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Abstract. Zimand [24] presented simple constructions of locally com-
putable strong extractors whose analysis relies on the direct product
theorem for one-way functions and on the Blum-Micali-Yao generator.
For N-bit sources of entropy γN , his extractor has seed O(log2 N) and
extracts Nγ/3 random bits.

We show that his construction can be analyzed based solely on the
direct product theorem for general functions. Using the direct product
theorem of Impagliazzo et al. [6], we show that Zimand’s construction
can extract Ω̃γ(N1/3) random bits. (As in Zimand’s construction, the
seed length is O(log2 N) bits.)

We also show that a simplified construction can be analyzed based
solely on the XOR lemma. Using Levin’s proof of the XOR lemma [8],
we provide an alternative simpler construction of a locally computable
extractor with seed length O(log2 N) and output length Ω̃γ(N1/3).

Finally, we show that the derandomized direct product theorem of Im-
pagliazzo and Wigderson [7] can be used to derive a locally computable
extractor construction with O(log N) seed length and Ω̃(N1/5) output
length. Zimand describes a construction with O(log N) seed length and

O(2
√

log N) output length.
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1 Introduction

Randomness extractors, defined by Nisan and Zuckerman [25,13] are a funda-
mental primitive with several applications in pseudorandomness and derandom-
ization. A function Ext : {0, 1}N × {0, 1}t → {0, 1}m is a (K, ε)-extractor if, for
every random variable X of min-entropy at least K, the distribution Ext(X, Ut)
has statistical distance at most ε from the uniform distribution over {0, 1}m.1
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1 We use Un to denote the uniform distribution over {0, 1}n, and recall that a distribu-

tion X is said to have min-entropy at least K if for every a we have P[X = a] ≤ 2−K .
Two random variables Y, Z ranging over the same universe {0, 1}m have distance at
most ε in statistical distance if for every statistical test T : {0, 1}m → {0, 1} we have

|P[T (Y ) = 1] − P[T (Z) = 1]| ≤ ε
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Besides their original applications to extract randomness from weak random
sources and as primitives inside pseudorandom generators for space bounded
computation, extractors have found several other applications. As surveyed in
[12,16] extractors are related to hashing and error-correcting codes, and have
applications to pseudorandomness and hardness of approximation.

Extractors have also found several applications in cryptography, for example
in unconditionally secure cryptographic constructions in the bounded-storage
model [10,1,9]. For such applications, it is particularly desirable to have locally
computable extractors, in which a bit of the output can be computed by only
looking at the seed and at poly log n bits of the input. (The weaker notion of
online extractors [2], however, is sufficient.)

The starting point of our paper is Zimand’s [24] simple construction of a
locally computable extractor based on the Blum-Micali-Yao pseudorandom gen-
erator, and his analysis via the reconstruction approach of [20]. The extractor is
neither optimal in terms of the output length nor the seed length. For e.g., both
Lu [9] and Vadhan [21] achieve an optimal seed length of Θ(log n) for inverse
polynomial error while extracting almost all the entropy of the source. In fact,
[21] does better than [9] by extracting all but an arbitrarily small constant factor
of the min-entropy while the latter has to lose an arbitrarily small polynomial
factor. However, both these constructions are complicated in the sense that while
Vadhan uses tools like samplers and extractors [15,26] from pseudorandomness
machinery, Lu uses the extractor from [20] along with error-correcting codes
based on expander graphs. In contrast, the extractor construction in Zimand
[24] is extremely simple, only the analysis is non-trivial.

The idea of the reconstruction approach to the analysis of extractors is the
following. Suppose we want to prove that Ext : {0, 1}N × {0, 1}t → {0, 1}m

is a (K, ε) extractor. Then, towards a contradiction, we suppose there is a test
T : {0, 1}m → {0, 1} and a random variable X of min entropy at least K such
that

|P[T (Ext(X, Ut)) = 1] − P[T (Um) = 1]| > ε

In particular, there is a probability at least ε/2 when sampling from X of selecting
a bad x such that

|P[T (Ext(x, Ut)) = 1] − P[T (Um) = 1]| >
ε

2
At this point, one uses properties of the construction to show that if x is bad as
above, x can be reconstructed given T and a r-bit string of “advice.” This means
that there can be at most 2r bad strings x, and if X has min-entropy K then
the probability of sampling a bad x is at most 2r/2K , which is a contradiction
if 2K > 2r+1/ε.

In Zimand’s extractor construction, one thinks of a sample from X as speci-
fying a cyclic permutation p : {0, 1}n → {0, 1}n (where n is roughly log N), then
let p be a permutation obtained from p via a hardness amplification procedure,
so that the ability to invert p on a small α fraction of inputs implies the ability
of invert p on a large 1− δ fraction of inputs. Then the output of the extractor,
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for seed z, is BMY (p, z), the Blum-Micali-Yao generator applied to permuta-
tion p with seed z. If a test T distinguishes the output of the extractor from the
uniform distribution, then there is an algorithm that, using T , can invert p on
a noticeable fraction of inputs, and hence p on nearly all inputs. The proof is
completed by presenting a counting argument showing an upper bound on the
number of permutations that can be easily inverted on nearly all inputs.

Zimand’s extractor uses a seed of length O(log2 N) and, for a source of entropy
γN , the output length is Nγ/3 bits.

We show that, by using only direct product theorems and XOR lemmas,
we can improve the output length to roughly N1/3. This is true both for Zi-
mand’s original construction2, as well as for a streamlined version we describe
below. The streamlined version is essentially the same construction as the lo-
cally computable extractor of Dziembowski and Maurer [4]. Our analysis via
Levin’s XOR lemma is rather different from the one in [4] which is based on
information-theoretic arguments. It should be noted that using information the-
oretic arguments, Dziembowski and Maurer manage to get an output length of
N1−o(1). However, at a conceptual level, we show that the same style of analysis
can be used both for the extractor in [4] and [24]3.

Using the derandomized direct product theorem of Impagliazzo and Wigderson
[7], we give a construction in which the seed length reduces to O(log N), but the
output length reduces to N1/5.

Our Constructions

Consider the following approach. View the sample from the weak random source
as a boolean function f : [N ] → {0, 1}, and suppose that the extractor simply
outputs the sequence

f(x), f(x + 1), . . . , f(x + m − 1)

where x ∈ [N ] is determined by the seed, and sums are computed modN . Then,
by standard arguments, if T is a test that distinguishes the output of the extrac-
tor from the uniform distribution with distinguishing probability ε, then there
is a predictor P , derived from T , and i ≤ m such that

P[P (x, f(x − 1), . . . , f(x − i)) = f(x)] ≥ 1
2

+
ε

m
(1)

Note that if the right-hand side of (1) were 1 − δ for some small δ, instead of
1/2 + ε/m, then we could easily deduce that f can be described using about
m + δN + H(δ) · N bits (where H() is the entropy function), and so we would
be done.
2 We actually do not show an improved analysis for this specific construction by Zi-

mand but rather for the second construction in the same paper which achieves ex-
actly the same parameters. Our improved analysis works equally well for both the
constructions but is slightly notationally cumbersome for the first one.

3 The fact that [4] gets a better output length suggests that neither the original anal-
ysis of [24] nor our improved analysis is tight.
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To complete the argument, given the function f : [N ] → {0, 1} that we sample
from the random source, we define the function f : [N ]k → {0, 1} as

f(x1, . . . , xk) :=
k⊕

i=1

f(xi)

where k ≈ log N , and our extractor outputs

f(x), f(x + 1), . . . , f(x + m − 1)

where x = (x1, . . . , xk) ∈ [N ]k is selected by the seed of the extractor, j is the
vector (j, . . . , j), and sums are coordinate-wise, and modN .

If T is a test that has distinguishing probability ε for our extractor, then there
is a predictor P based on T such that

P[P (x, f(x − 1), . . . , f(x − i)) = f(x)] ≥ 1
2

+
ε

m
(2)

from which we can use the proof of the XOR lemma to argue that, using P and
some advice, we can construct a predictor P ′ such that

P[P ′(x, f(x − 1), . . . , f(x − i)) = f(x)] ≥ 1 − δ (3)

and now we are done. Notice that we cannot use standard XOR lemmas as a
black box in order to go from (2) to (3), because the standard theory deals with
a predictor that is only given x, rather than x, f(x−1), . . . , f(x− i). The proofs,
however, can easily be modified at the cost of extra non-uniformity. To adapt,
for example, Levin’s proof of the XOR Lemma, we see that, in order to predict
f(x), it is enough to evaluate P at O(m2/ε2) points x, each of them containing
x in a certain coordinate and fixed values everywhere else. For each such point,
F (x − 1), . . . , F (x − i) can be specified using i · (k − 1) ≤ mk bits of advice.
Overall, we need m3k/ε2 bits of advice, which is why we can only afford the
output length m to be the cubed root of the entropy. The seed length is k log N ,
which is O(log2 N).

This type of analysis is robust to various changes to the construction. For
example, we can view a sample from the weak random source as a function
f : {0, 1}n → {0, 1}n, define

f(x1, . . . , xk) := f(x1), . . . , f(xk)

View the seed as specifying an input x for f() and a boolean vector r of the
same length, and define the output of the extractor as

〈f(x), r〉, 〈f (x + 1), r〉, · · · , 〈f(x + m − 1), r〉 (4)

Then using appropriate versions of Goldreich-Levin and of the direct prod-
uct lemma of Impagliazzo et al. [6], we can show that the construction is an
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extractor provided that m is about N1/3 4. Construction (4) is precisely the
second construction by Zimand [24].

By applying the derandomized direct product theorem of Impagliazzo and
Wigderson [7], we are able to reduce the seed length to O(log N), but our re-
construction step requires more non-uniformity, and so the output length of the
resulting construction is only about N1/5.

Organization of the Paper. In section 2, we present some notations which
shall be used throughout the paper and an overview of the techniques recurrent
in the proofs of all the three constructions. Section 3 presents the first of our
constructions. Its proof of correctness is self contained. Improved analysis of
the construction by Zimand [24] as well as the description and proof of the
derandomized extractor are deferred to the full version of the paper.

2 Preliminaries and Overview of Proofs

Notations and Definitions

The following notations are used throughout the paper. A tuple (y1, y2, . . . , yk)
is denoted by ⊗k

i=1yi. The concatenation of two strings x and y is denoted by
x ◦ y. If x and y are tuples, then x ◦ y represents the bigger tuple formed by
concatenating x and y. The uniform distribution on {0, 1}n is denoted by Un.
For z1, . . . , zk ∈ {0, 1}, ⊕k

i=1zi denotes the XOR of z1, . . . , zk. Statistical distance
between two distributions D1 and D2 is denoted by ||D1 − D2||.

Next, we define extractors as well as a stronger variant called strong
extractors.

Definition 1. [15,25] Ext : {0, 1}N × {0, 1}t → {0, 1}m is said to be a (K, ε)
extractor if for every random variable X with min-entropy at least K, the sta-
tistical distance between output of the extractor and the uniform distribution is
at most ε i.e. ||Ext(X, Ut)−Um|| ≤ ε. Ext is said to be a strong extractor if the
seed can be included with the output and the distribution still remains close to
uniform i.e. ||Ut ◦ Ext(X, Ut) − Ut+m|| ≤ ε. Here both the Ut refer to the same
sampling of the uniform distribution.

In the above definition, t is referred to as seed length, m as the output length
and ε as the error of the extractor.

General Paradigm of Construction. All the three extractors can be de-
scribed in the following general model. Let Ext : {0, 1}N ×{0, 1}t → {0, 1}m be
the extractor (terminology is the same as Definition 1) with X representing the
weak random source and y the seed. X is treated as truth table of a function
X : {0, 1}n → {0, 1}l (l = 1 in the first and the third constructions and l = n in
4 Even using the ‘concatenation lemma’ of Goldreich et al. [5] which is a much more

non-uniform version of the direct product theorem, we get m = N
1
10 for which is

better than Zimand’s analysis for entropy rates < 0.3.
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the second construction). This implies that n is logarithmic in the input length
N and more precisely N = l2n. Further, we associate a cyclic group of size 2n

with {0, 1}n (This can be any ordering of the elements in {0, 1}n except that
the addition in the group should be efficiently computable). To make it easier
to remind us that X is treated as truth table of a function, the corresponding
function shall henceforth be called f . The seed y is divided into two chunks i.e.
y = x ◦ z. x is called the input chunk and z is called the encoding chunk. Also,
let k be a parameter of the construction such that |x| = g(n, k) and |z| = h(n, k)
and hence t = g(n, k) + h(n, k). Ext is specified by two functions namely
Exp : {0, 1}g(n,k) → ({0, 1}n)k and Com : ({0, 1}l)k × {0, 1}h(n,k) → {0, 1}.
Ext computes the output as follows

– On input (X, y) ≡ (f, x◦z), Ext first computes Exp(x) = (x1, x2, x3, . . . , xk)
which gives k candidate inputs for the function f .

– Subsequently, the ith bit of the output is computed by combining the evalu-
ation of f at shifts of (x1, . . . , xk) using Com. More precisely, the ith bit is
given by Com(⊗k

j=1f(xj + i − 1), z).

Our constructions differ from each other in the definition of the functions Exp
and Com. It can be easily seen that as long as Exp and Com are efficiently
computable i.e. both of them are computable in poly(n, k) time and k = O(n),
the extractors shall be locally computable. This is true for all our constructions.

Proofs in the Reconstruction Paradigm. We now show the steps (following
the reconstruction paradigm) which are used in the proof of correctness of all
the constructions. We first note that proving Ext : {0, 1}N × {0, 1}t → {0, 1}m

is a (γN, 2ε) strong extractor is equivalent to proving that for every boolean
function T : {0, 1}m+t → {0, 1} and random variable X of min-entropy at least
γN ∣∣Prf∈X,y∈Ut [T (y, Ext(f, y)) = 1] − Pru∈Ut+m [T (u) = 1]

∣∣ ≤ 2ε (5)

We had earlier noted the following fact which we formally state below.

Observation 1. In order to prove equation (5), it suffices to prove that for any
T : {0, 1}m+t → {0, 1}, there are at most ε2γN functions f such that

∣∣Pry∈Ut [T (y, Ext(f, y)) = 1] − Pru∈Ut+m [T (u) = 1]
∣∣ > ε (6)

In order to bound the number of functions which satisfy (6), we use the recon-
struction approach in [20]5 (and more generally used in the context of pseu-
dorandom generators in [3,14]). In particular, we show that given any f which
satisfies (6), we can get a circuit Cf (not necessarily small) which predicts value
of f by querying f at some related points. More precisely, we show that for some

5 This particular instance of reconstruction paradigm was used in context of extractors
by Zimand [24] and earlier in context of pseudorandom generators by Blum, Micali
and Yao [3,23].
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m > i ≥ 0, using c bits of advice, we can construct Cf which satisfies (7) for
some s ≤ 1

2 .
Prx∈Un [Cf (x,⊗i

j=1f(x − j)) = f(x)] ≥ 1 − s (7)

The next lemma shows how such a circuit Cf can be used to bound the number
of functions f satisfying (6).

Lemma 1. If for every f satisfying (6), using c bits of advice, we can get a
circuit Cf satisfying (7) for some s ≤ 1

2 , then there are at most 2c+2n(sl+H(s))+ml

functions satisfying (6).

Proof. Let the set BAD consist of points x ∈ {0, 1}n such that Cf (x,⊗i
j=1f(x−

j)) 
= f(x). Since the size of the set BAD is at most s2n, to fully specify the
set, we require at most log2 S bits where S =

∑s2n

i=0

(
2n

i

)
. Further, to specify the

value of f on the set BAD, we require at most sl2n bits. We now note that if
we are given the value of f on any consecutive i points (say [0, . . . , i−1]), which
requires at most il bits, then using the circuit Cf , the set BAD and the value of
f on points in BAD, one can fully specify f . We also use the following standard
fact. (Log is taken base 2 unless mentioned otherwise)

Fact 2. For s ≤ 1
2 ,

∑s2n

i=0

(
2n

i

) ≤ 2H(s)2n

where H(s) = −s log s−(1−s) log(1−s).

Hence, we see that if we are given that f satisfies (6), then using T and c+2n(s+
H(s)) + il bits of advice, we can exactly specify f . Hence for any particular
T , (using i < m) we get that there are at most 2c+2n(sl+H(s))+ml functions
satisfying (6).

In light of lemma 1, given f satisfying (6), we should use T to construct a
circuit Cf satisfying (7) with as minimum advice and as small s as possible. We
first use the standard hybrid argument and Yao’s distinguisher versus predictor
argument to get a circuit which is a ‘next-element’ predictor. In particular,
we create a circuit which predicts a particular position in the output of the
extractor with some advantage over a random guess when given as input the
value of the random seed as well as all the bits in the output preceeding the bit
to be predicted. The argument is by now standard and can be found in several
places including [20,19,17]. We do not redo the argument here but simply state
the final result.

Lemma 2. Let f be any function satisfying (6) and Ext(f, y)i be the ith bit of
the output. Then using m+ logm+3 bits of advice, we can get a circuit T2 such
that for some 0 ≤ i < m, f satisfies (8).

Pry∈Ut [T2(y,⊗m−i−1
j=1 Ext(f, y)j) = Ext(f, y)m−i] >

1
2

+
ε

m
(8)

The proof of correctness of all our constructions start from the above equation
and use more advice to finally get a circuit Cf satisfying (7). We now describe
one of our constructions and its proof of correctness (Refer to the full version
for the other two constructions).
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3 Extractor from XOR Lemma

Description of the Construction. Ext : {0, 1}2n × {0, 1}kn → {0, 1}m is
defined as follows. On input (f, y), the seed y is partitioned into k chunks of
length n - call it (x1, x2, x3, . . . , xk). The source f is treated as truth table of a
function from {0, 1}n to {0, 1}. Then the ith bit of the output is given by the
bitwise XOR of f(x1 + i−1), . . . , f(xk + i−1) i.e. Ext(f, y)i = ⊕k

i=1f(xj + i−1).
In terminology of the last section, N = 2n, g(k, n) = kn and h(k, n) = 0. Note
that there is no encoding chunk in the seed and the entire seed is the input
chunk. Further, the function Exp simply partitions a string of length kn into k
chunks of length n while the function Com computes a bitwise XOR of its first
input (the second input is the empty string).

Difference from Construction in [4]. As we have mentioned before, the
construction in [4] is very similar though we have some minor simplifications.
The extractor in [4] Ext′ : ({0, 1}N+m−1)k × {0, 1}k log N → {0, 1}m can be
described as follows. The weak source is treated as truth table of k functions
f1, . . . , fk such that for each j ∈ [k], fj : [N +m−1] → {0, 1}. The seed is divided
into k chunks l1, . . . , lk such that each lj can be treated as an element in [N ]. The
ith bit of the output is computed as ⊕k

j=1fj(lj + i− 1). Thus, we avoid a minor
complication of not having to divide the source into chunks. Our proof can be
modified to work in this case as well at the cost of making it more cumbersome
while conceptually remaining the same. However, the main difference is that we
come up with an entirely different proof from the one in [4].

Main Theorem and Proof of Correctness

Theorem 3. The function Ext : {0, 1}2n × {0, 1}kn → {0, 1}m is a (γ2n, 2ε)

strong extractor for a (constant) γ > 0, ε ≥ 2−
n
7 , m = ε

2
3 2

n
3

n2 and seed length

kn = O
(

n log m
ε

γ2

)
.

Before proving Theorem 3, we see an immediate corollary of the above theorem
with parameters of interest.

Corollary 1. The function Ext as defined above is a (γ2n, 2ε) strong extractor

for a (constant) γ > 0, 2ε = 2−n
1
4 , m = 2

n
3 −√

n and seed length kn = O
(

n2

γ2

)
.

In order to prove Theorem 3, we first state the following main technical lemma
of this section and then see how Theorem 3 follows from it. Subsequently, we
prove the lemma.

Lemma 3. Let T : {0, 1}m+kn → {0, 1} and f : {0, 1}n → {0, 1} such that (6)
holds. Also, let 1 > δ > 0 be such that δk ≤ ε

m and m ≥ nk. Then with at most
6nk2m3

ε2 bits of advice, we can get a circuit Cf such that

Prx1∈Un [Cf (x1,⊗i
j=1f(x1 − j)) = f(x1)] ≥ 1 + δ

2
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Before we formally prove Theorem 3 using Lemma 3, it is useful to mention that
an application of δ is meaningful when it is close to 1 rather than 0. As can be
seen from Lemma 3, we construct a circuit Cf which has correlation δ with f
and hence we would like 1− δ to be small. This is different from the terminology
used in Section 1 where we want to construct a circuit Cf which computes f
with probability 1 − δ and hence we would like δ to be close to 0.

Proof (of Theorem 3). In light of Observation 1, we note that it is sufficient to
prove that for any statistical test T : {0, 1}m+kn → {0, 1}, the number of func-
tions f satisfying (6) is at most ε2γN . Let δ be such that 1−δ

2 = min{10−3, γ2

4 }.
Also putting k = C log m

ε

γ2 = O
(

n
γ2

)
for some appropriate constant C clearly

satisfies δk ≤ ε
m . Further, m = 2Ω(n) while nk = O

(
n2

γ2

)
. So, clearly m ≥ nk

for constant γ and sufficiently large n. With this, we satisfy the conditions for
applying lemma 3 and hence with 6nk2m3

ε2 bits of advice, we can get a circuit Cf

satsifying (7) with s = 1−δ
2 . Using lemma 1, we can say that for any test T , the

total number of functions satisfying (6) is at most 2
6nk2m3

ε2
+( 1−δ

2 +H( 1−δ
2 ))2n+m.

We now use the following fact

Fact 4. For any 0 ≤ α ≤ 10−3, α + H(α) ≤ √
α

Putting everything together now, we get that the total number of functions
satisfying (6) is at most (we consider the case when γ > 0 is a constant and n is
large enough integer).

2
6nk2m3

ε2
+( 1−δ

2 +H( 1−δ
2 ))2n+m ≤ 2O( 2n

n3γ4 )2
γ
2 2n

22
n
3 ≤ 2−

n
7 2γ2n ≤ ε2γ2n

Proof ( of Lemma 3). Using lemma 2, we get that for any f such that (6)
holds, using m + log m + 3 bits of advice, we can get a circuit T2 such that

Pr[T2(x,⊕k
j=1f(xj), . . . ,⊕k

j=1f(xj +m−i−2)) = ⊕k
j=1f(xj+m−i−1)] >

1
2
+

ε

m

In the above, x1, x2, . . . , xk are independent random variables drawn from Un

and x is the concatenation of x1, . . . , xk. Unless otherwise stated, in this section,
any variable picked randomly is picked from the uniform distribution (The do-
main shall be evident from the context). We now introduce some changes in the
notation so as to make it more convenient. First of all, we note that m − i − 1
can be replaced by i as i runs from 0 to m− 1. Further, we can assume that the
first k arguments in the input are changed from xj to xj + i for all 1 ≤ j ≤ k
and hence we get a circuit C such that

Pr[C(x,⊕k
j=1f(xj − i), . . . ,⊕k

j=1f(xj − 1)) = ⊕k
j=1f(xj)] >

1
2

+
ε

m

In this proof, we closely follow the proof of XOR lemma due to Levin [8] as
presented in [5]. As is done there, for convenience, we change the range of f
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from {0, 1} to {−1, 1} i.e. f(x) now changes to (−1)f(x). With this notational
change, parity changes to product and prediction changes to correlation i.e.

E[
k∏

j=1

f(xj)C(x,

k∏

j=1

f(xj − i), . . . ,
k∏

j=1

f(xj − 1))] >
2ε

m

In order to simplify the notation further, we make one more change. For any
tuple (x1, x2, . . . , xt) = x,

∏t
j=1 f(xj − s) is denoted by f(x − s). Using the

notation introduced earlier for denoting tuples, we get

Ex[f(x)C(x,⊗i
j=1f(x − j))] >

2ε

m

Let δ and η be such that δk ≤ ε
m and η = ε

km . Then the above equation can be
rewritten as

Ex[f(x)C(x,⊗i
j=1f(x − j))] > δk + kη (9)

Further, we can write x as x1 ◦ y1 where x1 ∈ {0, 1}n and y1 ∈ ({0, 1}n)k−1 and
then the above can be rewritten as

Ex1∈Un [f(x1)Γ (x1,⊗i
j=1f(x1 − j))] > δk + kη (10)

where Γ (x1,⊗i
j=1f(x1−j)) = Ey1∈U(k−1)nf(y1)C(x1◦y1,⊗i

j=1f(x1−j)f(y1−j)).
At this stage, there are the following two possibilities.

1. ∀x1,
∣∣Γ (x1,⊗i

j=1f(x1 − j))
∣∣ ≤ δk−1 + (k − 1)η.

2. ∃x1 such that
∣∣Γ (x1,⊗i

j=1f(x1 − j))
∣∣ > δk−1 + (k − 1)η .

The following lemma shows how to construct the circuit in (7) in the first case.
The second case follows by an inductive argument.

Lemma 4. If for all x1,
∣∣Γ (x1,⊗i

j=1f(x1 − j))
∣∣ ≤ δk−1 + (k − 1)η, then with

4nm
η2 + log

(
4n
η2

)
+ 1 bits of advice, we can get a circuit Cf : {0, 1}n × {0, 1}i →

{−1, 1} such that

Ex1 [f(x1)Cf (x1,⊗i
j=1f(x1 − j))] > δ (11)

Proof. Let Γ1(x1,⊗i
j=1f(x1−j)) = Γ (x1,⊗i

j=1f(x1−j))

δk−1+(k−1)η
∈ [−1, 1]. We note that (10)

says that Γ1(x1,⊗i
j=1f(x1 − j)) has high correlation with f(x1) and hence if we

could compute Γ1, then we could compute f(x1) with high probability . Since
computing Γ1 looks unlikely (without using 2n bits of advice), we will approxi-
mate Γ1 and still manage to compute f with high probability. In particular, we
define a circuit C1 such that for every x1, C1 approximates Γ (x1,⊗i

j=1f(x1−j))
within an additive error of η when given input x1 and ⊗i

j=1f(x1− j). To do this,
C1 picks up q = 2n

η2 elements independently at random from ({0, 1}n)(k−1). Call
these elements w1, . . . , wq. C1 then takes ⊗i

j=0f(wl − j) for l ∈ [q] as advice.
Subsequently, it computes the function Γ2 which is defined as follows. (Note
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that Γ2 depends upon wi’s and the corresponding advice though wi’s are not
explicitly included in the argument)

Γ2(x1,⊗i
j=1f(x1 − j)) = El∈[q]f(wl)C(x1 ◦ wl,⊗i

j=1f(x1 − j)f(wl − j))

By Chernoff bound, we can say the following is true for all x1. (The probability
is over the random choices of wl for l ∈ [q])

Pr[
∣∣Γ2(x1,⊗i

j=1f(x1 − j)) − Γ (x1,⊗i
j=1f(x1 − j))

∣∣ > η] < 2−n

We would like our estimate of Γ (x1,⊗i
j=1f(x1 − j)) to have absolute value

bounded by δk−1 + (k − 1)η. Hence, we define Γ3 as follows.

1. If
∣∣Γ2(x1,⊗i

j=1f(x1 − j))
∣∣ ≤ δk−1 + (k − 1)η then Γ3 is the same as Γ2 i.e.

Γ3(x1,⊗i
j=1f(x1 − j)) = Γ2(x1,⊗i

j=1f(x1 − j))
2. If not, then Γ3 has absolute value δk−1 + (k − 1)η with sign same as Γ2 i.e.

Γ3(x1,⊗i
j=1f(x1 − j)) = |(Γ2(x1,⊗i

j=1f(x1−j)))|
(Γ2(x1,⊗i

j=1f(x1−j)))
(δk−1 + (k − 1)η)

The final output of C1(x1,⊗i
j=1f(x1 − j)) is Γ3(x1,⊗i

j=1f(x1 − j)). Since Γ3 is
definitely at least as good a approximation of Γ as Γ2 is, we can say the following
(the probability is again over the random choices of wl for l ∈ [q] and as before
wl is not explicitly included in the argument).

Pr[
∣∣Γ3(x1,⊗i

j=1f(x1 − j)) − Γ (x1,⊗i
j=1f(x1 − j))

∣∣ > η] < 2−n

By a simple union bound, we can see that there exists a q-tuple ⊗q
l=1wl is such

that for all x1,
∣∣Γ3(x1,⊗i

j=1f(x1 − j)) − Γ (x1,⊗i
j=1f(x1 − j))

∣∣ ≤ η. Hence with
qn(k − 1) ≤ 2n2k

η2 bits of advice, we can get such a tuple ⊗q
l=1wl. Further, the

advice required for getting ⊗i
j=0f(wl − j) for each l ∈ [q] is (i + 1)q ≤ 2nm

η2 bits.
So, we hardwire these ‘good’ values of wl and ⊗i

j=0f(wl− j) into C1 (i.e. instead
of taking random choices, it now works with these hardwired values) and we can
say that

Ex1 [f(x1)C1(x1,⊗i
j=1f(x1 − j))] ≥ Ex1 [f(x1)Γ (x1,⊗i

j=1f(x1 − j))] − η (12)

The above claim uses that the range of f is [−1, 1]. This can now be combined
with (10) to give the following

Ex1 [f(x1)C1(x1,⊗i
j=1f(x1 − j))] > δk + (k − 1)η (13)

We now define C2(x1,⊗i
j=1f(x1− j)) =

C1(x1,⊗i
j=1f(x1−j))

δk−1+(k−1)η . Note that the output
of C2 is in [−1, 1] and hence by (13), we can say (using δ ≤ 1)

Ex1 [f(x1)C2(x1,⊗i
j=1f(x1 − j))] >

δk + (k − 1)η
δk−1 + (k − 1)η

≥ δ (14)
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C2 is almost the circuit Cf we require except its output is in [−1, 1] rather
than {−1, 1}. To rectify this, we define a randomized circuit C3 which com-
putes r = C2(x1,⊗i

j=1f(x1 − j)) and then outputs 1 with probability 1+r
2 and

−1 with probability 1−r
2 otherwise. Clearly this randomized circuit C3 has the

same correlation with f(x1) as C2 does. To fix the randomness of the circuit
C3 and to get Cf , we observe that the output of C2 can only be in multiples
of η2

2n(δk−1+(k−1)η)
. Since the output is in the interval [−1, 1], it suffices to pick

a random string �log 4n(δk−1+(k−1)η)
η2 � bits long (rather than a random number

in [−1, 1]). Hence by fixing this randomness using �log 4n
η2 � ≤ log 4n

η2 + 1 bits of
advice, we get a circuit Cf which satisfies (11)6. Clearly, the total amount of

advice required is at most 2n(m+nk)
η2 + log

(
4n
η2

)
+ 1 bits. Using m ≥ nk, we get

the bound on the advice stated in the lemma.

Hence, in the first case, we get a circuit Cf such that its expected correlation
with f is greater than δ. Changing the {−1, 1} notation to {0, 1} notation, we
get that

Prx1∈Un [Cf (x1,⊗i
j=1f(x1 − j)) = f(x1)] >

1 + δ

2
Therefore, we have a circuit Cf satisfying the claim in the lemma. Now, we handle
the second case. Let x1 be such that

∣∣Γ (x1,⊗i
j=1f(x1 − j))

∣∣ > δk−1 + (k − 1)η.
We take x1, ⊗i

j=1f(x1 − j) and the sign of Γ (x1,⊗i
j=1f(x1 − j)) (call it α) as

advice (and this is at most n + m bits) and define the circuit C0 as follows.

C0(y1,⊗i
j=1f(y1 − j)) = (−1)αC(x1 ◦ y1,⊗i

j=1f(x1 − j)f(y1 − j))

By definition and the previous assumptions, we get the following

Ey1∈U(k−1)nf(y1)C0(y1,⊗i
j=1f(y1 − j)) > δk−1 + (k − 1)η

Note that the above equation is same as (10) except circuit C has been replaced
by C0 and the input has changed from a k-tuple in {0, 1}n to a k − 1-tuple.
Hence, this can be handled in an inductive way and the induction can go for at
most k−1 steps. Further, each descent step in the induction can require at most
n + m bits of advice. In the step where we apply Lemma 4, we require at most
4nm
η2 + log

(
4n
η2

)
+ 1 bits of advice7. So, from T2, with at most (k − 1)(m + n) +

4nk2m3

ε2 +log
(

4nk2m2

ε2

)
+1 bits of advice, we can get a circuit Cf : {0, 1}n×{0, 1}i

such that
Prx1∈Un [Cf (x1,⊗i

j=1f(x1 − j)) = f(x1)] ≥ 1 + δ

2
6 We remove the factor log(δk−1 +(k− 1)η) in calculating the advice because (δk−1 +

(k − 1)η) is at most 1 and hence what we are calculating is an upper bound on the
advice.

7 Note that η does not change for every step and is the same η = ε
km

that it was set
to in the beginning. The only extra condition we need for applying Lemma 4 is that
m ≥ kn which shall definitely continue to hold as k decreases.
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Finally accounting for the advice to use Lemma 2, we get that the total amount
of advice required to get Cf from the circuit T in the hypothesis is (k − 1)(m +

n) + 4nk2m3

ε2 + log
(

4nk2m2

ε2

)
+ 2 + m + log m + 3 ≤ 6nk2m3

ε2 .

4 Conclusion

All the three extractor constructions described in this paper apply to sources of
constant entropy rate, which could be pushed to entropy about N/poly(logN).
A result of Viola [22] implies that it is impossible to extract from sources of
entropy N .99 if the extractor is such that each bit of the output can be computed
by looking only at No(1) bits of the input and seed length is No(1). Since our
construction is such that every bit of the output can be computed by looking at
only poly log N bits of the input, significant improvements in the entropy rate
can only come from rather different constructions.

It remains an interesting open question to improve the output length, and
match the performance of other constructions which do not use complexity-
theoretic tools in the analysis. Perhaps it is possible to use advice in a much
more efficient way than we do.
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