
U.C. Berkeley Handout N13
CS294: PCP and Hardness of Approximation March 8, 2006
Professor Luca Trevisan Scribe: Grant Schoenebeck

Notes for Lecture 13

Today we begin our proof of the PCP theorem in earnest.

Theorem 1 NP ⊆ PCPc=1,s= 1
2
(O(log(n)), O(1))

To do this we will construct instances of CSPs for which it is hard to distinguish if the CSP is
satisfiable or not close to satisfiable. We will look at CSPs where each constraint has two variables,
but where each variable can take on more than 2 values.

Definition 2 Max-2-CSP-Σ
Input: variables x1, . . . , xn that range over Σ, a collection of binary constraints.
Goal: find an assignment that maximizes that number of satisfied constaints.

Definition 3 If C is a CSP, we call opt(C) the fraction of constraints which are satisfied by the
optimal assignment.

Theorem 4 There exists a Σ0, a polynomial time reduction R, and a δ0 > 0 such that

• R is a reduction from 3-coloring to Max-2-CSP-Σ0.

• G is colorable implies R(G) is satisfiable.

• G is not colorable implies that opt(C) ≤ 1− δ0.

This theorem implies the PCP theorem because given a graph G, we can define a valid proof to
be a binary encoding of an solution to the Max-2-CSP-Σ R(G). Then we can construct a verifier
that randomly picks O(1

δ0
) constraints to check, and if they are all satisfied, the verifier accepts,

otherwise, the verifier rejects.

It is easy to see that the verifier uses O(log(n)) random bits and reads O(1
δ0

log |Σ0|) bits of the
proof. If R works as in the theorem statement, then if G is three colorable, the CSP is satisfiable
and there exists a valid proof. Furthermore, if G is not three colorable, then a δ0 fraction of the
constraints will not be satisfied. Therefore, with probability at least 1

2 the verifier will choose a
constraints that is not satisfied.

Observe that 2-CSP-{a, b, c} is at least as hard is 3-coloring because 3-coloring can be set up as a
2-CSP over a three character alphabet. We see from the theorem statement that

• opt(G) = 1 ⇒ opt(R(G)) = 1.

• opt(G) ≤ 1− 1
|E| ⇒ opt(R(G)) ≤ 1− δ0.

1

The idea will be to create R by amplifying the fraction of unsatisfied constraints by a constant factor
while only increasing the number of constraints by a linear amount and applying this amplification
a logarithmic number of times. We can restate the theorem as follows:

Theorem 5 (restated) There is δ0, Σ0, |Σ0| ≥ 3, and polynomial time R mapping inputs of
Max-2-CSP-Σ0 to Max-2-CSP-Σ0 such that

1. # of constraints of R(C) = O(#of constraints of R(C)).

2. opt(C) = 1 ⇒ opt(R(G)) = 1.

3. opt(C) ≤ 1− δ ⇒ opt(R(C)) ≤ 1− 2δ if δ < δ0.

Looking through the three requirements, it is fairly straightforward to verify that each of them is
required. In particular, because we are going to apply this theorem a logarithmic number of times
to obtain the previous theorem, we cannot increase the number of constraints by more than a linear
amount; otherwise, we will end up with a super-polynomial number of constraints.

We prove this theorem using two lemmas. The first lemma will amplify the number of unsatisfiable
constraints, but will also increase the alphabet size. The second lemma will reduce the alphabet
size, but will decrease the number of unsatisfiable constraints.

Lemma 6 (Amplification) ∀Σ0, ∀c, there exists Σ and a poly-time R1, mapping Max-2-CSP-Σ0

to Max-2-CSP-Σ such that R satisfies 1) and 2) in Theorem ?? and opt(C) ≤ 1−δ ⇒ opt(R1(C)) ≤
1− cδ provided that c ≤ δ0.

Lemma 7 (Alphabet Reduction) ∃Σ0, ∃c0, such that for all Σ, there exists a poly-time R2,
mapping Max-2-CSP-Σ to Max-2-CSP-Σ0 such that R satisfies 1) and 2) in Theorem ?? and
opt(C) ≤ 1− δ ⇒ opt(R2(C)) ≤ 1− δ/c0.

To get the theorem from these two lemmas, let c = 2c0 in Lemma ??, then the composition
R2(R1(·)) solves the theorem because:

opt(C) ≤ 1− δ ⇒ opt(R1(C)) ≤ 1− cδ = 1− 2c0δ ⇒ opt(R2(R1(C))) ≤ 1− 2δ

We can use a constraint graph to visualize the the variables involved in a Max-2-CSP-Σ. Each
vertex of the graph is a variable, and each edge is a constraint which is incident to the two vertices
which represent the variables in the constraint. If C is a collection of m constraints over the
variables: x1, . . . , xn, then we get a graph with n vertices and m edges. We will want this graph to
be an expander in order to prove Lemma 1. The rest of the lecture will illustrate how to massage
this graph into an expander.

First we convert the graph to a bounded degree graph. We do this in much the same way as we
reduced 3SAT to 3SAT where each variable occurs at most some constant number of times.

2

Let C be a set of constraints for a Max-2-CSP-Σ over variables x1, . . . , xn where xi occurs mi times.
For every i introduce variables y1

i , . . . , y
mi
i and construct a k-regular graph Gi with mi vertices of

edge expansion at least 1 (note that k is a constant). Now construct a new Max-2-CSP-Σ C′ over
the yj

i variables as follows:

• For each constraint f(xi, xj) in C where f is the ath occurrence of xi and the bth occurrence
of xj create a new constraint f(ya

i , yb
j).

• For every i, for every edge (a, b) ∈ Gi create a constraint ya
i = yb

i .

The # of constraints in C = 1
2

∑
i mi

The # of constraints in C′ = 1
2

∑
i mi +

∑
i

kmi
2 = k+1

2

∑
i mi = O(# of constraints in C).

As we saw with the 3SAT reduction, the minimum number of constraints violated in C′ is the same
as the minimum number of constraints violated in C.

Thus we obtain a regular degree-d graph (d = k + 1).

Example 1

Σ = {0, 1, 2, 3, 4}
x1 6= x2

x2 6= x3

x3 6= x4

x2 − x1 ≡ 2 mod 5
x3 + x4 ≡ 1 mod 5
x1 + x4 ≡ 4 mod 5
x1 − x4 ≡ 3 mod 5

You can see that xi occurs 4, 3, 3, 4 times for i = 1, 2, 3, 4 respectively. So, for example, we create
new variables for x1: y1

1, y
2
1, y

3
1, y

4
1. For our constant degree expander graphs, we can just use the

3-cycle for x2 and x3, and we can use the 4-cycle for x1 and x4.

Using the reduction we get the following CSP:

3

Σ = {0, 1, 2, 3, 4}
y1
1 6= y1

2

y2
2 6= y1

3

y2
3 6= y1

4

y3
2 − y2

1 ≡ 2 mod 5
y3
3 + y2

4 ≡ 1 mod 5
y3
1 + y3

4 ≡ 4 mod 5
y4
1 − y4

4 ≡ 3 mod 5
y1
1 = y2

1

y2
1 = y3

1

y3
1 = y4

1

y4
1 = y1

1

...
y1
4 = y2

4

y2
4 = y3

4

y3
4 = y4

4

y4
4 = y1

4

Now we would like to, by adding vacuous constraints, make this graph into an expander.

Claim 8 For i ∈ {1, 2}, let Gi = (V,Ei) be a degree d-regular graph with adjacency matrix Mi. Let
d = |λ1| ≥ |λ2| ≥ · · · ≥ |λn| be the eigenvalues of M2. Let M ′ = M1 + M2 be the adjacency matrix
for the corresponding 2d-regular graph, and let 2d = |λ′1| ≥ |λ′2| ≥ · · · ≥ |λ′n| be the eigenvalues of
M ′. Then, for any λ, if |λ2| ≤ λ, |λ′2| ≤ d + |λ2|.

Proof:

|λ′2| = max
x⊥(1,...,1)

|xM ′x>|
xx>

= max
x⊥(1,...,1)

|xM1x
> + xM2x

>|
xx>

= max
x⊥(1,...,1)

|xM1x
>|

xx>
max

x⊥(1,...,1)

|xM2x
>|

xx>
≤ d+|λ2|

�

Let C be a CSP with a d-regular constraint graph. Let CEXP be a CSP with d-regular λ-expanding
constraint graph and constraints that are always trivially satisfied. Then C+CEXP has a constraint
graph which is 2d-regular and is d + λ-expanding.

Furthermore, if C is satisfiable, then C + CEXP is also satisfiable. If opt(C) ≤ 1 − δ then opt(C +
CEXP) ≤ 1− δ/2.

4

