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Abstract

We show that if anNP-complete problem has a non-
adaptive self-corrector with respect to a samplable distribu-
tion thencoNP is contained inAM/poly and the polyno-
mial hierarchy collapses to the third level. Feigenbaum and
Fortnow show the same conclusion under the stronger as-
sumption that anNP-complete problem has a non-adaptive
random self-reduction.

Our result shows it is impossible (using non-adaptive re-
ductions) to base the average-case hardness of a problem in
NP or the security of a one-way function on the worst-case
complexity of anNP-complete problem (unless the polyno-
mial hierarchy collapses).

1. Introduction

Worst-Case versus Average-Case Complexity

A problem in distributionalNP [18] is a pair (L, D)
whereL is anNP decision problem andD is a samplable
distribution of instances.1

The fundamental question in the study of average-case
complexity is whether there are intractable problems in dis-
tributional NP. Of course the question can be formalized
in different ways depending on how we define intractabil-
ity (and tractability). For the sake of this paper we will con-
sider a problem(L, D) tractable if for every polynomialp()
there is a polynomial time algorithmA such that, for any
n, there is a probability at most1/p(n), according toD, to
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1 Actually, we think ofD as being a samplableensambleof distribu-
tions, that is, for everyn there is a distributionDn on instances of
lengthn, and there is a polynomial time sampler that on input1n sam-
ples fromDn. This is the standard convention in cryptography and in
the study of “amplification of hardness” and worst-case to average-
case reductions for various problems, including problems in NP [20].
It is, however, different from the convention used by Levin [18], which
refers to a single distribution over all possible inputs. Impagliazzo [15]
shows that the two conventions are, essentially, interchangeable.

generate an instance of lengthn on whichA makes a mis-
take,2 and we say that(L, D) is intractable otherwise.

Results by Ajtai [2] suggest that the question of whether
every distributionalNP problem is tractable may be re-
duced to the standard question of whetherNP ⊆ BPP.
Ajtai shows that an algorithm that solves well on average
the shortest vector problem (anNP problem) under a cer-
tain samplable distribution of instances implies an algo-
rithm that solves, in the worst case, an approximate version
of the shortest vector problem, which can be seen as anNP
promise problem. If the latter problem wereNP-complete,
then we would have a reduction relating the average-case
hardness of anNP distributional problem to the worst-case
hardness of anNP-complete problem. Unfortunately, the
latter problem is known to be inNP ∩ coNP, and there-
fore it is unlikely to beNP-hard. However, it is conceivable
that improved versions of Ajtai’s argument could show the
equivalence between the average-case complexity of a dis-
tributional NP problem and the worst-case complexity of
anNP problem.

Ajtai’s approach has been extended by Ajtai and
Dwork [3] and Regev [21], who present public-key cryp-
tosystems whose security (which is a stronger condi-
tion than the existence of hard-on-average problems in
NP) is equivalent to the worst-case complexity of cer-
tainNP promise problems.

Such results re-openened the old question (appearing al-
ready in [10, Section 6]) of whether there are cryptosys-
tems that areNP-hard to break, that is, whose security can
be based on the assumption thatNP 6⊆ BPP.

2 This is essentially the definition ofHeuristic Polynomial Timegiven
by Impagliazzo [15]. One gets, essentially, Levin’s definition of Av-
erage Polynomial Time [18] by requiringA to output either the right
answer or FAIL on every input, and that the probability of answer-
ing FAIL when given an instance sampled fromD is at most1/p(n).
Our proof could be modified so that our result would hold also with re-
spect to Levin’s definition of tractability and intractability.



Previous Work on Worst-case versus Average-case
Complexity in NP

As discussed in [15], we know oracles relative to which
NP 6⊆ P/poly but every distributionalNP problem is
tractable. Therefore, any proof that, say, “NP 6⊆ BPP im-
plies the existence of hard-on-average problems inNP”
must use a non-relativizing argument.

Since Ajtai’s arguments exploit properties of specific
problems, it does not seem that relativization results apply
to them.

Feigenbaum and Fortnow [11] consider the notion oflo-
cally random reduction, which is a natural way to prove that
the average-case complexity of a given problem relates to
the worst-case complexity of another one. A locally random
reduction from a languageL to a distributional problem
(L′, D) is a polynomial-time oracle procedureR such that
RL′

solvesR and, furthermore, each oracle query ofRL′

(x)
is distributed according toD. 3 Clearly, such a reduction
converts a heuristic polynomial time algorithm for(L′, D)
(with sufficiently small error probability) into aBPP algo-
rithm for L. If we could have a locally random reduction
from, say, 3SAT to some problem(L′, D) in distributional
NP, then we would have proved that ifNP 6⊆ BPP then
distributionalNP contains intractable problems.

Feigenbaum and Fortnow show that if there is a
non-adaptive locally random reduction from a prob-
lem L to a problem(L′, D) in distributionalNP, thenL
is in coAM/poly = coNP/poly. In particular, if L is
NP-complete, thenNP ⊆ coNP/poly and the polyno-
mial hierarchy collapses.

Locally random reductions are a natural notion, and
they have been used to establish the worst-case to average-
case equivalence of certainPSPACE-complete andEXP-
complete problems.

Previous Results on Crpytography versusNP-
hardness

Brassard [9] considers the question of whether there can
be a public keycryptosystem whose security can be re-
duced to solving anNP-complete problem. Brassard argues
that, under some assumptions on the key-generation algo-
rithm and the encryption procedure, the problem of invert-
ing the encryption is inNP ∩ coNP, and therefore unlikely
to be equivalent to anNP-complete problem. Goldreich and
Goldwasser [12] revisited the issue more recently, and tried
to remove some of the assumptions in Brassard’s result.
They showed that the existence of a reduction from anNP-
complete problem to the problem of breaking a public-key

3 Or, rather, according toDm wherem depends only on the input length
of x.

cryptosystem would imply the collapse of the polynomial
hierarchy (under some assumptions on the way the reduc-
tion works and/or on the key generation algorithm).

The results of Brassard [9] and of Goldreich and Gold-
wasser [12] refer to the complexity of breaking a cryptosys-
tem for every message and for every key. Clearly, if even
such a strong form of attack cannot beNP-hard (under cer-
tain assumptions) then neither can the weaker form of at-
tack considered in standard definitions of security (in which
the attacker only needs to distinguish the encryptions of two
possible messages with noticeable probability). In the set-
ting of privatekey encryption, however, this approach does
not seem to work, and it seems necessary to specifically ad-
dress the issue of the average-case complexity of attackinga
construction. In particular, the possibility of private-key en-
cryption is equivalent to the existence of one-way functions,
and it is well known that there are “one-way functions” that
areNP-hard to invert on all inputs.4

A generic reduction from anNP-complete problem to
the problem of inverting a one-way functionf would be an
oracle procedureR such that for some polynomialp and
for every oracleA that invertsf on a 1 − 1/p(n) inputs
of lengthn, we have thatRA is aBPP algorithm for 3SAT.
The techniques of Feigembaum and Fortnow imply that ifR
is non-adaptive, and if all of its oracle queries are done ac-
cording to the same distribution (that depends only on the
length of the input), then the existence of such a reduction
implies that the polynomial hierarchy collapses.

As we explain below, our results show the same con-
clusion without the assumption on the distribution of the
queries made byRA. (But we still need the assumption that
the queries are non-adaptive.)

Our Result

We say that a languageL has a worst-case to average-
case reduction with parameterδ to a distributional problem
(L′, D) if there is a reductionR (say, realized by a proba-
bilistic polynomial time algorithm) such that, for every ora-
cleA that agrees withL′ on inputs of probability mass1−δ
according toD on each input length,RA solvesL on every
input.

If L andL′ are the same language, then the reduction
is called a self-corrector, a notion independently introduced
by Blum and others [7] and by Lipton [19] in the context of
program checking [5, 6].

As argued below, a locally random reduction is also a
worst-case to average-case reduction and a random self-
reduction is also a self-corrector, but the reverse need not
be true.

4 For example, take the function that on input a 3SAT formulaφ and
an assignmenta, outputs0.φ if the formula is not satisfied bya, and
outputs1.φ otherwise.



In this paper we show that if there is a worst-case to
average-case reduction with parameter1/poly(n) from an
NP-complete problemL to a distributionalNP problem
(L, D), thenNP ⊆ coNP/poly and the polynomial hier-
archy collapses.

In particular, if anNP-complete problem has a self-
corrector with respect to a samplable distribution, then the
polynomial hierarchy collapses.

We first prove the result for the special case in which the
distributionD is uniform.

Using a reductions by Impagliazzo and Levin [16] and
by Ben-David and others [4], we show that the same is
true even the reduction assumes a good-on-average algo-
rithm for thesearchversion ofL′, and even if we measure
average-case complexity forL′ with respect to an arbitrary
samplable distributionD.

The generalization to arbitrary samplable distributions
and to search problems also implies that there cannot be
any non-adaptive reduction from anNP-complete problem
to the problem of inverting a one way function.

Our result also rules out non-adaptive reductions from an
NP-complete problem to the problem of breaking a public-
key cryptosystem. The constraint of non-adaptivity of the
reduction is incomparable to the constraints in the resultsof
Goldreich and Goldwasser [12].

It should be noted that the reductions of Ajtai, Dwork
and Regev [2, 3, 21] areadaptive.

Comparison with Feigenbaum-Fortnow [11]

A locally random reductionR that makesq queries is
also a worst-case to average-case reduction with parameter
1/O(q). Indeed, ifA is an oracle that has agreement, say,
1 − 1/4q with L′, and we access the oracle viaq queries,
each uniformly distributed, there is a probability at least3/4
that queries made toA are answered in the same way as
queries made toL′.

On the other hand, the restriction that all queries must
have the same distribution is quite strong, and one could
imagine reductions where the distribution of the queries
is somewhat dependent on the input, as long as, for every
small subset of possible queries, a majority of the queries
land outside of the subset with high probability. Further-
more, locally random reductions lack nice closure proper-
ties. We would like to say that if solvingL in the worst case
is reducible to solvingL′ on a1−δ fraction of inputs, and if
solvingL′ on a1− δ fraction of inputs is reducible to solv-
ing L′′ on a1 − δ′ fraction of inputs, then solvingL in the
worst case is reducible to solvingL′′ on a1− δ′ fraction of
inputs. Reductions among distributional problems [18] typ-
ically produce instances for the target problem that are not
necessarily uniformly distributed, but just have a distribu-
tion that isdominatedby the uniform distribution (that is,

no instance is produced with a probability more than poly-
nomially larger than in the uniform distribution.)

For this reason, it is interesting, for starters, to have a
generalization of the result of Feigenbaum and Fortnow to
the case of a reductionR such thatRL′

computesL, and
each oracle query is made with a probability at most poly-
nomially larger than in the uniform distribution. We could
call such reductionssmooth random reductions. However it
seems more interesting to just drop all restrictions on the
distribution of the queries ofR, and just impose the condi-
tion that we are interested in: thatR works when given any
oracle that solvesL′ well on average.

Readers who are familiar with the following notions may
have noted that the relation between locally random reduc-
tions and our notion of worst-case to average-case reduction
is similar to the relation between one-round private informa-
tion retrieval and locally checkable codes. In one-round pri-
vate information retrieval, a user is given oracle access to
the encoding of a certain string, and wants to retrieve one
bit of the string by making a bounded number of queries;
the restriction is that thei-th query must have a distribu-
tion independent of the bit that one is interested in. In a lo-
cally checkable code, a decoder is given oracle access to the
encoding of a certain string, and the encoding has been cor-
rupted in aδ fraction of places; the decoder wants to retrieve
a bit of the original string by making a bounded number of
queries. The notion of a smooth code, which is the analogue
of a smooth random reduction, has also been studied. In a
smooth code, a decoder is given oracle access to the encod-
ing of a certain string, and wants to retrieve one bit of the
string by making a bounded number of queries; the restric-
tion is that the distribution of each query should be domi-
nated by the uniform distribution.

For unbounded users/decoder the three notions have
been shown equivalent [17, 13], but the same methods do
not work in the computationally bounded setting studied in
this paper. One step in our proof is, however, inspired by the
techniques used to show this equivalence.

Our Proof

As in the work of Feigenbaum and Fortnow, we use the
fact that problems incoAM/poly cannot be NP-complete
unless the polynomial hierarchy collapses. So our goal is to
show that ifL is in NP and it has a1/poly(n) worst-case
to average-case reduction to a languageL′ in NP, thenL is
also incoAM/poly.

We start by discussing the case in whichD is the uni-
form distribution.

The Feigenbaum-Fortnow protocol.Let us first briefly re-
view the proof of Feigenbaum and Fortnow. Givenx, a
prover wants to prove thatRL′

(x) rejects, whereR makesq
non-adaptive queries, each uniformly distributed. The (non-



uniform) verifier generatesk independent computations of
RL′

(x) and sends to the prover all thekq queries generated
in all thek runs. The prover has to provide all the answers,
and certificates for all the YES answers. The verifier, non-
uniformly, knows the overall fractionp of queries ofRL′

(x)
whose answer is YES and, ifk is large enough, the verifier
expects the number of YES answers from the prover to be
concentrated aroundkqp, and it rejects if the prover gives
fewer thankqp−O(q

√
k) YES answers. A cheating prover

can only cheat by sayng NO on a YES instance, and can-
not do so on more thanO(q

√
k). If k is sufficiently larger

thanq, then with high probability either the verifier rejects
or at least one of thek computations ofRL′

(x) yields cor-
rect answers.

Handling Smooth Reductions.Notice that the Feigenbaum-
Fortnow protocol can be used with every oracle procedure
RL′

(x), provided that givenx we can get a good estimate
of the average number of oracle queries ofRL′

(x) that are
answered YES. Suppose thatR is a smooth random reduc-
tion, that is, each possible query is generated with proba-
bility at most polynomially larger than in the uniform dis-
tribution. We devise ahiding protocol in which the veri-
fier either rejects or gets a good estimate of the fraction of
queries ofRL′

(x) that are answered YES. We pick at ran-
dom a queryy of R()(x), that is, we select randomness for
R()(x), we getq queries, and pick at random one of them.
Then we “immerse”y in a random position in a sequence
of k random elements ofL of the same length, and we give
the sequence to the prover. The prover has to say which of
the elements in the sequence is a YES instance, and give
a certificate for each of them; it is also required to give at
leastpk − O(

√
k) certificates, wherep is the fraction of el-

ements ofL of that length that are YES instances (the veri-
fier is givenp non-uniformly). A cheating prover can give at
mostO(

√
k) wrong answers and, roughly speaking, ifk is

large enough, more than
√

k elements of the sequence look
like queries ofR()(x). With high probability, either the ver-
ifier rejects or it gets the right answer fory. Repeating the
process in parallel many times gives a good estimate of the
fraction of queries that are answered YES. This argument is
already powerful enough to generalize the result of Feigen-
baum and Fortnow to smooth reductions.

Handling General Reductions.Let R be an arbitraryδ
worst-case to average-case reduction fromL to L′ such
that R()(x) makesq queries of lengthm. Intuitively, we
would like to convertR to a smooth reduction as follows:
fix a thresholdt = q/δ, then for every query made by
R()(x) compute the probability that that query be gener-
ated byR()(x). Call a possible query “heavy” if it is gener-
ated with probability more thant/2m be the reduction, and
“light” otherwise. Ask light queries to the oracle, and do
not ask the heavy ones, but proceed as if the heavy ones had
been answered NO. LetR′ be this modified procedure. Then

R′L′

(x) behaves likeRA(x) whereA differs fromL′ only
on the queries that have a probability more thant/2m of be-
ing generated, so thatA agrees withL′ on at least a1 − δ
fraction of inputs, andR′L′

(x) works with high probability.
Furthermore,R′ is smooth by construction.5 The problem is
that it is hard to compute, or even to prove in anAM proto-
col, the exact value of the probability that a given query be
asked byR. We will settle for approximations, and, roughly
speaking,R′ will ask a queryy to the oracle if the probabil-
ity of y is less thant(1− ǫ)/2m and will simulate a NO an-
swer toy if the probability ofy is more thant(1 + ǫ)/2m,
and we get in trouble when the probability is in the middle.
By picking t at random in a certain range, instead of fixing
it to δ/q, we can make sure that with high probability there
are few queries for which we get in trouble. Given a query
y and a thresholdt, the Goldwasser-Sipser [14] protocol
can be used to prove that they is “approximately heavy.”6

Unfortunately there is no good protocol to prove thaty is
an approximately light query. Instead, we show how to use
the Aiello-Håstad [1] protocol to convince the verifier that
the fraction of light queries is approximately some valueℓ.
Then the verifier runs a modified immersion protocol to es-
timate the fraction of heavy queries that are answered YES.
In the modified immersion protocol, the prover receives a
random query ofR()(x) immersed in a sequence or uni-
formly random strings. The prover has to provide a certifi-
cate for each YES instance, and also, for each string that is a
heavy query of the protocol, a proof that it is a heavy query.
Then the verifier can check that the fraction of queries iden-
tified as heavy is about1−ℓ, and get a good estimater of the
fraction of heavy queries whose answer is YES. Finally, we
run a modified Feigenbaum-Fortnow protocol in which we
give to the prover the queries ofk instantiations ofR()(x).
The prover has to provide certificates for all the YES in-
stances, and proofs of heaviness for all the heavy queries.
The verifier checks that about(1− ℓ)kq queries are claimed
to be heavy, a fractionr of them has certificates, and pro-
ceed as if the non-heavy queries had been answered NO.

General DistributionsD, Search Problems, One-Way Func-
tions. So far we have described our results for the case in
whichD is a samplable distribution. We show that a reduc-
tion of Impagliazzo and Levin [16] implies that for every
distributionalNP problem(L, D) and boundδ = 1/nO(1)

there is a non-adaptive probabilistic polynomial time oracle
algorithmR, an NP languageL′, and a boundδ′ = 1/nO(1)

such that for every oracleA that has agrees withL′ on a
1 − δ′ fraction of inputs,RL′

solvesL on a subset of in-
puts of density1 − δ under the distributionD.

5 This is the way locally decodable codes are shown equivalent to
smooth codes in [17].

6 Formally, an honest prover succeeds with high probabilityif the prob-
ability of y is less thant(1 − ǫ)/2m, and a cheating prover fails with
high probability if the probability ofy is more thant/2m.



This means that if there were a non-adaptive worst-case
to average-case reduction with parameter1/poly(n) from a
problemL to a distributional problem(L′, D), there would
also be such a reduction fromL to (L′′, U), whereU is the
uniform distribution andL′′ is in NP. By the previously de-
scribed results, this would imply the collapse of the polyno-
mial hierarchy.

A reduction by Ben-David and others [4] implies that
for every distributionalNP problem(L, U) there is a prob-
lemL′ in NP such that an algorithm that solves the decision
version of(L′, U) on a1− δ fraction of inputs can be mod-
ified (via a non-adaptive reduction) into an algorithm that
solves the search version of(L, U) on a 1 − δ · poly(n)
fraction of input. This implies that even if modify the defi-
nition of worst-case to average-case reduction so that the or-
acleA is supposed to solve thesearchversion of the prob-
lem, our results still apply. In particular, for every polyno-
mial time computable functionf , the problem of invertingf
well on average is precisely the problem of solving well on
average a distributionalNP search problem. Therefore our
results also rule out the possibility of basing one-way func-
tions onNP-hardness using non-adaptive reductions.

2. Definitions and notation

We use functional and set notation for boolean functions
interchangeably; say ifL : {0, 1}n → {0, 1}, then “x ∈ L”
is the same as “L(x) = 1”.

By “k parallel instantiations” of anr round protocolP ,
we mean a protocolP ′ which createsk statistically inde-
pendent instantiationsP1, . . . , Pk of P , and in itsith round
runs theith round of eachPj . At the end,P combines the
outputs of thePj according to a specified rule.

A nonadaptive worst-case to average-case randomized
reductionfrom L to (L′, D) with average hardnessδ (in
short, aδ worst-to-average reduction) is a family of poly-
nomial size circuitsR = {Rn} such that: (1) On in-
put x ∈ {0, 1}n, randomnessr, Rn(x; r) outputs strings
y1, . . . , yk and a circuitA, called thedecoder. (2) For any
L∗ that isδ-close toL′ with respect toD,

Pr
r

[A(y1, . . . , yk; L∗(y1), . . . , L
∗(yk)) = L(x)] > 2/3.

Sometimes we denote the distributional problem(L′, U),
whereU is the uniform distribution, just byL′.

Remarks.The constant2/3 can be made1− 2−Ω(k) by par-
allel instantiation and taking majority at the end. We will
assume this better bound from here on.

Without loss of generality, we may assume the number
of stringsk = poly(n) depends only onn = |x|, but not on
the specific inputx.

For notational convenience, we assume that all queries
y1, . . . , yk ∈ {0, 1}m have the same lengthm = poly(n)

that depends only onn but not onx. This assumption cannot
be made without loss of generality, however all the proofs
that we give can be generalized to the case of queries with
different length, mostly by just replacing every mention of
{0, 1}m with the set of strings of length at mostm, and ev-
ery use of2−m with 2−m−1 + 1.

One may also ask what happens to “Las Vegas” reduc-
tions that are only required to run inexpectedpolynomial
time. By standard tricks, it is not difficult to see that the ex-
istence ofδ worst-to-average Las Vegas reductions implies
the existence ofδ worst-to-average ordinary reductions.

We useω to denote a function that grows faster than any
constant, and we will abuse notation by writing expressions
like ω + ω = ω, ω2 = ω, etc. “With high probability,” or
whp, means with probability1 − o(1).

3. Preliminaries

Here we outline two protocols and a sampling bound that
will be used in the analysis.

The Lower Bound Protocol

Given anNP setS ⊆ {0, 1}n a bounds, we are inter-
ested in anAM protocol for the statement|S| ≥ s. Consider
the following protocol, due to Goldwasser and Sipser [14]:

1. Verifier: Choose a pairwise independent hash function
h : {0, 1}m → Γ, where|Γ| = s/k, and sendh to the
prover.

2. Prover: Send a listr1, . . . , rl ∈ {0, 1}m.

3. Verifier: If ri 6∈ S for anyi, reject. If l < (1 − ǫ/3)k,
reject. Ifh(ri) 6= 0 for anyi, reject. Otherwise, accept.

Lemma 1. If |S| ≥ s, there exists a prover that makes the
verifier accept with probability1−9/ǫ2k. If |S| ≤ (1− ǫ)s,
no prover makes the verifier accept with probability more
than9/ǫ2k.

The Upper Bound Protocol

Suppose that the verifier of anAM protocol has access
to a “secret”r, chosen uniformly at random from anNP
setS ⊆ {0, 1}m. Can the verifier take advantage of her se-
cret to verify a statement of the form|S| ≤ s? Consider the
following protocol, due to Aiello and Håstad [1]:

1. Verifier: Choose a 3-wise independent hash function
h : {0, 1}m → Γ, where|Γ| = (s− 1)/k and send the
pair (h, h(r)) to the prover.

2. Prover: Send a listr1, . . . , rl ∈ {0, 1}m.

3. Verifier: If ri 6∈ S for any i, reject. If l > (1 + ǫ/3)k
or r 6∈ {r1, . . . , rl}, reject. Otherwise, accept.



Lemma 2. If |S| ≤ s, there exists a prover that makes the
verifier accept with probability1 − 9/ǫ2k. If |S| ≥ (1 +
ǫ)s, no prover makes the verifier accept with probability1+
9/ǫ2k − ǫ/6.

At a first glance, this protocol may not seem very useful,
as the completeness-soundness gap is very narrow. How-
ever, suppose we fixǫ and want to applyt iterations of the
protocol. Then choosingk = ω(t/ǫ2) will ensure that, with
high probability, a good prover will never make the veri-
fier reject. On the other hand, a crooked prover may cheat
by more than anǫ fraction only on aboutO(1/ǫ) of thet it-
erations. Fort large enough, this becomes a negligible frac-
tion of the total number of iterations. In our application of
the protocol, we will be able to tolerate such a small frac-
tion of errors.

Additive bounds for random sampling

The following lemma is an easy consequence of the
Chernoff bound:

Lemma 3. Let ǫ < 1, T ⊆ Ω, R a distribution onΩ,
R(T ) = p and S an N > 3 log(η/2)/ǫ3 element ran-
dom sample fromΩ, drawn fromR. With probability1− η,
|S ∩ T |/N ∈ p ± ǫ.

In most applications here we setη = o(1), so that the
estimate holds with high probability.

4. Proof Outline

By a theorem of Boppana et al. [8], ifcoNP ⊆
AM/poly, thenΣ3 = Π3. Therefore, assumingΣ3 6= Π3,
the lack of aδ worst-to-average reductions fromNP-hard
L to someL′ ∈ NP will follow from the existence of an
AM protocol forL:

Theorem 1. Let L be an NP-complete language under
polynomial-time reductions,L′ ∈ NP, δ = n−O(1). If there
is aδ worst-to-average reduction fromL to L′, then there is
a AM/poly protocol forL.

Let R denote the reduction from the Theorem. Fix the
inputx, and letRi : {0, 1}m → [0, 1] denote the distribu-
tion on theith query produced byR on inputx. We will
use|r| to denote the number of random bits used by the re-
duction. We useR(x; ·) to denote the randomized compu-
tation which, on inputx, outputsy1, . . . , yk andA. We call
R(x; ·) the instantiationof R onx.

Without loss of generality, we may assume that the dis-
tributionsRi are all equal. This is because the reduction
R can apply a uniform random permutation to the queries
y1, . . . , yk , and have the decoder “disentangle” the permu-
tation before it runs. Then the marginal distribution of every
query becomes(R1 + . . . + Rk)/k , R.

ThecoAM protocol forL will consist of three phases. In
the first phase, we will look for a “threshold”t∗ = O(δ−1)
such thatPry∼R[R(y) < t∗2−m] can be estimated within
an inverse polynomial additive factor. In the second phase,
we will use a “hiding protocol” to figure out a good es-
timate for the fraction of the queriesy in L such that
R(y) < t2−m. In the last phase, we will apply a variant
of the Feigenbaum-Fortnow protocol for these queries.

Let G : {0, 1}|r| → {0, 1}m denote the circuit that, on
input r, computesR(x; r) and outputs the queryy1. When
r is chosen uniformly at random, this circuit generates a
queryy sampled fromR.

5. The First Phase

Let Λ(t) = {y : R(y) < t2−m} andp(t) = R(Λ(t)).
We think of Λ(t) as a “ball of radiust.” In this phase of
the protocol, we look for a value oft such that a good
lower bound onp(t) can be obtained. We will estimatep(t)
by random sampling: Generate a sampley ∼ R and test
if y ∈ Λ(t). Since there is no easy way to establish if
y ∈ Λ(t), we will take advantage of the prover for this pur-
pose. The upper and lower bound protocols will ensure that
the prover cannot cheat by much without getting caught.

First an easy technical lemma. Letǫ = 1/ωk.

Lemma 4. Fix an arbitrary sequence0 < t0 < t1 <
. . . < tl < 2m, where l = ω/ǫ. For i∗ chosen uni-
formly at random from{1, . . . , l}, with high probability,
p(ti∗) ≤ p(ti∗−1) + ǫ.

We will apply the lemma to the sequenceti , δ−1(1 +
ǫ/ω)i, so thatti = O(δ−1) for 1 ≤ i ≤ ω/ǫ.

We now present the first phase protocol:

1 Verifier: Let l = ω/ǫ3. Chooser1, . . . , rl uniformly
and independently from{0, 1}|r|. Sendyj , G(rj)
for 1 ≤ j ≤ l to the prover.

2 Prover: For each1 ≤ j ≤ s, send a claimρj for the
value2|r|R(yj).

3 Verifier: For each1 ≤ j ≤ s, initiate (in parallel) the
upper bound protocol for the claim|G−1(yj)| ≤ ρj

with parameterk = ω2/ǫ5. If any of the instances re-
jects, reject.

4 Verifier: For each1 ≤ j ≤ s, initiate (in parallel) the
lower bound protocol for the claim|G−1(yj)| ≥ ρj .
If any of the instances reject, reject. Otherwise, choose
i∗ uniformly at random from{1, . . . , ω/ǫ}, let t∗ =
ti∗ = δ−1(1 + ǫ/ω)i∗ and set

p∗ =
|{j : ρj2

−|r| < t∗2−m}|
l

.

Lemma 5. For everyx ∈ {0, 1}n there exists a “good”
prover for which, with high probability, at the end of the
Step 4, the verifier has not rejected.



Proof. This prover sends claimsρj = 2|r|R(yj) =
|G−1(yj)|. By Lemma 2, each upper bound protocol in-
stantiation succeeds (does not reject) with probability
1 − 9ω/ǫ2k = 1 − 1/ωl. There arel such instantia-
tions, so with high probability all of them pass with-
out causing a rejection. Similarly by Lemma 1, all of the
lower bound protocol instantiations pass without caus-
ing a rejection.

Lemma 6. For everyx ∈ {0, 1}n, and for any prover, with
high probability, at the end of Step 3 either the verifier re-
jects orp∗ > p(t∗) − ǫ.

Proof. Suppose that the verifier does not reject. Intuitively,
there are two ways the prover can cheat on any given query.
It can either cheat “a little” by reporting some valueρj such
thatρj > 2|r|R(yi), but ρj < (1 + ǫ)2|r|R(yj), or it can
cheat by “a lot” by reporting aρj which is “way off”, i.e.,
ρj ≥ (1 + ǫ)2|r|R(yj). In the end, the samplesyj are used
to obtain an estimate ofp(t∗). Our goal will be to show that,
with high probability, neither way of cheating has a signifi-
cant effect on our estimate forp(t∗). In addition to the errors
caused by the cheating behavior of the prover, we will also
have to account for errors “coming from nature”, namely
those caused by deviations in random sampling.

Let C = {j : ρj ≥ (1 + ǫ)2|r|R(yj)}. The setC rep-
resents the queries on which the prover “cheats a lot.” We
show that this set is rather small: By Lemma 2, ifj ∈ C,
then thejth protocol instantiation causes a rejection with
probability> ǫ/6ω−9ω/ǫ2k = ǫ/ω. By Markov’s inequal-
ity, with high probability|C| < 1/ǫ < ǫl provided the veri-
fier doesn’t reject.

We now consider the queries on which the prover can
“cheat a little”. These are the queries that fall into the
set Λ(ti∗) − Λ(ti∗−1). Let Ji = {j : yj ∈ Λ(ti)} and
B = Ji∗ − Ji∗−1. We show that, with high probability, the
number of queries inB is a negligible fraction ofl:

|B| = |Ji∗ | − |Ji∗−1|
< (p(ti∗) + ǫ)l − (p(ti∗−1) − ǫ)l whp, by Lemma 3
= (p(ti∗) − p(ti∗−1))l + 2ǫl

< 3ǫl whp, by Lemma 4.

so that

p∗ =
|{j : ρj2

−|r| < t∗2−m}|
l

≥ |Ji∗ | − |B| − |C|
l

> p(t∗) − 5ǫ.

By a similar argument we can show:

Lemma 7. For everyx ∈ {0, 1}n, and for any prover, with
high probability, at the end of Step 4 either the verifier re-
jects orp∗ < p(t∗) + ǫ.

6. The Second Phase

In the second phase of theAM protocol, we try to obtain
an estimate forR(L′′), whereL′′ is the languageL′∩Λ(t∗),
i.e.,

L′′(y) =

{

L′(y) if R(y) ≤ t∗2−m

0 otherwise.

The languageL′′ is δ-close to L′: The number of
y ∈ {0, 1}m such thatR(y) > t∗2−m can be at most
t∗−1δ2m ≤ δ2m, since R is a probability distribu-
tion. Therefore|L′′ ⊕ L′| ≤ |{0, 1}m − Λ(t∗)| ≤ δ2m.

Let U denote the uniform distribution onm bit strings.
We assume that both the verifier and the prover know the
probabilitypadv = Pry∼U [y ∈ L′]. Let α = δ/ω.

5 Verifier: Letl = ω/αǫ3. Generate stringsy1, . . . , yl ∈
{0, 1}m as follows: For every1 ≤ j ≤ l,

5.1 Toss a cointj, which is1 with probabilityα, 0
with probability1 − α.

5.2 If tj = 1, chooseyj ∼ R. If tj = 0, chooseyj ∼
U .

Let T = {j : tj = 1}. Send the sequencey1, . . . , yl to
the prover.

6 Prover: For each1 ≤ j ≤ l, send a claimaj ∈ {0, 1}
for the statementyj ∈ L′. If aj = 1, send anNP
certificate for your claim. For eachj, send a claim
bj ∈ {0, 1} for the statementR(yj) ≥ t∗. Let A∗ =
{j : aj = 1}, B∗ = {j : bj = 1}.

7 Verifier: For each1 ≤ j ≤ l, if j ∈ B ∩ T , initiate
the lower bound protocol for the claim|G−1(yj)| ≥
2|r|R(yj). Perform the following tests:

7.1 If |A∗ ∩ T |/|T | < padv − αǫ, reject.

7.2 If |B∗ ∩ T |/|T | 6∈ p∗ ± ǫ, reject.

7.3 If any of the lower bound protocol instantiations
fail, reject.

If all tests pass, setq∗ , |A∗ ∩ B
∗ ∩ T |/|T |.

Let A = {j : yj ∈ L′} andBi = {j : yj ∈ Λ(ti)}.
By Lemma 3, with high probability|T | > (1 − α− ǫ)l and
|T | > (α − ǫ)l ≥ αl/2.

Lemma 8. For everyx ∈ {0, 1}n there exists a “good”
prover for which with high probability, the verifier has not
rejected by the end of Step 7 andq∗ < R(L′′) + ǫ.

Proof. The good prover sends correct claims for all the
queries; it gives answersaj = L(yj) and bj = 1 iff
R(yj) ≥ t∗. We show this prover is likely to pass all tests,
using Lemma 3 on several occasions.

Test 7.1: Follows directly from Lemma 3.



Test 7.2: With high probability,|B∗∩T | ∈ (p(t∗)±ǫ)|T |.
By Lemmas 6 and 7,p(t∗) ∈ p∗ ± ǫ with high probability,
so that|B∗ ∩ T |/|T | ∈ p∗ ± ǫ.

Test 7.3: Follows from Lemma 1 (with high probability.)
It remains to show thatq∗ < R(L′′)+ǫ. First,A∗∩B

∗
=

A ∩ Bi∗ , so thatq∗ is an unbiased estimator for the frac-
tion of queries inT that fall into L ∩ Λ(t∗) = L′, when
the queries are drawn fromR. Since the number of sam-
ples inT is at leastαl/2 > ω/ǫ3, q∗ < R(L′) + ǫ.

Lemma 9. For everyx ∈ {0, 1}n, and for any prover, with
high probability, the verifier either rejects by the end of Step
7 or q∗ > R(L′′) − ǫ.

First, note that the verifier cannot make any false “yes”
claims; if aj = 1, it must be thatyj ∈ L, otherwise the
prover will detect a faultyNP certificate foryj . So the
verifier can only cheat by making false “no” claims. Let
C = A − A∗ denote the set of indices corresponding to
these claims.

The main idea of the proof is to show that if|C∩B
∗∩T |

is a significant fraction of|T |, the verifier is likely to reject.
Suppose the opposite is true, i.e., the prover cheats on many
queries inT . We will show that the prover cannot distin-
guish, with significant confidence, whether a query inB

∗

came fromT or fromT ; so if he cheats on many queries in
B

∗ ∩ T , he will also end up cheating on a lot of queries in
B

∗ ∩ T ⊆ T . But in this case the prover will get caught in
Step 7.1.

Lemma 10. For any choice ofC made by the prover in Step
5, if |C∩Bi∗ | > 6αǫl, then with high probability,|C∩T | >
2αǫl.

Proof. First we show that wheneverj ∈ Bi∗ , the prover
cannot tell iftj = 1 based on its evidence with confidence
over1/2:

Pr[j ∈ T |y1, . . . , yl] = Pr[j ∈ T |yj]

=
Pr[yj |j ∈ T ] Pr[j ∈ T ]

Pr[yj ]

≤ Pr[yj |j ∈ T ] Pr[j ∈ T ]

Pr[yj |j 6∈ T ] Pr[j 6∈ T ]

<
ωδ−12−m · α
2−m · (1 − α)

=
1

2
.

Even when conditioned on seeingy1, . . . , yl, the events
“j ∈ T ”, wherej ∈ C ∩ Bi∗ , are independent. By a crude
estimate, with high probability,|C ∩ Bi∗ ∩ T | < 4αǫl, so
that|C ∩ T | ≥ |C ∩ Bi∗ ∩ T | > 2αǫl.

Lemma 11. For everyx ∈ L, and any prover, if the verifier
survives Step 7, then|(B∗ ⊕ Bi∗) ∩ T | < ǫ|T | with high
probability.

Proof. Suppose the verifier survives Step 7. By Lemma 3,
with high probability, |Bi∗ ∩ T | ∈ (p(t∗) ± ǫ)|T | and
|Bi∗−1 ∩ T | ∈ (p(ti∗−1) ± ǫ)|T |. By Lemma 4, with high
probability, p(t∗) < p(ti∗−1) + ǫ. Putting this together,
|Bi∗ ∩ T | < |Bi∗−1 ∩ T | + 3ǫ|T |.

First we show that|(Bi∗ − B
∗
) ∩ T | < 3ǫ|T |. By

Lemma 1, with high probability,Bi∗−1 ∩ T ⊆ B
∗ ∩ T ,

for otherwise the verifier wouldn’t survive Step 7.3. It fol-
lows that

|(Bi∗ − B
∗
) ∩ T )|

≤ |Bi∗−1 − B
∗ ∩ T )| + |Bi∗ − Bi∗−1 ∩ T |

= |Bi∗ ∩ T | − |Bi∗−1 ∩ T |
< 3ǫ|T |.

Now we show that|(B∗ − Bi∗) ∩ T | < ǫ|T |. Since the
verifier survives Step 7.2, by Lemma 6 with high probabil-
ity:

|B∗ ∩ T | ≤ (p∗ + ǫ)|T | ≤ (p(t∗) + ǫ)|T |.
On the other hand,

|Bi∗ ∩ B
∗ ∩ T | = |Bi∗ ∩ T | − |(Bi∗ − B

∗
) ∩ T |

> (p(t∗) − ǫ)|T | − 3ǫ|T |
= (p(t∗) − ǫ)|T |,

so that

|(B∗ − Bi∗) ∩ T | = |B∗ ∩ T | − |Bi∗ ∩ B
∗ ∩ T |

< (p(t∗) + ǫ)|T | − (p(t∗) + ǫ)|T |
< ǫ|T |.

Proof of Lemma 9.If |C∩Bi∗ | > 6αǫl, then by Lemma 10
|C ∩ T | > 2αǫ|T | with high probability. By Lemma 3,
|A ∩ T | < (padv + αǫ)|T | with high probability. Next,
|A∗ ∩ T | = |A ∩ T | − |C ∩ T | < (padv − αǫ)|T |, and
Step 7.1 rejects.

Suppose|C ∩ Bi∗ | ≤ 6αǫl. Then

|A∗ ∩ B
∗ ∩ T |

≥ |A∗ ∩ Bi∗ ∩ T | − |(B∗ ⊕ Bi∗) ∩ T |
≥ (|A ∩ Bi∗ ∩ T | − |C ∩ Bi∗ |) − |(B∗ ⊕ Bi∗) ∩ T |
≥ (R(L ∩ Λ(t∗)) − ǫ)|T | − 6αǫl − ǫ|T |
≥ (R(L′) − ǫ)|T |.

7. The Third Phase

The third phase is a variation of the Feigenbaum-
Fortnow protocol for reductions with uniform marginal
distributions.

8 Verifier: Let l = ω log k/ǫ3. Run l independent in-
stances of the reductionRn(x; ·). Say theith instance
produces the circuitAi and queriesyi1, . . . , yik ∈
{0, 1}m. Send the queriesyij , 1 ≤ i ≤ l, 1 ≤ j ≤ k to
the prover.



9 Prover: For each pairi, j, send a claimaij for the state-
mentyij ∈ L′ (accompanied by anNP certificate, if
aij = 1) and a claimbij for the statementR(yij) ≥ t∗.
Let A∗

j = {i : aij = 1}, B∗
j = {i : bij = 1}.

10 Verifier: For each pairi, j, if bij = 1, initiate the lower
bound protocol for the claim|{r : G(r) = yij}| ≥
2|r|t∗. Let cij = aij(1 − bij). Perform the following
tests:

10.1 If for anyj, |B∗

j |/l 6∈ p∗ ± ǫ, reject.

10.2 If for anyj, |A∗
j ∩ B

∗

j |/l < q∗ − ǫ, reject.

10.3 If for any i, Ai(yi1, . . . , yik; ci1, . . . , cik) ac-
cepts, reject.

If all tests pass, accept.

Let Aj = {i : yij ∈ L}, Bj = {i : R(yij) < t∗}.

Lemma 12. For everyx 6∈ L, there exists a “good” prover
that accepts with high probability by the end of Step 10.

Proof. The good prover claimsaij = L′(yij) andbij = 1
iff R(yij) ≥ t∗, for all pairsi, j. By Lemmas 6, 7 and 8, we
may assumep∗ ∈ p(t∗) ± ǫ andq∗ < R(L′) + ǫ with high
probability. It is not difficult to check that this prover passes
all Step 10 tests with high probability.

Lemma 13. For everyx ∈ L, and for any prover, with high
probability, the verifier rejects by the end of Step 10.

Proof. Assume the verifier passes all instances of Test 10.1
and Test 10.2. We show that, with high probability, Test
10.3 must reject for somei. There are two types of queries
for which the prover can fool the verifier about member-
ship inL′: First, there are the queries that fall intoB

∗

j ⊕Bj,
for which bij may be a lie. Then there are the queries in
|(Aj − A∗

j ) ∩ B
∗

j |, for which bij = 0 but aij may be a lie.
Let Cj be the set of all possible lies:

Cj = (B
∗

j ⊕ Bj) ∪ ((Aj − A∗
j ) ∩ B

∗

j ).

As in the Feigebaum-Fortnow proof, the main idea is to
show that for any fixedj, |Cj |/l < 1/k, so that there ex-
ists at least onei 6∈ C1 ∪ . . . ∪ Ck. For thisi, it will fol-
low thatcij = L′(yij) for all j, so that with high probabil-
ity, A(yi1, . . . , yik; ci1, . . . , cik) = L(x) = 1 and Test 10.3
rejects.

We bound|B∗

j⊕Bj | in the same fashion as in Lemma 11;

by that argument, we have|B∗

j ⊕ Bj | < ǫl < l/2k with
probability1 − 1/ωk. For the other term,

|(Aj − A∗
j ) ∩ B

∗

j |
= |Aj ∩ B

∗

j | − |A∗
j ∩ B

∗

j |
< (|Aj ∩ Bj | + |Bj ⊕ B

∗

j |) − |A∗
j ∩ B

∗

j |
< (R(L′) + ǫ)l + ǫl) − (q∗ − ǫ)l

= (R(L′) − q∗)l + ǫl

< ǫl whp, by Lemma 9.

8. Average-case complexity for arbitrary sam-
plable distributions

Let V be anNP-relation. We denote byLV the NP-
language corresponding toV , i.e.,LV (x) = 1 iff there ex-
ists aw such thatV (x, w) = 1. A family of random func-
tionsFn : {0, 1}n → {0, 1}m is a δ-approximate witness
oraclefor V with respect to distributionD if for all n,7

Pr
x∼D,F

[V (x, F|x|(x)) = LV (x)] > 1 − δ.

We will omit the subscript ofF when it is implicitly deter-
mined by the input length. Note that the definition implies
the existence of a setS of measureD(S) = 1 − 3δ and for
all x ∈ S,

Pr
F

[V (x, F|x|(x)) = LV (x)] > 2/3.

Intuitively, S is the set of inputs where the oracle has a good
chance of producing a witness for the input. As usual, the
constant2/3 is arbitrary, since if one has access toF , it
can be queriedk times independently in parallel to obtain a
good witness with probability1 − 1/3k.

Just as languages inNP represent decision problems,
witness oracles represent search problems. For example, in-
verting a one-way functionf : {0, 1}n → {0, 1}n on a
1 − δ fraction of inputs amounts to finding an algorithm
A : {0, 1}n → {0, 1}n that isδ-approximate for the rela-
tion V (y, x) ⇐⇒ y = f(x) with respect to the distribu-
tion f(U).

Using witness oracles, we can formalize the no-
tion of nonadaptive reductions between search problems,
as well as reductions from search to decision prob-
lems, and vice-versa. LetV, V ′ be NP relations and
D,D′ be arbitrary polynomial-time samplable distri-
butions. A δ-to-δ′ average-to-average reductionfor
search problems from(V,D) to (V ′,D′) is a family of
polynomial-size circuitsR = {Rn} such that: (1) On in-
put x ∈ {0, 1}n, randomnessr, Rn(x; r) outputs strings
y1, . . . , yk and a “decoder” circuitA. (2) For any wit-
ness oracleF ∗ that isδ′-approximate forV ′ with respect
to D′, V (x, A(y1, . . . , yk; F ∗(y1), . . . , F

∗(yk))) = LV (x)
with probability1 − δ over the choice ofx ∼ D andF ∗.
The other two types of reductions are defined in simi-
lar fashion. A δ′ worst-to-average reduction is a0-to-δ′

average-to-average reduction.

Theorem 2. Let L be a language that isNP-hard under
polynomial-time reductions,V ′ be anNP-relation, D′ be
an arbitrary polynomial-time samplable distribution, and
δ = n−O(1). If there is aδ worst-to-average reduction from
L to V ′, then there is anAM/poly protocol forL.

7 Technically, a witness oracle is a distribution over function families
{Fn}, but to simplify notation we will identify samples from thisdis-
tribution with the distribution itself.



The theorem is an immediate consequence of Theorem 1
and the following two lemmas:

Lemma 14. For everyNP-relationV ⊆ {0, 1}n×{0, 1}m

(wherem = nO(1)) there exists anNP-languageL′ and
a constantc such that there is aO(δm2)-to-δ average-to-
average reduction from(V,U) to (L′,U).

Lemma 15. For everyNP-relationV and polynomial-time
samplable distributionD = D(U), whereD : {0, 1}|r| →
{0, 1}n, |r| = nO(1), there exists anNP-relation V ′ such
that there is aO(δ|r|)-to-δ average-to-average reduction
from (V,D) to (V ′,U).

Analogues of these lemmas are known in the context of
the distributional hardness ofNP-problems. A variant of
Lemma 14 appears Ben-David et al. [4], while a variant of
Lemma 15 was proved by Impagliazzo and Levin [16]. Our
proofs are in essence a recasting of these arguments in the
formalism of nonadaptive average-to-average reductions.
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