
Pseudorandom Bit Generators

That Fool Modular Sums

Shachar Lovett1,�, Omer Reingold2,��, Luca Trevisan3,� � �, and Salil Vadhan4,†

1 Department of Computer Science, Weizmann Institute of Science,
Rehovot 76100, Israel

shachar.lovett@weizmann.ac.il
2 Department of Computer Science, Weizmann Institute of Science,

Rehovot 76100, Israel
omer.reingold@weizmann.ac.il

3 Computer Science Division, University of California, Berkeley, CA, USA
luca@cs.berkeley.edu

4 School of Engineering and Applied Science, Harvard University,
Cambridge, MA 02138

salil@eecs.harvard.edu

Abstract. We consider the following problem: for given n, M , produce
a sequence X1, X2, . . . , Xn of bits that fools every linear test modulo
M . We present two constructions of generators for such sequences. For
every constant prime power M , the first construction has seed length
OM (log(n/ε)), which is optimal up to the hidden constant. (A sim-
ilar construction was independently discovered by Meka and Zucker-
man [MZ]). The second construction works for every M, n, and has seed
length O(log n + log(M/ε) log(M log(1/ε))).

The problem we study is a generalization of the problem of construct-
ing small bias distributions [NN], which are solutions to the M = 2 case.
We note that even for the case M = 3 the best previously known con-
structions were generators fooling general bounded-space computations,
and required O(log2 n) seed length.

For our first construction, we show how to employ recently constructed
generators for sequences of elements of ZM that fool small-degree poly-
nomials (modulo M). The most interesting technical component of our
second construction is a variant of the derandomized graph squaring
operation of [RV]. Our generalization handles a product of two distinct
graphs with distinct bounds on their expansion. This is then used to pro-
duce pseudorandom-walks where each step is taken on a different regular
directed graph (rather than pseudorandom walks on a single regular di-
rected graph as in [RTV, RV]).

� Research supported by the Israel Science Foundation (grant 1300/05).
�� Research supported by US-Israel BSF grant 2006060.

� � � This material is based upon work supported by the National Science Foundation
under grant No. CCF-0729137 and by the US-Israel BSF grant 2006060.

† Work done in part while visiting U.C. Berkeley, supported by the Miller Institute
for Basic Research in Science and a Guggenheim Fellowship. Also supported by
US-Israel BSF grant 2006060.

I. Dinur et al. (Eds.): APPROX and RANDOM 2009, LNCS 5687, pp. 615–630, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



616 S. Lovett et al.

1 Introduction

Pseudorandomness is the theory of generating objects that “look random” despite
being constructed using little or no randomness. A primary application of pseudo-
randomness is to address the question: Are randomized algorithms more powerful
than deterministic ones? That is, how does randomization trade off with other
computational resources? Can every randomized algorithm be converted into a
deterministic one with only a polynomial slowdown (i.e., does BPP = P) or with
only a constant-factor increase in space (i.e., does RL = L)? The study of both
these questions has relied on pseudorandom bit generators that fool algorithms of
limited computational powers. In particular, generators that fool space-bounded
algorithms [AKS, BNS, Nis, INW] were highly instrumental in the study of the
RL vs. L problem (e.g. used in the best known derandomization of RL [SZ]).

While the currently available space-bounded generators are extremely pow-
erful tools, their seed length is still suboptimal. For example, if we want to
fool a log n-space algorithm then known generators require log2 n truly random
bits (the seed) in order to generate up to polynomially many pseudorandom
bits. On the other hand, for several interesting special cases we do know gen-
erators with almost optimal seed length. The special case which serves as a
motivation for our work is that of small-biased generators [NN]. These gen-
erators produce n bits X1, X2, . . . , Xn that fool all linear tests modulo 2. In
other words, for each subset T of the bits, the sum Σi∈T Xi mod 2 is uni-
formly distributed up to bias ε. Explicit constructions of ε-biased generators
are known with seed-length O(log(n/ε)), which is optimal up to the hidden
constant [NN]. Even though linear tests may seem very limited, ε-biased gen-
erators have turned out to be very versatile and useful derandomization tools
[NN, MNN, HPS, Nao, AM, AR, BSVW, BV, Lov, Vio].

Given the several applications of distributions that fool linear tests modulo 2,
it is natural to consider the question of fooling modular sums for larger moduli.
It turns out that the notion of small-biased generators can be generalized to
larger fields. Such generators produce a sequence X1, X2, . . . , Xn of elements in
a field F that fool every linear test over F [Kat, AIK+, RSW, EGL+, AM].1 In
this work, instead, we consider a different generalization of ε-biased generators
where we insist on bit-generators. Namely we would like to generate a sequence
X1, X2, . . . , Xn of bits that fool every linear test modulo a given number M .
For every sequence a1, a2, . . . , an of integers in ZM = {0, 1, . . . , M − 1} we want
the sum

∑
i aiXi mod M to have almost the same distribution (up to statistical

distance at most ε) as in the case where the Xi’s are uniform and independent
random bits. (Note that this distribution may be far from the uniform distribu-
tion over ZM , particularly when only a few ai’s are nonzero.) It turns out that
even for M = 3 and even if we limit all the ai’s to be either ones or zeros, the best

1 More generally, an ε-bias space over a finite abelian group G is a distribution D on
elements of G such that for every nontrivial character χ : G → C, |E[χ(D)]| ≤ ε. The
aforementioned results correspond to the special case G = F

n, using the fact that the
characters of F

n are in one-to-one correspondence with linear functions F
n → F.



Pseudorandom Bit Generators That Fool Modular Sums 617

generators that were known prior to this work are generators that fool general
space-bounded computations [Nis, INW], and required a seed of length O(log2 n).
Therefore, obtaining better pseudorandom bit generators that fool modular sums
may be considered a necessary step towards improved space-bounded generators.
In addition, we consider this notion to be a natural generalization of that of a
small-bias generator, which is a central derandomization tool.

Our Results

We give two constructions of pseudorandom bit generators that fool modular
sums. Similarly to [MST], each construction is actually comprised of two gener-
ators: one that fools summations

∑
i aiXi in which only relatively few coefficients

ai are nonzero (the “low-weight” case) and one that fools summations
∑

i aiXi in
which many coefficients ai are nonzero (the “high weight” case). The motivation
is that fooling low-weight sums and fooling high-weight sums are tasks of a dif-
ferent nature. In the high-weight case, if Ri are truly random bits, then ΣiaiRi

mod M is almost uniformly distributed in ZM (at least when M is prime). Thus,
in analyzing our generator, we just need to argue that ΣiaiXi mod M is close
to uniform, where X1, . . . , Xn is the output of the generator.

On the other hand, in the low-weight case the distribution may be far from
uniform and therefore we may need to imitate the behavior of a random sequence
of bits more closely.

Thus, in each construction, we shall present two generators: one that is pseu-
dorandom against low-weight sums, and one that is pseudorandom against high-
weight sums. We shall then combine them by evaluating them on independently
chosen seeds and XORing the two resulting sequences.

Construction Based on Pseudorandom Generators for Polynomials

In our first construction, we handle the case of M = 3 and any other fixed prime
modulus M (in fact, our construction works also for any fixed prime power). For
these cases, our seed length is O(log(n/ε)) as in the case of ε-biased generators
(but the hidden constant depends exponentially on M).

As mentioned above, for every fixed finite field F, there are nearly-optimal
known generators that construct a small-bias distribution X1, . . . , Xn of field
elements, while our goal is to generate bits. A natural approach to construct a
bit generator would be to sample a sequence of field elements X1, . . . , Xn from
a small-bias distribution, and output a bit-sequence g(X1), . . . , g(Xn) for an
appropriate function g : F → {0, 1}. Unfortunately the pseudorandomness of
g(X1), . . . , g(Xn) against F-linear tests does not seem to follow from the small-
bias property of X1, . . . , Xn. Indeed, when |F| is odd, then g cannot be balanced,
so at best we could hope is for g(X1), . . . , g(Xn) to be indistinguishable by linear
tests from a sequence of independent biased bits. But even this is not achievable



618 S. Lovett et al.

in general, if we only assume the pseudorandomness of X1, . . . , Xn against F-
linear tests(as per the definition of small-bias space).2

If, however, we start from a sequence of field elements X1, . . . , Xn that fools
polynomials over F, then we can indeed show that g(X1), . . . , g(Xn) is indis-
tinguishable by linear tests from independent biased bits. The reason is that g
can be chosen to be itself a polynomial (of degree d = Θ(|F|)), and thus any
F-linear test distinguisher on g(X1), . . . , g(Xn) yields a degree d distinguisher
on X1, . . . , Xn. Since we still only have indistinguishability from biased coins,
we only apply this approach when the coefficient vector has sufficiently high
weight so that both biased and unbiased random bits will yield a sum that is
almost uniformly distributed over |F|. Specifically, we need at least k non-zero
coefficients ai, where k = O(M2 log 1/ε). For fixed M , there are known construc-
tions [BV, Lov, Vio] of pseudorandom generators that fool polynomials of degree
d over F = ZM , M prime, and which only require seed length OM,d(log n/ε).

In order to fool low-weight sums, we observe that a bit generator X1, . . . , Xn

which is ε-almost k-wise independent fools, by definition, every sum
∑

i aiXi mod
M of weight at most k, and that such generators are known which require only
seed length O(log n + k + log 1/ε).

A similar construction was independently discovered by Meka and Zucker-
man [MZ].

Construction Based on the INW Generator

In our second construction, we give a pseudorandom bit generator that fools sums
modulo any given M (not necessarily prime) with seed length O(log n+log(M/ε)
log(M log(1/ε))). In both the low-weight and high-weight cases, this generator re-
lies on versions of the Impagliazzo–Nisan–Wigderson [INW] pseudorandom gen-
erator for space-bounded computation. Of course, modular sums are a special case
of space-bounded computations, and thus we could directly apply the INW gen-
erator. But this would require seed length larger than log2 n. We obtain better
bounds by more indirect use of the INW generator inside our construction.

The most interesting technical contribution underlying this construction is
a new analysis of the derandomized graph squaring operation of [RV], which
captures the effect of using the INW generator to derandomize random walks
on graphs. Here we study the analogue of derandomized squaring for taking
products of two distinct Cayley graphs over an abelian group (namely ZM ).
The advantage of the new analysis is that it handles graphs that have distinct
bounds on their expansion, and works for bounding each eigenvalue separately.
This is then used to produce pseudorandom walks where each step is taken on
a different abelian Cayley graph (rather than pseudorandom walks on a single
graph as in [RTV, RV]).

2 Let F = Z3, and g : Z3 → {0, 1} be any nonconstant function. Let a be the element
of Z3 such that a is the unique preimage of g(a). Let (X1, . . . , Xn) be uniformly
distributed over all elements of Z

n
3 where the number of a’s is divisible by 3. Then∑

i g(Xi) mod 3 is constant, but it can be shown that (X1, . . . , Xn) is a 2−Ω(n)-biased
space.



Pseudorandom Bit Generators That Fool Modular Sums 619

For the purpose of this informal discussion we will assume that M is prime.
(The idea for handling composite M ’s is to analyze each Fourier coefficient of
the distribution of the sum separately. We defer further details to Section 2.1.)

Low-Weight Case. Let us first consider the case where the number of non-zero
ai’s is at most M ′ · log(1/ε), for M ′ = poly(M).3 As before, we could use an
almost k-wise independent distribution, but then our seed length would depend
polynomially on M , while our goal is a polylogarithmic dependency.

First, we use a hash function to split the index set [n] = {1, 2, . . . , n} into
B = O(M ′) disjoint subsets Tj such that with high probability (say, 1 − ε/10)
over the splitting, each set Tj contains at most k = log(1/ε) indices i such that
ai �= 0. We show that the selection of the hash function that determines the
splitting can be done using O(log n + (log M/ε) · log(M log 1/ε)) random bits.

Once we have this partition, it is sufficient to independently sample in each
block from an ε/B-almost k-wise independent distribution, which requires s =
O(log n + k + log(B/ε)) = O(log n + log(M/ε)) random bits per block. Then
we argue that it is not necessary for the sampling in different blocks to be
independent, and instead they can be sampled using a pseudorandom gener-
ator for space-bounded computation [Nis, INW]. (This relies on the fact the
computation

∑
i aiXi mod M can be performed in any order over the i’s, in

particular the order suggested by
∑

j

∑
i∈Tj

ai · Xi mod M .) Using the INW
generator, we can do all the sampling using O(s + log B · (log(B/ε) + log M)) =
O(log n + log M · log(M/ε)) random bits.

High-Weight Case. We now discuss the generator that fools sums with more
than M ′ · log 1/ε non-zero coefficients ai, for M ′ = poly(M). Here, we can think
of the computation

∑
i aiXi mod M as an n-step walk over ZM that starts

at 0. Unlike standard walks, each step is taken on a different graph (over the
same set of vertices, namely ZM ). Specifically, step i is taken on the (directed)
Cayley graph where every node v has two outgoing edges. The first edge is
labeled 0 and goes into v itself (i.e., this edge is a self loop). The second edge
is labeled 1 and goes into v + ai mod M . Following the walk along the labels
X1, X2, . . . , Xn arrives at the vertex

∑
i aiXi mod M . If the Xi’s are uniform

(i.e., we are taking a random walk) then the end vertex will be almost uniformly
distributed (because the number of steps is larger than M2 · log(1/ε)). What we
are seeking is a pseudorandom walk that is generated using much fewer truly
random bits but still converges to the uniform distribution (possibly slower, e.g.
using M ′ · log(1/ε) steps).

Pseudorandom walk generators were constructed in [RTV, RV] for walks on
a single regular and connected graph. In our case, we are walking not on a
single graph but rather on a sequence of graphs, each of which is indeed regular.
It turns out that the pseudorandom generators of [RTV, RV] still work for a

3 In this preliminary version we did not try to optimize the various constants. In partic-
ular, in our analysis M ′ = O(M24). We note that it can be made as small as O(M2+α)
for any α > 0.



620 S. Lovett et al.

sequence of graphs rather than a single graph. The more difficult aspect is that
in our walk there is no uniform bound on the expansion of the graphs. Indeed,
the graphs that correspond to ai = 0 are not connected at all (they consist solely
of self loops). In our setting, where the graphs are directed Cayley graphs for
the abelian group ZM , we show how to generate pseudorandom walks on graphs
with varying bounds on expansion.

We do this by a generalization of the derandomized graph product of [RV].
There, expanders are used to generate two steps on a degree-D graph using less
than 2 log D random bits, yet the (spectral) expansion of the resulting graph is
almost as good as the square of the original graph. We analyze the analogous
derandomization of two steps on two distinct (abelian Cayley) graphs for which
we may have distinct bounds on their expansion. Moreover, to handle composite
M , we show that the expansion can be analyzed in each eigenspace separately.
(For example, for Z6 = Z2 × Z3, a sequence of even coefficients ai will yield a
random walk that does not mix in the Z2 component, but may mix in the Z3

component, and our pseudorandom generator needs to preserve this property.)
To obtain our pseudorandom walk generator, we first randomly reorder the

index set [n] so that the nonzero coefficients are well-spread out, and then deran-
domize the walk by a recursive application of our aforementioned derandomized
product. As discussed in [RV], the resulting pseudorandom walk generator is the
same as the Impagliazzo–Nisan–Wigderson [INW] generator for space-bounded
computation, with a different setting of parameters that enables a much smaller
seed length than their analysis requires for general space-bounded algorithms.

Discussion

The natural open problem left by our work is to reduce the seed length further,
ideally to O(log(nM/ε)), which can be shown to be possible via a nonconstructive
probabilistic argument. For achieving such optimal parameters, the modular
reduction is actually insignificant — it is equivalent to construct generators
such that for every bounded coefficient vector (a1, . . . , an) ∈ Z

n where each
|ai| ≤ M ,

∑
i aiXi is statistically close to

∑
i aiRi as distributions on Z, where

(X1, . . . , Xn) is the output distribution of the generator, and (R1, . . . , Rn) is
the uniform distribution on {0, 1}n. 4 As a result, such generators would also
“fool” linear threshold functions (halfspaces) whose coefficients are polynomially
bounded. Pseudorandom generators and related objects for threshold functions
(with no bound on the coefficients) have recently been studied in [RS, DGJ+],
with the latter achieving seed length O((log n) · log2(1/ε)/ε2).

2 Definitions and Tools

We denote by Un the uniform distribution over {0, 1}n. We fix an integer M ≥ 2
for the rest of the paper. We will be interested in constructing pseudorandom bit
4 Indeed, given any coefficient vector (a1, . . . , an) ∈ Z

n, where each |ai| ≤ M , we can
apply the generator for modulus M ′ = M · n so that no modular reduction occurs.



Pseudorandom Bit Generators That Fool Modular Sums 621

generators that fool sums modulo M . We denote by ZM the set {0, 1, . . . , M−1}
with arithmetic modulo M . Due to space limitations, we defer many of the proofs
to the full version of the paper.

Definition 1. The statistical distance between two random variables X, Y tak-
ing values in ZM is dist(X, Y ) = 1

2

∑M−1
i=0 |Pr[X = i]−Pr[Y = i]|. The variables

X and Y are said to be ε-close if their statistical distance is at most ε.

Definition 2. A random variable X = (X1, . . . , Xn) taking values in {0, 1}n

is ε-pseudorandom against sums modulo M if for any a1, . . . , an ∈ ZM , the
distribution of a1X1 + · · ·+ anXn modulo M , is ε-close (in statistical distance)
to the distribution a1R1 + · · ·+ anRn modulo M , where R1, . . . , Rn are uniform
and independent random bits.

Definition 3. A function G : {0, 1}r → {0, 1}n is an ε-pseudorandom bit gener-
ator against sums modulo M if the distribution G(Ur) is ε-pseudorandom against
sums modulo M .

Note that ε-biased generators is a special case of the definition of pseudorandom
bit generators against sums modulo M , for M = 2.

Our goal is to build generators that fool sums modulo M , where M can be
either prime or composite. Handling prime modulus is somewhat easier, and the
approach in the following section allows handling both cases simultaneously. We
will show that it is enough to construct pseudorandom generators which fools the
bias of a sum modulo M , and under this approach, there is no major difference
between primes and composites.

2.1 Small Bias Bit Generators

First we define the bias of a linear combination with coefficients a1, . . . , an ∈ ZM ,
given some distribution of X = (X1, . . . , Xn) ∈ {0, 1}n:

Definition 4. Let X = (X1, . . . , Xn) be a distribution over {0, 1}n, and
(a1, . . . , an) ∈ Z

n
M a coefficient vector. We define the bias of a1, . . . , an according

to X to be
biasX(a1, .., an) = E

[
ω

∑
aiXi

]

where ω = e2πi/M is a primitive M -th root of unity.

Notice that the bias can in general be a complex number, of absolute value at
most 1.

Definition 5. We say a distribution X = (X1, . . . , Xn) over n bits is ε-bit-
biased against sums modulo M if for every coefficient vector (a1, . . . , an) ∈ Z

n
M ,

|biasX(a1, . . . , an) − biasUn(a1, . . . , an)| ≤ ε

Let G : {0, 1}r → {0, 1}n be a bit generator. We shorthand biasG(a1, . . . , an) for
biasG(Ur)(a1, . . . , an).



622 S. Lovett et al.

Definition 6. G : {0, 1}r → {0, 1}n is an ε-bit-biased generator against sums
modulo M if the distribution G(Ur) is ε-bit-biased against sums modulo M . That
is, for every coefficient vector (a1, . . . , an),

|biasG(a1, . . . , an) − biasUn(a1, . . . , an)| ≤ ε

The name “bit-biased” in the above definitions is meant to stress the difference
from standard ε-biased generators modulo M . Here we compare the bias under
the generator to the bias under uniformly selected bits (rather than uniformly
selected elements in ZM ).

We first reduce the problem of constructing pseudorandom modular genera-
tors to that of constructing ε-bit-biased modular generators.

Lemma 1. Let X = (X1, . . . , Xn) be an ε-bit-biased distribution against sums
modulo M . Then X is (ε

√
M)-pseudorandom against sums modulo M .

From now on, we focus on constructing ε-bit-biased generators. We will need to
differentiate two types of linear combinations, based on the number on non-zero
terms in them.

Definition 7. The weight of a coefficient vector (a1, . . . , an) ∈ Z
n
M is the num-

ber of non-zero coefficients ai.

We will construct two generators: one fooling linear combination with small
weights, and the other fooling linear combinations with large weight. Our fi-
nal generator will be the be the bitwise-XOR of the two, where each is chosen
independently. The following lemma shows this will result in an ε-bit-biased
generator fooling all linear combinations.

Lemma 2. Fix a weight threshold W . Let X ′ = (X ′
1, . . . , X

′
n) be a distribution

over {0, 1}n such that for any vector coefficient a1, . . . , an of weight at most W ,

|biasX′(a1, . . . , an) − biasUn(a1, . . . , an)| ≤ ε.

Let X ′′ = (X ′′
1 , . . . , X ′′

n) be a distribution over {0, 1}n such that for any vector
coefficient a1, . . . , an of weight at least W ,

|biasX′(a1, . . . , an) − biasUn(a1, . . . , an)| ≤ ε.

Let X be the bitwise-XOR of two independent copies of X ′ and X ′′, i.e.

X = X ′ ⊕ X ′′ = (X ′
1 ⊕ X ′′

1 , . . . , X ′
n ⊕ X ′′

n).

Then X is ε-bit-biased against sums modulo M .

Convergence of the Bias for Large Weights. The bias of a coefficient
vector with respect to the uniform distribution can be large if there are only a
few non-zero elements in the vector. However, when the weight is large, the bias
is guaranteed to be small.



Pseudorandom Bit Generators That Fool Modular Sums 623

Lemma 3. Let (a1, . . . , an) ∈ Z
n
M be a coefficient vector of weight w. Then

|biasU (a1, . . . , an)| ≤
(

1 − 1
M2

)w

In particular, for w ≥ M2 log(1/ε) the bias is at most ε/2.

Notice that the above lemma holds for all coefficient vectors (a1, . . . , an) and
moduli M , even when M is composite and the coefficients are not relatively
prime to M . For example, when M = 6 and (a1, . . . , an) = (2, . . . , 2). In such
a case,

∑
i aiRi mod M does not converge to the uniform distribution on Z

n
M ,

but the above lemma still says that the bias tends to zero.
A similar result holds if we consider the bias of a large weight coefficient vector

under a skewed distribution.

Lemma 4. Let (a1, . . . , an) ∈ Z
n
M be a coefficient vector of weight w. Let

Z1, . . . , Zn ∈ {0, 1} be independently distributed with Pr[Zi = 0] = (1 + α)/2.
Then

|biasZ1,...,Zn(a1, . . . , an)| ≤
(

1 − Ω

(
1 − α2

M2

))w

In particular, for w ≥ cM2 log(1/ε)/(1 − α2) for a sufficiently large constant c,
the bias is at most ε/2.

2.2 Hashing

We use hashing as one of the ingredients in our construction. A family (multi-
set) of functions H = {h : [n] → [k]} is called a family of hash functions, if a
randomly chosen function from the family behaves pseudorandomly under some
specific meaning. We consider a hash function H : [n] → [k] to be a random
variable depicting a randomly chosen function from the family. We say H can
be generated efficiently and explicitly using s random bits, if a random func-
tion in the family can be sampled by a randomized polynomial-time algorithm
using s random bits, and this function can be evaluated using a deterministic
polynomial-time algorithm.

Fix S ⊂ [n]. We define the j-th bucket of H with respect to S, to be the set
of elements of S mapped by H into j, i.e. {s ∈ S : H(s) = j} = H−1(j) ∩ S.

We will use the following three constructions of hash functions.

Lemma 5. Assume k is a power of 2. There exists a hash function H1 : [n] → [k]
such that for every set S ⊂ [n] of size at most k log(1/ε), the probability that
H1 has a bucket H−1

1 (j) ∩ S with more than 100 log(1/ε) elements is at most
ε/100. Moreover, H1 can be generated explicitly and efficiently using O(log n +
log(k/ε) log(k log(1/ε))) random bits.

Lemma 6. Assume k is a power of 2. There exists a hash function H2 : [n] → [k]
such that for every S ⊂ [n] of size at least 100k2, the probability that H2 has
an empty bucket H−1

2 (j) ∩ S is at most 1/100. Moreover, H2 can be generated
explicitly and efficiently using O(log n + log2 k) random bits.



624 S. Lovett et al.

Lemma 7. There exists a hash function H3 : [n] → [16 log(1/ε)] such that for
every S ⊂ [n] of size at least 800k log(1/ε), the probability that H3 has at least
log(1/ε) buckets H−1

3 (j)∩S with at most k elements is at most ε/100.Moreover, H3

can be generated explicitly and efficiently using O(log n + log(1/ε) log(k log(1/ε)))
random bits.

The constructions of the hashes in Lemmas 5, 6 and 7 are based on almost t-wise
independence. A sequence of random variables X1, . . . , Xn ∈ {0, 1} is said to be
t-wise independent if any t random variables in it are independent. It is said to be
δ-almost t-wise independent if any t random variables in it are δ-close in statisti-
cal distance to independent. Explicit constructions of δ-almost t-wise independent
distributions are known, with nearly optimal seed length [NN, AGHP].

We identify a function h : [n] → [	], where 	 is a power of 2, by a sequence
of n log 	 bits. We construct the hash functions by choosing the sequence of bits
according to an δ-almost t-wise independent distribution, where the values of δ
and t differ in the three constructions. The main tool in our analysis is a tail
bound on t-wise independent distributions, due to Bellare and Rompel [BR],
extended to the case of δ-almost t-wise distributions. We defer further details
to the full version of the paper.

2.3 Pseudorandom Generators for Small Space

An ingredient in our construction is the small-space pseudorandom generator of
Impagliazzo, Nisan, and Wigderson [INW]. We first define branching programs,
which form a non-uniform model of small-space computations.

Definition 8. A (read-once, oblivious) branching program of length n, degree
d and width w is a layered graph with n + 1 layers, where each layer contains
at most w vertices. ¿From each vertex in the i-th layer (1 ≤ i ≤ n) there are d
outgoint edges, numbered 0, 1, . . . , d− 1. A vertex in the first layer is designated
as the start vertex. Running the branching program on an input x1, . . . , xn ∈ [d]
is done by following the path according to the inputs, starting at the start vertex.
The output of the branching program is the vertex reached in the last layer.

Definition 9. A pseudorandom generator for branching programs of length n,
degree d and width w with error ε is a function G : {0, 1}r → [d]n, such that for
every branching program of length n, degree d and width w, the statistical dis-
tance between the output of the branching program when run on uniform element
in [d]n, and the output when run on G(Ur), is at most ε.

Lemma 8. [INW] There exists an explicit pseudorandom generators for branch-
ing programs of length n, degree d, width w with error ε, which uses r = O(log d+
(log n)(log(n/ε) + log w)) truly random bits.

3 Construction Using PRG for Low-Degree Polynomials

We present in this section a simple construction for prime powers M , based
on pseudorandom generators for low-degree polynomials. This construction is



Pseudorandom Bit Generators That Fool Modular Sums 625

optimal for constant M , achieving a pseudorandom generator with seed length
OM (log(1/ε)) (where the constant depends exponentially on M).

Let W = Ω(M3 log 1/ε). We will construct two generators: one for coefficient
vectors of weight at most W , and one for coefficient vectors of weight at least W .
Lemma 2 shows that the bitwise-XOR of the two generators is a pseudorandom
generator for all coefficient vectors.

For small weights, we will use a distribution that is ε-almost W -wise inde-
pendent. Such a distribution trivially fools coefficient vectors of weight at most
W . It can be explicitly generated using O(log n + W + log 1/ε) = OM (log n/ε)
random bits [NN].

For large weights, let (a1, . . . , an) ∈ Z
n
M be a coefficient vector of weight at

least W . Consider first the distribution of a1R1 + . . . anRn for independent and
uniform bits R1, . . . , Rn. By Lemma 3, |biasUn(a1, . . . , an)| < ε/2.

Consider now Zi ∈ {0, 1}, where Pr[Zi = 0] = c/M for some integer 1 ≤ c ≤
M − 1. By Lemma 4,

|biasZ1,...,Zn∼(c/M,1−c/M)(a1, . . . , an)| < ε/4,

given that W = Ω(M3 log(1/ε)) with a large enough hidden constant.
The benefit of using this skewed distribution, is that it can be simulated by

low-degree polynomials modulo M . Since we assume M is a prime power, there
is a polynomial g : ZM → ZM that maps some c elements of ZM to 0, and
the rest to 1. For example, if M = pk, the polynomial g(x) = x(p−1)pk−1

maps
elements divisible by p to 0, and the rest to 1. The degree of this g is at most
M − 1.

Let Z1, . . . , Zn ∈ {0, 1}n be generated by g(Y1), . . . , g(Yn), where Y1, . . . , Yn ∈
ZM are uniform and independent. We thus have:

|biasZ1,...,Zn∼g(UZM
)n(a1, . . . , an)| < ε/4

Note that

biasZ1,...,Zn∼g(UZM
)n(a1, . . . , an) = EY1,...,Yn∈ZM [ωa1g(Y1)+···+ang(Yn)],

and that a1g(Y1) + · · ·+ ang(Yn) is a polynomial of degree deg(g) in Y1, . . . , Yn.
Thus we can derandomize the choice of Y1, . . . , Yn using a a pseudorandom gen-
erator for low-degree polynomials [BV, Lov, Vio]. We note the results in these
papers are stated for polynomials over prime finite fields, but they hold also for
polynomials over ZM , using small-bias spaces for Z

n
M [Kat, AIK+, RSW, EGL+,

AM] as a building block.

Lemma 9. For every M, n, d ∈ N, there is an explicit generator G : {0, 1}r →
Z

n
M such that for every polynomial f : Z

n
M → ZM of degree at most d, the dis-

tribution of f(Zn
M ) and f(G(Ur)) are ε-close in statistical distance. The number

of random bits required is r = O(d2d log(M/ε) + d log(nM)).

We use the generator of Lemma 9 for error ε/4 and degree d = M − 1. We thus
get an explicit generator whose output distribution (Y ′

1 , . . . , Y ′
n) ∈ Z

n
M , such that:

|E(Y ′
1 ,...,Y ′

n)[ωa1g(Y ′
1 )+...+ang(Y ′

n)] − EY1,...,Yn∈Z
n
M

[ωa1g(Y1)+...+ang(Yn)]| < ε/4



626 S. Lovett et al.

Thus, if we define our generator G′ to output g(Y ′
1), . . . , g(Y ′

n), we have
Y ′

1 , . . . , Y ′
n are the output of G, we get an explicit generator,such that

|biasG′(a1, . . . , an)| < ε/2. Hence, we get that

|biasG′(a1, . . . , an) − biasG(a1, . . . , an)| < ε

The randomness requirement of our generator comes directly from that of G,
which is O(M2M−1 log(M/ε) + M log(nM)) = OM (log(n/ε)) for constant M .

4 Construction Based on Pseudorandom Walk
Generators

4.1 A Generator for Small Sums

We construct an ε-bit-biased generator for weights at most W = 105M24 log(1/ε).
Let (a1, . . . , an) ∈ Z

n
M be a coefficient vector of weight at most W .

The construction has three stages:

1. Partitioning the set of indices [n] into W buckets using the hash function H1.
Lemma 5 guarantees that with probability at least 1 − ε/100, each bucket
contains at most O(log(1/ε)) non-zero coefficients.

2. For each bucket j, generate the Xi’s for i’s in the j’th bucket using an almost
O(log(1/ε))-wise independent distribution.

3. Use the INW generator given by Lemma 8 to generate the W seeds for the
O(log(1/ε))-wise independent distributions used for the different buckets.

Lemma 10. The above construction is an ε-bit-biased generator against coef-
ficient vectors of weight at most W , using O(log n + log(M/ε) log(M log(1/ε)))
random bits.

4.2 A Generator for Large Sums

In this section we construct an ε-bit-biased distribution for coefficient vectors of
weight at least W = 105M24 log(1/ε),

Recall that by Lemma 3, when the weight is large, the bias under the uniform
distribution is small. Thus, to prove that a distribution is ε-bit-biased against
large weight sums modulo M , it is enough to show that its bias is also small.
We construct our ε-bit-biased generator in three steps:

– G1: a generator that has bias at most 1 − 1/M2 on every coefficient vector
which is not all zeros.

– G2: a generator that has bias at most 0.91 on every coefficient vector of
weight at least 100M24.

– G3: a generator that has bias at most ε/2 on every coefficient vector of weight
at least 105M24 log 1/ε.

The generator G3 will be our ε-bit-biased generator for large weights. We will
sketch the constructions of G1, G2 and G3, deferring full details and proofs to
the full version of the paper. The main ingredient in the construction will be a
derandomized expander product, which we now define and analyze.



Pseudorandom Bit Generators That Fool Modular Sums 627

Derandomized Expander Products

Definition 10. We say an undirected graph H is a (2r, 2d, λ)-expander if H
has 2r vertices, it is regular of degree 2d and all eigenvalues but the first have
absolute value at most λ. We will identify the vertices of H with {0, 1}r, and the
edges exiting each vertex with {0, 1}d in some arbitrary way.

We will need explicit constructions of expanders, which can be obtained from
various known constructions.

Lemma 11. For some constant Q = 2q, there exist an efficient sequence Hk of
(Qk, Q, 1/100)-expanders.

Impagliazzo, Nisan, and Wigderson [INW] compose two pseudorandom genera-
tors using an expander as follows:

Definition 11. Let G′, G′′ : {0, 1}r → {0, 1}t be two bit generators. Let H be
a (2r, 2d, λ)-expander. We define G′ ⊗H G′′ : {0, 1}r+d → {0, 1}2t to be the
concatenation (G′(x), G′′(y)), where x is a random vertex in H, and y is a
random neighbor of x in H.

Our main lemma relates the bias of G′ ⊗H G′′ to the biases of G′ and G′′:

Lemma 12. Let G′, G′′ : {0, 1}r → {0, 1}t be two bit generators and let H be a
(2r, 2d, λ)-expander. Let (a1, . . . , at),(b1, . . . , bt) be two coefficient vectors. Then:

|bias(G′⊗HG′′)(Ur+d)(a1, . . . , at, b1, . . . , bt)|
≤ fλ(|biasG′(Ur)(a1, . . . , at)|, |biasG′′(Ur)(b1, . . . , bt)|)

where fλ(x, y) = xy + λ
√

1 − x2
√

1 − y2.

The bounds of [RV] imply that if maxk∈ZM\0 |biasG′(Ur)(ka1, . . . , kat)| ≤ x
then maxk∈ZM\0 |bias(G′⊗HG′)(Ur+d)(a1, . . . , at, a1, . . . , at)| ≤ x2 + λ · (1 − x2) =
fλ(x, x). If also maxk∈ZM\0 |biasG′′(Ur)(kb1, . . . , kbt)| ≤ y, then [RV] proof can be
extended to show maxk∈ZM\0 |bias(G′⊗HG′)(Ur+d)(ka1, . . . , kat, kb1, . . . , kbt)| ≤
xy +λ · (1−xy), which is a worse than our bound f(x, y) in case x �= y and does
not suffice for our purposes. In addition, our result only requires a bound on the
bias for the specific coefficient vectors (a1, . . . , at), (b1, . . . , bt) of interest, and
not multiples of those coefficient vectors; this is crucial for our analysis when M
is composite (cf., discussion after Lemma 3). On the other hand, the results of
[RV] are more general in that they apply to generators G′,G′′ that correspond
to random walks on any expander, not just Cayley graphs of ZM .

Construction of G1. As in [INW, RV], we iterate the above product. Like
[RV] we can use the constant-degree expander graphs H1, H2, . . . of Lemma 11
(as opposed to the expanders of degree poly(nw/ε) used by [INW] to prove
Lemma 8). We define G′

� : {0, 1}�q → {0, 1}2�−1q iteratively. G′
1 : {0, 1}q →

{0, 1}q is the identity mapping, and G′
� = G′

�−1 ⊗H�−1 G′
�−1. We set G1 = G′

�

for the minimal 	 such that 2�−1q ≥ n. We have:



628 S. Lovett et al.

Lemma 13. Let (a1, . . . , an) ∈ Z
n
M be a coefficient vector, which is not all

zeros. Then:
biasG1(a1, . . . , an) ≤ 1 − 1

M2
.

The seed-length of G1 is O(log n).

Construction of G2. We will construct G2 based on G1. Let (a1, . . . , an) be a
coefficient vector. Assume first a special case: Let n = k2s, and partition the set
of coefficients into 2s consecutive parts, each of size k. Assume that each part
contain at least one non-zero coefficient. By Lemma 13, applying G1 to each
part independently gives bias of at most 1 − 1/M2. We use this to analyze the
bias of G1 when applied in the special case:

Lemma 14. Let n = k2s. Let a1, . . . , an be a coefficient vector such that for
every j ∈ [2s], weight(ajk+1, ajk+2, . . . , a(j+1)k) > 0. Then:

biasG1(a1, . . . , an) ≤ min
(

1 −
(

9
8

)s 1
M2

, 0.9
)

.

In particular if s ≥ 12 logM , we have biasG1(a1, . . . , an) ≤ 0.9.

We now construct the generator G2 in three steps:

– Obliviously partition the coefficients, using the hash function H2. Re-order
the coefficients according to the partition. This guarantees that with proba-
bility at least 0.99, the conditions of Lemma 14 hold.

– Use G1 on the re-ordered coefficients.
– Return the pseudorandom bits back to the original order.

We have:

Lemma 15. Let (a1, . . . , an) ∈ Z
n
M be a coefficient vector, of weight at least

100M24. Then:
biasG2(a1, . . . , an) ≤ 0.91.

The seed length of G2 is O(log n + log2 M).

Construction of G3. We use G2 to build our final ε-bit-biased generator G3.
The construction of G3 has three parts:

– Use H3 to partition the inputs to O(log(1/ε)) buckets, such that with proba-
bility 1− ε/100, most buckets contain at least 100M24 non-zero coefficients.

– Use G2 on each bucket.
– Combine the generators for the separate buckets using expander products,

with expanders of growing degree as in [RV].

Lemma 16. Let (a1, . . . , an) ∈ Z
n
M be a coefficient vector, of weight at least

105M24 log(1/ε). Then:

biasG3(a1, . . . , an) ≤ ε/2.

The randomness required by G3 is O(log n + log(M/ε) log(M log(1/ε))).



Pseudorandom Bit Generators That Fool Modular Sums 629

Acknowledgments

We thank Emanuele Viola for drawing our attention to this problem. We thank
Andrej Bogdanov for helpful discussions.

References

[AIK+] Ajtai, M., Iwaniec, H., Komlós, J., Pintz, J., Szemerédi, E.: Construction
of a thin set with small Fourier coefficients. Bull. London Math. Soc. 22(6),
583–590 (1990)

[AKS] Ajtai, M., Komlós, J., Szemerédi, E.: Deterministic Simulation in
LOGSPACE. In: Proceedings of the Nineteenth Annual ACM Symposium
on Theory of Computing, New York City, pp. 132–140 (1987)

[AGHP] Alon, N., Goldreich, O., H̊astad, J., Peralta, R.: Simple constructions of
almost k-wise independent random variables. Random Structures & Algo-
rithms 3(3), 289–304 (1992)

[AM] Alon, N., Mansour, Y.: ε-discrepancy sets and their application for interpo-
lation of sparse polynomials. Information Processing Letters 54(6), 337–342
(1995)

[AR] Alon, N., Roichman, Y.: Random Cayley graphs and expanders. Random
Structures Algorithms 5(2), 271–284 (1994)

[BNS] Babai, L., Nisan, N., Szegedy, M.: Multiparty protocols, pseudorandom gen-
erators for logspace, and time-space trade-offs. Journal of Computer and
System Sciences, 204–232 (1989)

[BR] Bellare, M., Rompel, J.: Randomness-Efficient Oblivious Sampling. In: 35th
Annual Symposium on Foundations of Computer Science, Santa Fe, New
Mexico, pp. 276–287. IEEE, Los Alamitos (1994)

[BSVW] Ben-Sasson, E., Sudan, M., Vadhan, S., Wigderson, A.: Randomness-
efficient low degree tests and short PCPs via epsilon-biased sets. In: Proceed-
ings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing,
pp. 612–621. ACM, New York (2003) (electronic)

[BV] Bogdanov, A., Viola, E.: Pseudorandom Bits for Polynomials. In: FOCS,
pp. 41–51. IEEE Computer Society Press, Los Alamitos (2007)

[DGJ+] Diakonikolas, I., Gopalan, P., Jaiswal, R., Servedio, R.A., Viola, E.:
Bounded Independence Fools Halfspaces. CoRR abs/0902.3757 (2009)

[EGL+] Even, G., Goldreich, O., Luby, M., Nisan, N., Veličković, B.: Efficient ap-
proximation of product distributions. Random Structures Algorithms 13(1),
1–16 (1998)

[HPS] H̊astad, J., Phillips, S., Safra, S.: A well-characterized approximation prob-
lem. Information Processing Letters 47(6), 301–305 (1993)

[INW] Impagliazzo, R., Nisan, N., Wigderson, A.: Pseudorandomness for Network
Algorithms. In: Proceedings of the Twenty-Sixth Annual ACM Sympo-
sium on the Theory of Computing, Montréal, Québec, Canada, pp. 356–364
(1994)

[Kat] Katz, N.M.: An estimate for character sums. Journal of the American Math-
ematical Society 2(2), 197–200 (1989)

[Lov] Lovett, S.: Unconditional pseudorandom generators for low degree polyno-
mials. In: Ladner, R.E., Dwork, C. (eds.) STOC, pp. 557–562. ACM, New
York (2008)



630 S. Lovett et al.

[MZ] Meka, R., Zuckerman, D.: Small-Bias Spaces for Group Products. In: Dinur,
I., et al. (eds.) APPROX and RANDOM 2009. LNCS, vol. 5687, Springer,
Heidelberg (2009)

[MST] Mossel, E., Shpilka, A., Trevisan, L.: On ε-biased generators in NC0. Ran-
dom Structures Algorithms 29(1), 56–81 (2006)

[MNN] Motwani, R., Naor, J., Naor, M.: The probabilistic method yields determin-
istic parallel algorithms. Journal of Computer and System Sciences 49(3),
478–516 (1994)

[NN] Naor, J., Naor, M.: Small-Bias Probability Spaces: Efficient Constructions
and Applications. SIAM Journal on Computing 22(4), 838–856 (1993)

[Nao] Naor, M.: Constructing Ramsey graphs from small probability spaces. Tech-
nical Report RJ 8810, IBM Research Report (1992)

[Nis] Nisan, N.: Pseudorandom generators for space-bounded computation. Com-
binatorica 12(4), 449–461 (1992)

[RS] Rabani, Y., Shpilka, A.: Explicit construction of a small epsilon-net for
linear threshold functions. In: Mitzenmacher, M. (ed.) STOC, pp. 649–658.
ACM, New York (2009)

[RSW] Razborov, A., Szemerédi, E., Wigderson, A.: Constructing small sets that
are uniform in arithmetic progressions. Combinatorics, Probability and
Computing 2(4), 513–518 (1993)

[RTV] Reingold, O., Trevisan, L., Vadhan, S.: Pseudorandom Walks In Regular
Digraphs and the RL vs. L problem. In: Proceedings of the 38th Annual
ACM Symposium on Theory of Computing, STOC 2006, May 21-23 (2006);
Preliminary version on ECCC (February 2005)

[RV] Rozenman, E., Vadhan, S.: Derandomized Squaring of Graphs. In: Chekuri,
C., Jansen, K., Rolim, J.D.P., Trevisan, L. (eds.) APPROX and RANDOM
2005. LNCS, vol. 3624, pp. 436–447. Springer, Heidelberg (2005)

[SZ] Saks, M., Zhou, S.: BPHSPACE(S) ⊆ DSPACE(S3/2). Journal of Computer
and System Sciences 58, 376–403 (1999)

[Vio] Viola, E.: The Sum of d Small-Bias Generators Fools Polynomials of Degree
d. In: IEEE Conference on Computational Complexity, pp. 124–127. IEEE
Computer Society, Los Alamitos (2008)


	Pseudorandom Bit Generators That Fool Modular Sums
	Introduction
	Definitions and Tools
	Small Bias Bit Generators
	Hashing
	Pseudorandom Generators for Small Space

	Construction Using PRG for Low-Degree Polynomials
	Construction Based on Pseudorandom Walk Generators
	A Generator for Small Sums
	A Generator for Large Sums




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




