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Abstract generate an instance of lengtton which A makes a mis-
take? and we say thatl, D) is intractable otherwise.
We show that if ariNP-complete problem has a non- Results by Ajtai [2] suggest that the question of whether

adaptive self-corrector with respect to a samplable digtri every distributionalNP problem is tractable may be re-
tion thencoNP is contained inAM /poly and the polyno-  duced to the standard question of whetbhd® C BPP.
mial hierarchy collapses to the third level. Feigenbaum and Ajtai shows that an algorithm that solves well on average
Fortnow show the same conclusion under the stronger as-the shortest vector problem (&P problem) under a cer-
sumption that aNP-complete problem has a non-adaptive tain samplable distribution of instances implies an algo-
random self-reduction. rithm that solves, in the worst case, an approximate version
Our result shows it is impossible (using non-adaptive re- of the shortest vector problem, which can be seen aéfan
ductions) to base the average-case hardness of a problem irpromise problem. If the latter problem weré&-complete,
NP or the security of a one-way function on the worst-case then we would have a reduction relating the average-case
complexity of ailNP-complete problem (unless the polyno- hardness of alNP distributional problem to the worst-case
mial hierarchy collapses). hardness of amlNP-complete problem. Unfortunately, the
latter problem is known to be ilNP N coNP, and there-
fore it is unlikely to beNP-hard. However, it is conceivable
. that improved versions of Ajtai’s argument could show the
1. Introduction equivalence between the average-case complexity of a dis-
tributional NP problem and the worst-case complexity of
anNP problem.

Ajtai's approach has been extended by Ajtai and
Dwork [3] and Regev [21], who present public-key cryp-
tosystems whose security (which is a stronger condi-
tion than the existence of hard-on-average problems in

eNP) is equivalent to the worst-case complexity of cer-
tain NP promise problems.

Such results re-openened the old question (appearing al-
ready in [10, Section 6]) of whether there are cryptosys-
tems that aré&NP-hard to break, that is, whose security can
be based on the assumption thid ¢ BPP.

Worst-Case versus Average-Case Complexity

A problem in distributionalNP [18] is a pair(L, D)
whereL is anNP decision problem and is a samplable
distribution of instances.

complexity is whether there are intractable problems in dis
tributional NP. Of course the question can be formalized
in different ways depending on how we define intractabil-
ity (and tractability). For the sake of this paper we will eon
sider a probleniL, D) tractable if for every polynomial()
there is a polynomial time algorithm such that, for any
n, there is a probability at most/p(n), according taD, to

2 This is essentially the definition éfeuristic Polynomial Timejiven
by Impagliazzo [15]. One gets, essentially, Levin's deifimtof Av-

* Research supported by a Sloan Research Fellowship and amaOka erage Polynomial Time [18] by requiring to output either the right
Foundation Grant. answer or FAIL on every input, and that the probability of wes

1 Actually, we think of D as being a samplablensambleof distribu- ing FAIL when given an instance sampled frdbnis at mostl /p(n).
tions, that is, for every: there is a distributionD,, on instances of Our proof could be modified so that our result would hold alih ve-
lengthn, and there is a polynomial time sampler that on ingusam- spect to Levin's definition of tractability and intractatyil

ples fromD,,. This is the standard convention in cryptography and in
the study of “amplification of hardness” and worst-case terage-
case reductions for various problems, including problemi$® [20].
Itis, however, different from the convention used by LeviB], which
refers to a single distribution over all possible inputspégliazzo [15]
shows that the two conventions are, essentially, inteigpbaivle.



Previous Work on Worst-case versus Average-case cryptosystem would imply the collapse of the polynomial
Complexity in NP hierarchy (under some assumptions on the way the reduc-
tion works and/or on the key generation algorithm).
As discussed in [15], we know oracles relative to which ~ The results of Brassard [9] and of Goldreich and Gold-
NP ¢ P/poly but every distributionalNP problem is wasser [12] refer to the complexity of breaking a cryptosys-

tractable. Therefore, any proof that, saf,P* ¢ BPP im- tem for every message and for every key. Clearly, if even
plies the existence of hard-on-average problem&Ry such a strong form of attack cannot§&-hard (under cer-
must use a non-relativizing argument. tain assumptions) then neither can the weaker form of at-

Since Ajtai's arguments exploit properties of specific tack considered in standard definitions of security (in \whic
problems, it does not seem that relativization resultsyappl the attacker only needs to distinguish the encryptions of tw
to them. possible messages with noticeable probability). In the set

Feigenbaum and Fortnow [11] consider the notiotoef  ting of privatekey encryption, however, this approach does
cally random reductiopwhich is a natural way to prove that not seem to work, and it seems necessary to specifically ad-
the average-case complexity of a given problem relates todress the issue of the average-case complexity of attaaking
the worst-case complexity of another one. A locally random construction. In particular, the possibility of privateyken-
reduction from a languagé to a distributional problem  cryptionis equivalentto the existence of one-way function
(L', D) is a polynomial-time oracle procedufésuch that  and it is well known that there are “one-way functions” that

R solvesR and, furthermore, each oracle querydf (x) areNP-hard to invert on all input8.

is distributed according td®. 2 Clearly, such a reduction A generic reduction from atNP-complete problem to
converts a heuristic polynomial time algorithm fat’, D) the problem of inverting a one-way functigrwould be an
(with sufficiently small error probability) into BPP algo- oracle proceduré? such that for some polynomial and

rithm for L. If we could have a locally random reduction for every oracleA that invertsf on al — 1/p(n) inputs
from, say, 3SAT to some proble(d’, D) in distributional of lengthn, we have thaRR“ is aBPP algorithm for 3SAT.
NP, then we would have proved that¥P ¢ BPP then The techniques of Feigembaum and Fortnow imply th&t if
distributionalNP contains intractable problems. is non-adaptive, and if all of its oracle queries are done ac-
Feigenbaum and Fortnow show that if there is a cording to the same distribution (that depends only on the
non-adaptive locally random reduction from a prob- length of the input), then the existence of such a reduction

lem L to a problem(L’, D) in distributionalNP, then L implies that the polynomial hierarchy collapses.

is in coAM/poly = coNP/poly. In particular, if L is As we explain below, our results show the same con-
NP-complete, therNP C coNP/poly and the polyno-  clusion without the assumption on the distribution of the
mial hierarchy collapses. queries made byR4. (But we still need the assumption that

Locally random reductions are a natural notion, and the queries are non-adaptive.)
they have been used to establish the worst-case to average-
case equivalence of certatBPACE-complete andiXP- Our Result
complete problems.
We say that a languagk has a worst-case to average-
Previous Results on Crpytography versusNP- case reduction with parameigto a distributional problem
hardness (L', D) if there is a reductioR (say, realized by a proba-
bilistic polynomial time algorithm) such that, for everyasr
Brassard [9] considers the question of whether there cancle A that agrees witt’ on inputs of probability mass— 6
be apublic keycryptosystem whose security can be re- according taD on each input length?* solvesL on every
duced to solving alNP-complete problem. Brassard argues input.
that, under some assumptions on the key-generation algo- If L and L’ are the same language, then the reduction
rithm and the encryption procedure, the problem of invert- is called a self-corrector, a notion independently intraeshl
ing the encryption is ilNP N coNP, and therefore unlikely by Blum and others [7] and by Lipton [19] in the context of
to be equivalent to aNP-complete problem. Goldreichand program checking [5, 6].
Goldwasser [12] revisited the issue more recently, andtrie  As argued below, a locally random reduction is also a
to remove some of the assumptions in Brassard’s result.worst-case to average-case reduction and a random self-
They showed that the existence of a reduction fronN&n reduction is also a self-corrector, but the reverse need not
complete problem to the problem of breaking a public-key be true.

3 O rather, according tB,, wherem depends only onthe inputlength 4 For example, take the function that on input a 3SAT formgiland
of . an assignmend, outputs0.¢ if the formula is not satisfied by, and

outputsl.¢ otherwise.



In this paper we show that if there is a worst-case to no instance is produced with a probability more than poly-
average-case reduction with paramdtépoly(n) from an nomially larger than in the uniform distribution.)

NP-complete probleml. to a distributionalNP problem For this reason, it is interesting, for starters, to have a
(L, D), thenNP C coNP /poly and the polynomial hier-  generalization of the result of Feigenbaum and Fortnow to
archy collapses. the case of a reductioR such thatR”" computesL, and

In particular, if anNP-complete problem has a self- each oracle query is made with a probability at most poly-
corrector with respect to a samplable distribution, then th nomially larger than in the uniform distribution. We could

polynomial hierarchy collapses. call such reductionsmooth random reductionklowever it
We first prove the result for the special case in which the seems more interesting to just drop all restrictions on the
distributionD is uniform. distribution of the queries oR, and just impose the condi-

Using a reductions by Impagliazzo and Levin [16] and tion that we are interested in: th&tworks when given any
by Ben-David and others [4], we show that the same is oracle that solve&’ well on average.
true even the reduction assumes a good-on-average algo- Readers who are familiar with the following notions may
rithm for thesearchversion of L/, and even if we measure have noted that the relation between locally random reduc-
average-case complexity fér with respect to an arbitrary  tions and our notion of worst-case to average-case reductio
samplable distributio. is similar to the relation between one-round private infarm

The generalization to arbitrary samplable distributions tion retrieval and locally checkable codes. In one-rourid pr
and to search problems also implies that there cannot bevate information retrieval, a user is given oracle access to
any non-adaptive reduction from &f-complete problem  the encoding of a certain string, and wants to retrieve one
to the problem of inverting a one way function. bit of the string by making a bounded number of queries;

Our result also rules out non-adaptive reductions from anthe restriction is that thé-th query must have a distribu-
NP-complete problem to the problem of breaking a public- tion independent of the bit that one is interested in. In a lo-
key cryptosystem. The constraint of non-adaptivity of the cally checkable code, a decoder is given oracle access to the
reduction is incomparable to the constraints in the resiilts encoding of a certain string, and the encoding has been cor-

Goldreich and Goldwasser [12]. rupted in & fraction of places; the decoder wants to retrieve
It should be noted that the reductions of Ajtai, Dwork a bit of the original string by making a bounded number of
and Regev [2, 3, 21] amdaptive gueries. The notion of a smooth code, which is the analogue
of a smooth random reduction, has also been studied. In a
Comparison with Feigenbaum-Fortnow [11] smooth code, a decoder is given oracle access to the encod-

ing of a certain string, and wants to retrieve one bit of the

A locally random reductior that makes; queries is  string by making a bounded number of queries; the restric-

also a worst-case to average-case reduction with parametetion is that the distribution of each query should be domi-
1/0(q). Indeed, ifA is an oracle that has agreement, say, nated by the uniform distribution.

1 — 1/4¢ with L', and we access the oracle viajueries, For unbounded users/decoder the three notions have
each uniformly distributed, there is a probability at ezt been shown equivalent [17, 13], but the same methods do
that queries made ta are answered in the same way as not work in the computationally bounded setting studied in

queries made td/’. this paper. One step in our proofis, however, inspired by the

On the other hand, the restriction that all queries must technigues used to show this equivalence.
have the same distribution is quite strong, and one could
imagine reductions where the distribution of the queries Qur Proof
is somewhat dependent on the input, as long as, for every
small subset of possible queries, a majority of the queries As in the work of Feigenbaum and Fortnow, we use the
land outside of the subset with high probability. Further- fact that problems iroAM /poly cannot be NP-complete
more, locally random reductions lack nice closure proper- unless the polynomial hierarchy collapses. So our goal is to
ties. We would like to say that if solving in the worst case  show that ifL is in NP and it has al /poly(n) worst-case
is reducible to solvind,’ on al — ¢ fraction of inputs, and if ~ to average-case reduction to a languaga NP, thenL is
solvingL’ on al — ¢ fraction of inputs is reducible to solv-  also incoAM /poly.
ing L” on al — ¢’ fraction of inputs, then solving in the We start by discussing the case in whibhis the uni-
worst case is reducible to solvidg’ on al — ¢’ fraction of form distribution.
inputs. Reductions among distributional problems [18}typ The Feigenbaum-Fortnow protocalet us first briefly re-
ically produce instances for the target problem that are not,jo\, the proof of Feigenbaum and Fortnow. Givena
necessarily uniformly distributed, but just have a distfib prover wants to prove thaRL/(:c) rejects, where? makes;
tion that isdominatedby the uniform distribution (that is, non-adaptive queries, each uniformly distributed. The{no



uniform) verifier generatek independent computations of R’L/(x) behaves likekR“ (z) where A differs from L’ only
RL'(x) and sends to the prover all the queries generated on the queries that have a probability more th&2i® of be-

in all thek runs. The prover has to provide all the answers, ing generated, so that agrees withl,’ on at leastd — ¢
and certificates for all the YES answers. The verifier, non- fraction of inputs, an(R’L'(a:) works with high probability.
uniformly, knows the overall fractiop of queries ofRY’ (x) FurthermoreR’ is smooth by constructiohThe problem is
whose answer is YES and,/fis large enough, the verifier that it is hard to compute, or even to prove inaRl proto-
expects the number of YES answers from the prover to becol, the exact value of the probability that a given query be
concentrated arounklyp, and it rejects if the prover gives asked byR. We will settle for approximations, and, roughly
fewer thankgp — O(¢vk) YES answers. A cheating prover speaking R’ will ask a queryy to the oracle if the probabil-
can only cheat by sayng NO on a YES instance, and can-ity of y is less thart(1 — ¢) /2™ and will simulate a NO an-
not do so on more tha@(¢v/k). If k is sufficiently larger  swer toy if the probability ofy is more thart(1 + €)/2™,
thang, then with high probability either the verifier rejects and we get in trouble when the probability is in the middle.
or at least one of thé computations oRL'(x) yields cor- By picking ¢ at random in a certain range, instead of fixing
rect answers. it to § /¢, we can make sure that with high probability there

Handling Smooth Reductiondlotice that the Feigenbaum-  &ré féw queries for which we get in trouble. Given a query
Fortnow protocol can be used with every oracle procedure? @nd a threshold, the Goldwafser-8|pser [14] protoFoI
R (z), provided that giver: we can get a good estimate €an be used to prove that thes “approximately heav;f?

of the average number of oracle queriesdf (z) thatare ~ Unfortunately there is no good protocol to prove thas
answered YES. Suppose tHais a smooth random reduc- &N approximately light query. Instead, we show how to use
tion, that is, each possible query is generated with proba-the Aiello-Hastad [1] protocol to convince the verifier tha
bility at most polynomially larger than in the uniform dis- the fraction of light queries is approximately some value
tribution. We devise diding protocolin which the veri- Then the verifier runs a modified immersion protocol to es-
fier either rejects or gets a good estimate of the fraction of fimate the fraction of heavy queries that are answered YES.
queries OfRL’(x) that are answered YES. We pick at ran- In the modified immersion protocol, the prover receives a
dom a queny of RO (z), that is, we select randomness for andom query OfR_()(x) immersed in a sequence or uni-
RO(z), we getq queries, and pick at random one of them. formly random strings. The prover has to provide a certifi-
Then we “immerse’y in a random position in a sequence cate for each YES instance, and also, for each string thatis a
of k random elements df of the same length, and we give heavy query of the protocol, a proof that it is a heavy query.
the sequence to the prover. The prover has to say which off hen the verifier can check that the fraction of queries iden-
the elements in the sequence is a YES instance, and givdified as heavy is about-/, and geta good estimatef the

a certificate for each of them:; it is also required to give at fraction of heavy queries whose answer is YES. Finally, we
leastpk — O(V/E) certificates, wherg is the fraction of el-  run & modified Feigenbaum-Fortnow protocol in which we
ements off. of that length that are YES instances (the veri- 9iVe to the prover the queries éfinstantiations o0 (x). .
fier is givenp non-uniformly). A cheating prover can give at The prover has to provide c_eruﬁcates for all the YES in-
mostO(v/k) wrong answers and, roughly speakingk ifs stances, and proofs of heaviness for all the heavy queries.
large enough, more thayik elements of the sequence look 1 he Verifier checks that abotit — ¢)kg queries are claimed
like queries ofRO (). With high probability, either the ver- 10 be heavy, a fraction of them has certificates, and pro-
ifier rejects or it gets the right answer for Repeating the ~ ¢€€d as if the non-heavy queries had been answered NO.
process in parallel many times gives a good estimate of theGeneral Distributiond), Search Problems, One-Way Func-
fraction of queries that are answered YES. This argument istions. So far we have described our results for the case in
already powerful enough to generalize the result of Feigen-which D is a samplable distribution. We show that a reduc-
baum and Fortnow to smooth reductions. tion of Impagliazzo and Levin [16] implies that for every

Handling General Reductiond.et R be an arbitrarys distributionalNP problem(L, D) and bound) = 1/”0(1)
worst-case to average-case reduction frénio L/ such there is a non-adaptive probabilistic polynomial time tegac
that R0 (x) makesq queries of lengthn. Intuitively, we ~ @gorithmR, an NP languagé’, and a bound’ :_1//”0(1)
would like to convertR to a smooth reduction as follows: SUch /that for every oracIﬁL:[hat has agrees with’ on a
fix a thresholdt = ¢/é, then for every query made by 1-9 fracthn of inputs,R so_lve_sL ona subset of in-
RO(z) compute the probability that that query be gener- Puts of densityl — é under the distributiorD.

ated byRV (). Call a possible query “heavy” if it is gener-

ated with probability more that)/2m be the reduction. and 5 This is the way locally decodable codes are shown equivaten
’ smooth codes in [17].

“light” otherwise. Ask light queries to the oracle, and do g Formally, an honest prover succeeds with high probaliittye prob-
not ask the heavy ones, but proceed as if the heavy ones had ability of y is less thart(1 — €) /2™, and a cheating prover fails with

been answered NO. L&' be this modified procedure. Then high probability if the probability of; is more thart /2™




This means that if there were a non-adaptive worst-casethat depends only om but not onz. This assumption cannot
to average-case reduction with parametgroly(n) from a be made without loss of generality, however all the proofs
problemL to a distributional probleniL’, D), there would that we give can be generalized to the case of queries with
also be such a reduction fromto (L”,U), whereU is the different length, mostly by just replacing every mention of
uniform distribution and.” is in NP. By the previously de- {0, 1} with the set of strings of length at most, and ev-
scribed results, this would imply the collapse of the polyno ery use oR~™ with 2=™~1 + 1.
mial hierarchy. One may also ask what happens to “Las Vegas” reduc-
A reduction by Ben-David and others [4] implies that tions that are only required to run expectecolynomial
for every distributionaNP problem(L,U) there is a prob-  time. By standard tricks, it is not difficult to see that the ex
lem L’ in NP such that an algorithm that solves the decision istence oo worst-to-average Las Vegas reductions implies
version of(L’/, U) on al — § fraction of inputs can be mod-  the existence of worst-to-average ordinary reductions.

ified (via a non-adaptive reduction) into an algorithm that  \ne ysew to denote a function that grows faster than any
solves the search version of,U) on al — 4 - poly(n)  constant, and we will abuse notation by writing expressions
fraction of input. This implies that even if modify the defi- |jke (, + w = w, w? = w, etc. “With high probability,” or
nition of worst-case to average-case reduction so thatrthe o \yhp means with probability — o(1).

acle A is supposed to solve theearchversion of the prob-
lem, our results still apply. In particular, for every potyn
mial time computable functiofi, the problem of inverting
well on average is precisely the problem of solvingwellon 416 we outline two protocols and a sampling bound that
average a distributionP search problem. Therefore our il be used in the analysis.

results also rule out the possibility of basing one-way func
tions onNP-hardness using non-adaptive reductions.

3. Preliminaries

The Lower Bound Protocol

2. Definitions and notation Given anNP setS C {0,1}" a bounds, we are inter-
ested in am\M protocol for the statemenf| > s. Consider

We use functional and set notation for boolean functions the following protocol, due to Goldwasser and Sipser [14]:
interchangeably; say it : {0,1}" — {0,1},then“z € L”

is the same asl(z) = 1”. 1. Verifier: Choose a pairwise independent hash function
By “k parallel instantiations” of an round protocolP, h:{0,1}™ — I', where[l'| = s/k, and send: to the

we mean a protocaP’ which creates: statistically inde- prover.

pendent instantiationB, . . ., P, of P, and in itsith round 2. Prover:Send alist,...,r € {0,1}™.

runs theith round of ea_chDj. Atthe gr_1d,P combines the 3. Verifier: If r; ¢ S for anyi, reject. Ifl < (1 —€/3)k,
outputs of theP; according to a specified rule.

J ) reject. Ifh(r; 0 for anyi, reject. Otherwise, accept.
A nonadaptive worst-case to average-case randomized ) (ri) # yi. 1€l P

reductionfrom L to (L', D) with average hardnes§ (in Lemma 1. If |S| > s, there exists a prover that makes the
short, as worst-to-average reductigris a family of poly-  verifier accept with probability —9/€%k. If |S| < (1—¢)s,
nomial size circuitsR = {R,} such that: (1) On in-  no prover makes the verifier accept with probability more
putz € {0,1}", randomness, R, (z;r) outputs strings  than9/e’k.
y1, ...,y and a circuitA, called thedecoder (2) For any
L* that isé-close toL’ with respect taD, The Upper Bound Protocol
PrlA(yr, . yw; L™ (v1), - - L™ (yw)) = L(=)] > 2/3. Suppose that the verifier of aaM protocol has access
" to a “secret”r, chosen uniformly at random from axiP
Sometimes we denote the distributional problem, U), setS C {0,1}™. Can the verifier take advantage of her se-
whereU is the uniform distribution, just by.". cret to verify a statement of the forfi| < s? Consider the
RemarksThe Constany/?, can be made — 2—2(%) by par- following protocol, due to Aiello and Hastad [1]
allel instar!tiation and taking majority at the end. We will 1 \serifier: Choose a 3-wise independent hash function
assume this better bound from here on. h:{0,1}™ — T, where|l'| = (s — 1)/k and send the

Wi_thout loss of generality, we may assume the number pair (h, h(r)) to the prover.
of stringsk = poly(n) depends only on = |z|, but not on )
the specific input:. 2. Prover: Send alisty,...,r; € {0,1}™.

For notational convenience, we assume that all queries 3. Verifier: If r; ¢ S for anys, reject. Ifl > (1 + ¢/3)k
y1,---,yk € {0,1}™ have the same length = poly(n) orr & {ry,...,m}, reject. Otherwise, accept.



Lemma 2. If |S| < s, there exists a prover that makes the
verifier accept with probability — 9/e2k. If |S| > (1 +
€)s, no prover makes the verifier accept with probability
9/e%k — ¢/6.

At a first glance, this protocol may not seem very useful,

as the completeness-soundness gap is very narrow. How

ever, suppose we fixand want to apply iterations of the
protocol. Then choosing = w(t/e?) will ensure that, with
high probability, a good prover will never make the veri-

fier reject. On the other hand, a crooked prover may cheat

by more than am fraction only on abou©(1/¢) of thet it-
erations. Fot large enough, this becomes a negligible frac-
tion of the total number of iterations. In our application of
the protocol, we will be able to tolerate such a small frac-
tion of errors.

Additive bounds for random sampling

The following lemma is an easy consequence of the
Chernoff bound:

Lemma 3. Lete < 1, T C Q, R a distribution on§?,
R(T) = pandS an N > 3log(n/2)/e* element ran-
dom sample fronf2, drawn fromR. With probabilityl — 7,
ISNT|/N ep+te.

In most applications here we sgt= o(1), so that the
estimate holds with high probability.

4. Proof Outline

By a theorem of Boppana et al. [8], foNP C
AM/poly, thenXs = II5. Therefore, assumings # I3,
the lack of ad worst-to-average reductions fromP-hard
L to someL’ € NP will follow from the existence of an
AM protocol forL:

Theorem 1. Let L. be an NP-complete language under
polynomial-time reductiond,’ € NP, § = n=°("). If there
is ad worst-to-average reduction fromto L', then there is
a AM /poly protocol for L.

Let R denote the reduction from the Theorem. Fix the
inputzx, and letR; : {0,1}™ — [0, 1] denote the distribu-
tion on theith query produced by on inputxz. We will
use|r| to denote the number of random bits used by the re-
duction. We useR(z; -) to denote the randomized compu-
tation which, on input, outputsy, .. .,y andA. We call
R(z;-) theinstantiationof R onz.

Without loss of generality, we may assume that the dis-
tributions R; are all equal. This is because the reduction
R can apply a uniform random permutation to the queries
y1,---, Yk , and have the decoder “disentangle” the permu-
tation before it runs. Then the marginal distribution ofrgve
query becomegR; + ... + Ri)/k = R.

ThecoAM protocol forL will consist of three phases. In
the first phase, we will look for a “threshold” = O(6—1)
such thatPr,.z[R(y) < t*27™] can be estimated within
an inverse polynomial additive factor. In the second phase,
we will use a “hiding protocol” to figure out a good es-
timate for the fraction of the querieg in L such that
R(y) < t27™. In the last phase, we will apply a variant
of the Feigenbaum-Fortnow protocol for these queries.

Let G : {0,1}I"l — {0,1}™ denote the circuit that, on
inputr, computesR(z; r) and outputs the queny,. When
r is chosen uniformly at random, this circuit generates a
queryy sampled fronR.

5. The First Phase

Let A(t) = {y : R(y) < t27™} andp(t) = R(A(t)).
We think of A(¢) as a “ball of radiug.” In this phase of
the protocol, we look for a value of such that a good
lower bound orp(t) can be obtained. We will estimapét)
by random sampling: Generate a sample- R and test
if y € A(t). Since there is no easy way to establish if
y € A(t), we will take advantage of the prover for this pur-
pose. The upper and lower bound protocols will ensure that
the prover cannot cheat by much without getting caught.
First an easy technical lemma. Let 1/wk.

Lemma 4. Fix an arbitrary sequenc® < ty < t; <

. <t < 2™, wherel w/e. For i* chosen uni-
formly at random from{1,...,{}, with high probability,
p(ti-) < pl(ti=—1) e

We will apply the lemma to the sequenge2 §—1(1 +
e/w)t, sothat; = O~ 1) for1 <i<w/e.

We now present the first phase protocol:

1 Verifier: Letl = w/e3. Choosery, ..., uniformly
and independently frond0, 1}I"l. Sendy; £ G(r;)
for1 < j <ltothe prover.
Prover: For each < j < s, send a clainp; for the
value2!" IR (y;).
Verifier: For eachl < j < s, initiate (in parallel) the
upper bound protocol for the clainé~!(y;)| < p;
with parametek = w? /€. If any of the instances re-
jects, reject.
Verifier: For eachl < j < s, initiate (in parallel) the
lower bound protocol for the claifG='(y;)| > p;.
If any of the instances reject, reject. Otherwise, choose
i* uniformly at random from{1,... w/e}, lett* =
ti- =6 11+ ¢/w)" and set
o Hizps2 M <27y

p = ] .

Lemma 5. For everyz € {0,1}"™ there exists a “good”

prover for which, with high probability, at the end of the
Step 4, the verifier has not rejected.

4




Proof. This prover sends claimg;, = 2I"IR(y;)
|G~1(y;)|. By Lemma 2, each upper bound protocol in-
stantiation succeeds (does not reject) with probability
1 — 9w/e’k = 1 — 1/wl. There arel such instantia-

tions, so with high probability all of them pass with-

out causing a rejection. Similarly by Lemma 1, all of the
lower bound protocol instantiations pass without caus-

ing a rejection.

Lemma 6. For everyz € {0, 1}", and for any prover, with
high probability, at the end of Step 3 either the verifier re-
jects orp* > p(t*) —e.

Proof. Suppose that the verifier does not reject. Intuitively,
there are two ways the prover can cheat on any given query.
It can either cheat “a little” by reporting some valpesuch
thatp; > 2I"IR(y;), butp; < (1 + €)2!""R(y;), or it can
cheat by “a lot” by reporting @; which is “way off”, i.e.,

p; > (1 +€)2I"R(y;). In the end, the sampleg are used

to obtain an estimate @f¢*). Our goal will be to show that,
with high probability, neither way of cheating has a signifi-
cant effect on our estimate fp(¢*). In addition to the errors
caused by the cheating behavior of the prover, we will also
have to account for errors “coming from nature”, namely
those caused by deviations in random sampling.

LetC = {j : p; > (1 +¢)2"IR(y;)}. The setC rep-
resents the queries on which the prover “cheats a lot.” We
show that this set is rather small: By Lemma 25 i€ C,
then thejth protocol instantiation causes a rejection with
probability> ¢/6w—9w/e?k = ¢/w. By Markov’s inequal-
ity, with high probability|C| < 1/e < el provided the veri-
fier doesn't reject.

We now consider the queries on which the prover can
“cheat a little”. These are the queries that fall into the
setA(ty) — Ati-—1). Let J; = {j : y; € A(t;)} and
B = J; — Ji=_1. We show that, with high probability, the
number of queries iB is a negligible fraction of:

|B| = [Ji=| = |Ji= 1]
< (p(ti) + )l — (p(ti«_1) — €)l whp, by Lemma 3
= (p(ti=) = p(ti=—1))l + 2€l
< 3el whp, by Lemma 4.

so that

{42 21 < r2my]

l
| S~
>

*

_IB| — .
B by -

By a similar argument we can show:

IC]

5e. O

Lemma 7. For everyz € {0, 1}", and for any prover, with
high probability, at the end of Step 4 either the verifier re-
jects orp* < p(t*) + €.

6. The Second Phase

In the second phase of teéM protocol, we try to obtain
an estimate foR (L"), whereL” is the languagé’NA(t*),

i.e.,
L'(y) = {

The languageL” is ¢-close to L’: The number of
y € {0,1}™ such thatR(y) > ¢*27"™ can be at most
t*~152m < 62™, since R is a probability distribu-
tion. TherefordL” @ L'| < [{0,1}™ — A(t*)| < §2™.

Let ¢/ denote the uniform distribution om bit strings.
We assume that both the verifier and the prover know the
probabilityp,q, = Pryu(y € L']. Leta = 6 /w.

5 Verifier: Letl = w/ae3. Generate stringg, . . .
{0, 1}™ as follows: For every < j </,
5.1 Toss a coirt;, which is1 with probability «, 0
with probability1 — «.
5.2 Ift; =1, choosey; ~ R.If t; = 0, choosey; ~
u.

LetT = {j : t; = 1}. Send the sequengg, . ..
the prover.

6 Prover: For each < j <, send a claimy; € {0,1}
for the statemeny; € L. If a; = 1, send anNP
certificate for your claim. For eacl, send a claim
b; € {0,1} for the statemenR(y;) > t*. Let A* =
{jiaj=1},B*={j:b; =1}

7 Verifier: Foreachl < 5 < [,if j € BN T, initiate
the lower bound protocol for the claifG ! (y;)| >
2I"IR (y;). Perform the following tests:

7.1 If|[A* N T|/|T| < padaw — e, reject.

7.2 If[B"NT|/|T| & p* + e, reject.

7.3 If any of the lower bound protocol instantiations

fail, reject.
If all tests pass, set* £ [A* N B NT|/|T).
LetA={j:y; € L'} andBl-_: {j ry; € At)}.

By Lemma 3, with high probabilityT’| > (1 — « — €)l and
IT| > (=€)l > ad/2.
Lemma 8. For everyz € {0,1}" there exists a “good”

prover for which with high probability, the verifier has not
rejected by the end of Step 7 agid< R(L") + e.

L'(y)
0

if R(y) <t*2™™
otherwise.

YU €

,y1 1o

Proof. The good prover sends correct claims for all the
queries; it gives answers; = L(y;) andb; = 1 iff
R(y;) > t*. We show this prover is likely to pass all tests,
using Lemma 3 on several occasions.

Test 7.1: Follows directly from Lemma 3.



Test 7.2: With high probabilityB" NT| € (p(t*)+e€)|T). Proof. Suppose the verifier survives Step 7. By Lemma 3,
By Lemmas 6 and 7(t*) € p* + e with high probability,  with high probability, |B;« N T| € (p(t*) £ €)|T| and

sothat B NT|/|T| € p* +e. |Bi-_1 NT| € (p(ti-_1) £ €)|T|. By Lemma 4, with high
Test 7.3: Follows from Lemma 1 (with high probability.) probability, p(t*) < p(ti-—1) + . Putting this together,
It remains to show that* < R(L")+e. First,A*NB" = |Bi NT| < |Bi—1 NT| + 3€¢|T.

AN B, so thatg* is an unbiased estimator for the frac- First we show thal(B;- — B ) N T| < 3¢|T|. By
tion of queries inT that fall into L N A(¢t*) = L', when Lemma 1, with high probabilityB;-_1 N T C B N T,
the queries are drawn froR. Since the number of sam-  for otherwise the verifier wouldn’t survive Step 7.3. It fol-

plesinT is atleastl/2 > w/e3, ¢* < R(L') + e. O lows that
Lemma 9. For everyz € {0,1}", and for any prover, with |(Bi+ —B)NT)|
high probability, the verifier either rejects by the end @5t <|By-1—-B NT)|+|Bw — Bir_1 NT)|

7org* > R(L") —e. — _
¢ >R(L") € =B+ NT|—|Bi_1NT|

First, note that the verifier cannot make any false “yes” < 3¢|T).
claims; ifa; = 1, it must be thaty; € L, otherwise the .
prover will detect a faultyNP certificate fory;. So the Now we show that(B~ — B;-) N T| < ¢|T|. Since the

verifier can only cheat by making false “no” claims. Let verifier survives Step 7.2, by Lemma 6 with high probabil-
C = A — A* denote the set of indices corresponding to ity: .
these claims. |B NT[<(p*+6)[T| < (p(t") +€)[T].
The main idea of the proof is to show that@fN B~ NT| On the other hand,
is a significant fraction ofT'|, the verifier is likely to reject.

Suppose the opposite is true, i.e., the prover cheatsonmany  |Bi- N B NT| = [Bi- N T| - (B — B ) NT)|
queries inT'. We will show that the prover cannot distin- > (p(t*) — €)|T| — 3¢|T
guish, with significant confidence, whether a queryBn = (p(t*) — ¢)|T,

came from" or fromT’; so if he cheats on many queries in
B NT,he willalso end up cheating on a lot of queries in
B NT CT.Butin this case the prover will get caught in (B* = B#+)NT|=[B'NT|-|B-NB NT|

so that

Step 7.1. < (p(t*) +&)|T| = (p(t*) + o)[T
Lemma 10. For any choice of” made by the prover in Step <¢€lT]. u
5,if|CNB;+| > 6ael, then with high probabilityC NT'| >

Proof of Lemma 9If |C'N B;-| > 6ael, then by Lemma 10
|C NT| > 2ae|T| with high probability. By Lemma 3,
Proof. First we show that whenevegr € B;-, the prover  [ANT| < (padv + €)|T| with high probability. Next,
cannot tell ift; = 1 based on its evidence with confidence [A*NT| = [ANT| - [CNT| < (padw — «€)|T], and

2cvel.

overl/2: Step 7.1 rejects.
SupposéC N Bj«| < 6ael. Then
Prj € Tlyr,...,u] = Pr[j € Tyl .
Prly;|j € T Pr[j € T |[A"NB NT|
- Prly,] >|A*NBy-NT|—|(B  @B:)NT]
< Prly;lj e TIPrlj € T >(|ANBiNT|—|CNBy|) - |(B" ®@Bw)NT|
= Prly;|j ¢ T|Prlj ¢ T > (R(LNA(t*)) — €)|T| — 6ael — €|T)|
_wi2ma 1 > (R(L) —e)|T|. O
2=m.(1—a) 2
. . 7. The Third Phase
Even when conditioned on seeing,...,y;, the events

“j € T",wherej € C'N B;-, are independent. By acrude  The third phase is a variation of the Feigenbaum-
estimate, with high probability(' N B;» N T| < 4ael, SO Fortnow protocol for reductions with uniform marginal

that|C NT| > |C N By NT| > 2ael. O distributions.

Lemma 11. For everyr € L, and any prover, if the verifier 8 Verifier: Letl = wlogk/e3. Runl independent in-
survives Step 7, thedB~ @ B;) N T| < €|T| with high stances of the reductiaR,, (x; -). Say theith instance
probability. produces the circuitd’ and queriesy;i,...,yix €

{0,1}™. Send the querieg,;, 1 <i<[,1<j<kto
the prover.



9 Prover: For each pair j, send a claina;; for the state-
menty,;; € L’ (accompanied by alVP certificate, if
a;; = 1) and a claind,; for the statemeriR (y;;) > t*.
LetA; = {’L DA = 1},BJ* = {’L : bij = 1}

10 Verifier: For each pait, j, if b;; = 1, initiate the lower
bound protocol for the clain{r : G(r) = y;;}| >
2l7lt*. Let ¢;; = a;j(1 — by;). Perform the following
tests:

10.1 If for anyj, |§;|/l & p* £ ¢, reject.

10.2 Iffor anyj, |A% mEﬂ/l < g* — ¢, reject.
10.3 If for any i, A'(yi,...
cepts, reject.
If all tests pass, accept.
LetAj = {Z 1 Yij € L}, Ej = {Z : R(yw) < t*}.
Lemma 12. For everyz ¢ L, there exists a “good” prover
that accepts with high probability by the end of Step 10.

s Yiki Cil, - - -, Cik;) aAC-

Proof. The good prover claims;; = L'(y;;) andb;; = 1
iff R(y;;) > t*, for all pairsi, j. By Lemmas 6, 7 and 8, we
may assume* € p(t*) + e andg* < R(L') + € with high
probability. It is not difficult to check that this prover [z&s
all Step 10 tests with high probability. O

Lemma 13. For everyz € L, and for any prover, with high
probability, the verifier rejects by the end of Step 10.

8. Average-case complexity for arbitrary sam-
plable distributions

Let V' be anNP-relation. We denote by, the NP-
language corresponding 16, i.e., Ly (x) = 1 iff there ex-
ists aw such that/ (z,w) = 1. A family of random func-
tions F,, : {0,1}" — {0,1}™ is aJ-approximate witness
oraclefor V with respect to distributio® if for all n,’

Br V(@ Fy (@) = Ly@)] > 14,

We will omit the subscript of” when it is implicitly deter-
mined by the input length. Note that the definition implies
the existence of a sét of measureD(S) = 1 — 36 and for
allz € 5,

I;r[V(:C,F|I|($)) = Ly(z)] > 2/3.

Intuitively, S is the set of inputs where the oracle has a good
chance of producing a witness for the input. As usual, the
constant2/3 is arbitrary, since if one has accessHp it

can be queried times independently in parallel to obtain a
good witness with probability — 1/3*.

Just as languages INP represent decision problems,
witness oracles represent search problems. For example, in
verting a one-way functiorf : {0,1}" — {0,1}"™ on a
1 — ¢ fraction of inputs amounts to finding an algorithm
A : {0,1}" — {0,1}" that isd-approximate for the rela-

Proof. Assume the verifier passes all instances of Test 10.1tion V(y,x) <= y = f(z) with respect to the distribu-

and Test 10.2. We show that, with high probability, Test
10.3 must reject for some There are two types of queries
for which the prover can fool the verifier about member-
shipinL'; First, there are the queries that fall irﬁ§ @ Bj,

for which b;; may be a lie. Then there are the queries in
|(A; — A%) N B;|, for whichb;; = 0 buta;; may be a lie.
Let C; be the set of all possible lies:

C; = (B, ®B,)U((4; — A})NB,).

As in the Feigebaum-Fortnow proof, the main idea is to
show that for any fixed, |C;|/l < 1/k, so that there ex-
ists at least oneé ¢ C1 U ... U Cy. For thisi, it will fol-
low thate;; = L'(y,;) for all 7, so that with high probabil-
ity, A(yn, e Yiky Cily e ey Cik) = L(x) =1 and Test 10.3
rejects.

We boundﬁj@ﬁﬂ in the same fashion asin Lemma 11;
by that argument, we hav&; @ B,| < el < 1/2k with
probabilityl — 1/wk. For the other term,

(45 - 43) N Bj|
= |A; N B;| = |A; N By
< (|AJ N Bj| + |Bj @BjD — |A;F ﬂBj|
< (R(L")+e)l+el)— (g5 —e)l
(R(L") — ¢*)l + €l
< el whp, by Lemma9 O

tion f(U).

Using witness oracles, we can formalize the no-
tion of nonadaptive reductions between search problems,
as well as reductions from search to decision prob-
lems, and vice-versa. LeV,V’ be NP relations and
D,D’ be arbitrary polynomial-time samplable distri-
butions. A 0-to-§' average-to-average reductiorfor
search problems fron(V, D) to (V',D’) is a family of
polynomial-size circuitsR = {R,,} such that: (1) On in-
putz € {0,1}", randomness, R, (z;r) outputs strings
y1,...,yr and a “decoder” circuitd. (2) For any wit-
ness oraclg™ that isé’-approximate forl/’ with respect
to D, V(z, Aly1, .-, yr; F*(y1),- .., F*(yx))) = Lv(z)
with probability1 — ¢ over the choice ok ~ D and F™*.
The other two types of reductions are defined in simi-
lar fashion. A¢§’ worst-to-average reduction is @&to-0’
average-to-average reduction.

Theorem 2. Let L be a language that i&P-hard under
polynomial-time reductiond/’ be anNP-relation, D’ be
an arbitrary polynomial-time samplable distribution, and
§ =n~ 9 Ifthere is ad worst-to-average reduction from
L to V', then there is at\M /poly protocol for L.

7 Technically, a witness oracle is a distribution over figrctfamilies
{F»}, but to simplify notation we will identify samples from thiks-
tribution with the distribution itself.



The theorem is an immediate consequence of Theorem 1 [9] G. Brassard. Relativized cryptography. MRmoceedings of

and the following two lemmas:

Lemma 14. For everyNP-relationV' C {0,1}" x {0,1}™

(wherem = n©M) there exists ailNP-languageL’ and
a constant such that there is @(dm?)-to-§ average-to-
average reduction fromiV, i) to (L', U).

Lemma 15. For everyNP-relation V' and polynomial-time
samplable distributiorD = D(U), whereD : {0,1}I"l —
{0,1}", |r| = n°W), there exists aiNP-relation V' such

that there is aO(d|r|)-to-§ average-to-average reduction

from (V, D) to (V', U).

Analogues of these lemmas are known in the context of

the distributional hardness &fP-problems. A variant of

Lemma 14 appears Ben-David et al. [4], while a variant of

[10]

[11]

[12]

[13]

Lemma 15 was proved by Impagliazzo and Levin [16]. Our [14]
proofs are in essence a recasting of these arguments in the

formalism of nonadaptive average-to-average reductions.

Acknowledgements

We thank Madhu Sudan for suggesting the rele-
vance of [16], Oded Goldreich for stressing the rele-
vance of our result to the question of basing cryptography
on NP-hardness, and Amit Sahai for helpful discus-

[15]

16]

sions. The hiding protocol was suggested by Manikandan[17]

Narayanan.

References

[1] W. Aiello and J. Hastad. Statistical zero-knowledge-la
guages can be recognized in two roundsurnal of Com-
puter and System Sciencd®:327-345, 1991.

[2] M. Ajtai. Generating hard instances of lattice problenis

[18]

[19]

Proceedings of the 28th ACM Symposium on Theory of Com-[20]

puting pages 99-108, 1996.

[3] M. Ajtai and C. Dwork. A public-key cryptosystem with
worst-case/average-case equivalencePriiceedings of the
29th ACM Symposium on Theory of Computipages 284—
293, 1997.

[4] S. Ben-David, B. Chor, O. Goldreich, and M. Luby. On the

theory of average-case complexity. Rroceedings of the
21st ACM Symposium on Theory of Computipages 204—
216, 1989.

[5] M. Blum. Designing programs to check their work. Techni-

cal Report 88-09, ICSI, 1988.
[6] M. Blum and S. Kannan.
their work. Journal of the ACM41(1):269-291, 1995. Also
in STOC'89.
[7] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/cortety
with applications to numerical problemgournal of Com-
puter and System Sciencd3(3):549-595, 1993.

[8] R.Boppana, J. Hastad, and S. Zachos. Does coNP havie shor

interactive proofsnf. Process. Lett.25:127-132, 1987.

Designing programs that check

[21]

the 20th IEEE Symposium on Foundations of Computer Sci-
ence pages 383-391, 1979.

W. Diffie and M. E. Hellman. New directions in cryptogra-
phy. IEEE Transactions on Information Theoi22(6):644—
654, 1976.

J. Feigenbaum and L. Fortnow. On the random-self-
reducibility of complete setsSIAM Journal on Computing
22:994-1005, 1993.

O. Goldreich and S. Goldwasser. On the possibility of-ba
ing cryptography on the assumption tiat4 N P. Unpub-
lished manuscript, 1998.

O. Goldreich, H. Karloff, L. Schulman, and L. Trevisan.
Lower bounds for linear locally decodable codes and private
information retrieval. IfProceedings of the 17th IEEE Con-
ference on Computational Complexipages 175-183, 2002.
S. Goldwasser and M. Sipser. Private coins versus publi
coins in interactive proof systems. Proceedings of the
18th ACM Symposium on Theory of Computipgges 59—
68, 1986.

R. Impagliazzo. A personal view of average-case coriple
ity. In Proceedings of the 10th IEEE Conference on Struc-
ture in Complexity Theornpages 134-147, 1995.

R. Impagliazzo and L. Levin. No better ways to generate
hard NP instances than picking uniformly at random. In
Proceedings of the 31st IEEE Symposium on Foundations of
Computer Scienggages 812—-821, 1990.

J. Katz and L. Trevisan. On the efficiency of local decagdi
procedures for error correcting codes.Aroceedings of the
32nd ACM Symposium on Theory of Computipages 80—
86, 2000.

L. Levin. Average case complete problenSLAM Journal

on Computing15(1):285-286, 1986.

R. Lipton. New directions in testing. IRroceedings of DI-
MACS Workshop on Distributed Computing and Cryptogra-
phy, 1989.

R. O’'Donnell. Hardness amplification within NP. Rro-
ceedings of the 34th ACM Symposium on Theory of Comput-
ing, pages 751-760, 2002.

O. Regev. New lattice based cryptographic constraetion
Proceedings of the 35th ACM Symposium on Theory of Com-
puting pages 407-416, 2003.



