS.

It is worth noting that if a problem A is APX-complete with respect to

the ncPTAS-reducibility, then it is NP-hard to evaluate approximate values for

A. Thus constructing approximate solutions for A is reducible to evaluating

approximate values.

Oddly enough, the nice property of preserving non-constructive approxima-

tion schemes is not achieved by PTAS-reducibility.

Theorem19. If P 6= NP \ coNP, then two approximable problems A and B

exist such that A is PTAS-reducible to B but A is not ncPTAS-reducible to B.

The following result holds as well.

Theorem20. If P 6= NP \ coNP, then two approximable problems A and B

exist such that A is ncPTAS-reducible to B but A is not PTAS-reducible to B.

4.3 APX-intermediate Problems

An NPO problem A in APX � PTAS is APX-intermediate if it is not APX-

complete. An interesting consequence of Theorem 14 is that if a certain approx-

imable problem belongs to ncPTAS�PTAS, then it is APX-intermediate unless

NP = coNP. This observation allows us to show that the existence of a `natural'

APX-intermediate problem is strictly related to the existence of many-to-one

one-way functions [5] (thus partially solving an open question raised in [4]).

More recently, however, it has been shown in [3] that the Bin Packing problem

is APX-intermediate unless the polynomial-time hierarchy collapses.
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