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Notes for Lecture 10

Review of the last class
The edge expansion of graph G = (V,E) is given by

h(G) := min
S ⊂ V

|S| ≤ |V |/2

edges(S, V − S)
|S|

G is an expander if h(G) is large.

Suppose G is a d-regular multigraph, and n = |V |. Let M be the adjacency matrix of G. Let
λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of M . Then λ1 = d and the quantity d− λ2 is a measure of
the expansion of G. We proved

Theorem 1 d−λ2
2 ≤ h ≤

√
2d(d− λ2).

Today we’ll see an explicit construction of arbitrarily large graphs of fixed degree, having large
edge expansion. (Here and for the rest of today, graph will mean multigraph.)

Let p be a prime and t < p. We’ll construct a p2-regular graph LDp,t with pt+1 vertices. The vertex
set of the graph will be the t + 1 dimensional vextor space Ft+1

p over Fp. To specify the edge set,
for each a ∈ Ft+1

p we need to specify p2 neighbours of a. We will index these neighbours by pairs
of elements of Fp.

For each α, β ∈ Fp the (α, β) th neighbour of a is a + β(1, α, α2, . . . , αt). Thus LDp,t is a Cayley
graph with generators β(1, α, α2, . . . , αt), with α, β ∈ Fp.

Let Mp,t be the adjacency matrix of LDp,t. We want to compute a bound on the second eigenvalue
of Mp,t. Our approach will be to construct a complex-valued orthogonal basis of eigenvectors, and
use these to infer bounds on the eigenvalues.

Note: Since Mp,t is real valued and symmetric, its eigenvalues are all real and may be sorted as
λ1 ≥ λ2 ≥ · · · ≥ λn, where n = pt+1 If x1, . . . , xn are corresponding complex-valued orthogonal
eigenvectors for Mp,t then Re(x1), . . . ,Re(xn) are corresponding real eigenvectors. They need not
be orthogonal however, unless the eigenvalues are distinct.

Notation: We will index the coordinates of vectors in Cn = CFt+1
p by elements of Ft+1

p . Thus, for
x ∈ Cn, b ∈ Ft+1

p , x(b) will denote the b th coordinate of x.

Let ω be a primitive p th root of unity, i.e. ω = e2πi/p. We want to define n = pt+1 eigenvectors,
x1, . . . , xn. Again, we’ll index them by elements of Ft+1

p . We’ll define the eigenvectors as follows:

For each a ∈ Ft+1
p , let xa ∈ CFt+1

p be defined by xa(b) = ω
P

j ajbj .

Claim 2 The vectors xa, a ∈ Ft+1
p are orthogonal.
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Proof: Recall that for x, y ∈ Cn the inner product is defined by (x, y) =
∑

b x(b)y(b), where y(b)
is the complex conjugate of y(b).

We will need the fact that
∑p−1

γ=0 ωγ = 0. If α ∈ {1, 2, . . . , p− 1} then the numbers (ωαγ)p−1
γ=0 are a

permutation of (ωγ)p−1
γ=0. It follows that in this case also

∑p−1
γ=0 ωαγ = 0.

Consider xa and xb where a 6= b. We have∑
c∈Ft+1

p

xa(c)xb(c) =
∑

c∈Ft+1
p

ω(
P

j ajcj) ω(−
P

j bjcj)

=
∑

c∈Ft+1
p

ω
P

j(aj−bj)cj

=
∑

c0∈Fp

· · ·
∑

ct∈Fp

t∏
j=0

ω(aj−bj)cj

=
t∏

j=0

∑
cj∈Fp

ω(aj−bj)cj

= 0

The last equality follows because a 6= b means that for some j, aj − bj 6= 0. The corresponding
factor becomes a sum of all powers of a primitive p root of unity, and as has already mentioned,
this is zero. Thus xa ⊥ xb. �

Claim 3 For each a ∈ Ft+1
p , xa is an eigenvector of Mp,t.

Proof: Fix a ∈ Ft+1
p . For any b ∈ Ft+1

p we have

(xaMp,t)(b) =
∑

c

xa(c)Mp,t(c, b)

=
∑

α,β∈Fp

xa(b + β(1, α, α2, . . . , αt))

=
∑

α,β∈Fp

xa(b)xa(β(1, α, α2, . . . , αt)) since xa(b + c) = xa(b)xa(c)

= xa(b)
∑

α,β∈Fp

xa(β(1, α, α2, . . . , αt))

︸ ︷︷ ︸
λa

= λaxa(b)

Thus xa is an eigenvector. �
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Note that in proving Claim 3 we have also obtained a closed form expression for the eigenvalues of
Mp,t, namely for a ∈ Ft+1

p ,

λa =
∑

α,β∈Fp

ω
Pt

j=0 ajβαj

=
∑

α,β∈Fp

ωβPa(α)

where Pa denotes the polynomial Pa(X) =
∑t

j=0 ajX
j over Fp.

If a = (0, . . . , 0) then xa = (1, . . . , 1) and λa = p2, which is the degree of the graph.

If a 6= (0, . . . , 0) then Pa is a non-zero polynomial of degree at most t. Hence it has at most t roots.
We have

|λa| =

∣∣∣∣∣∣
∑
α

∑
β

ωβPa(α)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

α:Pa(α)=0

∑
β

ωβPa(α)

∣∣∣∣∣∣ +

∣∣∣∣∣∣
∑

α:Pa(α) 6=0

∑
β

ωβPa(α)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

α:Pa(α)=0

∑
β

ω0

∣∣∣∣∣∣ +

∣∣∣∣∣∣
∑

α:Pa(α) 6=0

∑
β

(ωPa(α))β

∣∣∣∣∣∣
≤ pt + 0

where the second sum is zero once again because it is the sum of all powers of ω.

Thus each of the other eigenvalues is at most pt (even in absolute value). In particular, λ2 ≤ pt.
Since d = p2 we have d − λ2 ≥ p(p − t) > 0. In summary, we have constructed a graph with
pt+1 vertices, degree p2 and edge expansion at least p(p− t)/2. Of course, since t is required to be
smaller than p, we do not get arbitraily large graphs of fixed degree and large edge expansion this
way. In order to achieve this goal, we will need another construction.

Zig Zag product Given graphs G and H of compatible sizes, with small degree and large edge
expansion, the zig zag product G z©H is a method of constructing a larger graph also with small
degree and large edge expansion. We will need

• G a D-regular graph on n vertices, with λ2(G) ≤ αD

• H a d-regular graph on D vertices, with λ2(H) ≤ βd

We will get

• G z©H a d2-regular graph on nD vertices, with λ2(G z©H) ≤ (α + β + β2)d2.

We will see the construction and analysis of the zig zag product in the next class.

For the remainder of today, we’ll see how to use the zig zag product to construct arbitrarily large
graphs of fixed degree with large edge expansion.
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Fix a large enough constant d. (1369 = 372 will do.) Construct a d-regular graph H on d4 vertices
with λ2(H) ≤ d/5. (For example LD37,7 is a degree 372 graph on 37(7+1) = (372)4 vertices with
λ2 ≤ 37× 7 < 372/5.)

For any graph G, let G2 represent the graph on the same vertex set whose edges are the paths
of length two in G. Thus G2 is the graph whose adjacency matrix is the square of the adjacency
matrix of G. Note that if G is r-regular then G2 is r2-regular

Using the H from above we’ll construct inductively, a family of progressively larger graphs, all of
which are d2-regular and have λ2 ≤ d2/2.

Let G1 = H2. For k ≥ 1 let Gk+1 = (G2
k) z©H.

Theorem 4 For each k ≥ 1, Gk has degree d2 and λ2(Gk) ≤ d2/2.

Proof: We’ll prove this by induction.
Base case: G1 = H2 is d2-regular. Also, λ2(H2) = (λ2(H))2 ≤ d2/25.

Inductive step: Assume the statement for k, i.e. Gk has degree d2 and λ2(Gk) ≤ d2/2. Then
G2

k has degree d4 = |V (H)|, so that the product (G2
k) z©H is defined. Moreover, λ2(G2

k) ≤ d4/4.
Applying the construction, we get that Gk+1 has degree d2 and λ2(Gk+1) ≤ (1

4 + 1
5 + 1

25)d2 = 49
100d2

This completes the proof. �

Finally note that Gk has d4k vertices.
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