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Notes for Lecture 8

In the previous lectures, we have seen that in the reduction form MAX-3-SAT to MAX-3-SAT
where each variable occurs a bounded number of times we required the construction of a graph
G(V,E) with the following properties:

• There is a constant d such that for every n there is a graph G(V,E), |V | = n with much
degree d such that ∀S ⊆ V, |S| ≤ |V |

2 hte number of edges with one endpoint in S and one
endpoint in V − S is ≥ |S|.

In addition, we required that ∀n this graph should be efficiently constructed. Note that for our
purposes, multigraphs are allowed.

Definition 1 (Edge-expansion of a graph) We define the edge-expansion of a graph G :

h(G) = min|S|≤|V |/2
edges(S, V − S)

|S|

In what follows, we consider G = (V,E) to be a given graph and M ∈ RV×V its adjacency matrix,
that is

M(u, v) := number of edges between u and v (1)

Note that M is symmetric.

Definition 2 If M ∈ Cn×n, λ ∈ C, x ∈ Cn and xM = λx then λ is an eigenvalue of M and x is
an eigenvector of M .

Example 1 Let M be the adjacency matrix of a d-regular graph. Then (1, 1, · · · , 1)·M = (d, d, · · · , d) =
d(1, 1, · · · , 1). Therefore, the vector (1, 1, · · · , 1) is an eigenvector of M with corresponding eigen-
value 1.

Generally, xM = λx ⇒ x(M −λI) = 0 ⇒ det(M −λI) = 0. det(M −λI) is a polynomial in λ over
C of degree n, and it has n roots (counting multiplicities). Therefore, λ is an eigenvalue of M iff it
is a root of det(M − λI) and so, counting multiplicities, M has n eigenvalues.

Theorem 3 If M ∈ Rn×n is symmetric then the following properties hold:

1. all n eigenvalues λ1, · · · , λn are real

2. one can find an orthogonal set of eigenvectors x1, · · · , xn such that xi has corresponding
eigenvalue λi and xi⊥xj for i 6= j.
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We note that a multiple of an eigenvector is also an eigenvector and therefore we can assume
w.l.o.g. that all the xi have length one.

Lemma 4 Let M ∈ Rn×n symmetric. Then λ1 = maxx∈Rn,‖x‖=1{xMxT }, where
xMxT =

∑
i,j x(i)x(j)M(i, j)

Proof:

• (a) Assume λ1 ≥ λ2 · · · ,≥ λn. Then x1MxT
1 = λ1x1x

T
1 = λ1 therefore,

maxx∈Rn,||x||=1{xMxT } ≥ λ1.

• (b) Conversely, let x be any vector of length one, x ∈ Rn, ‖x‖ = 1. Let x = a1x1 + a2x2 +
· · ·+ anxn.

xMxT =
∑
i,j

x(i)x(j)M(i, j) = (
∑

i

aixi)M(
∑

i

aixi)T =

(
∑

i

λiaixi)(
∑

j

aixj)T =
∑

i

λia
2
i ≤ maxiλi

∑
i

a2
i = λ1

Therefore maxx∈Rn,||x||=1{xMxT } ≤ λ1.

�

We can also prove that λ2 = maxx∈Rn,‖x‖=1,x⊥x1
{xMxT }. For (a) use x = x2, and conclude

maxx∈Rn,‖x‖=1,x⊥x1
{xMxT } ≥ λ2.

For (b) take any x ∈ Rn, ‖x‖ = 1, x⊥x1.
Let x = a1x1 + a2x2 + · · ·+ anxn. Then xMxT =

∑n
i=2 λia

2
i = λ2.

A similar argument shows that

max{|λ2|, . . . , |λn|} = max
x⊥x1,‖x‖=1

|xMxT | (2)

Theorem 5 Let G be a d-regular graph and M its adjacency matrix. Let λ1, · · · , λn its eigenvalues
and x1, · · · , xn the corresponding eigenvectors. Then λ1 = d.

Proof: Trivially, λ1 ≥ d because d is an eigenvalue for some i.
Let x ∈ Rn, ||x|| = 1, xM = λ1x

0 ≤
∑
u,v

M(u, v)(x(u)− x(v))2 = 2d
∑

v

x(v)2 − 2
∑
u,v

x(u)x(v)M(u, v)

= 2d‖x‖2 − 2xMxT = 2d− 2λ1 ⇒ d ≥ λ1
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Since d ≤ λ1 and d ≥ λ1 it follows d = λ1. �

It is helpful to think of the vector x as a labelling of the graph. So far, we have proved that the
largest eigenvalue is d. Now we will prove that if the second largest eigenvalue is also equal to d
then the graph is disconnected.
To see this fact, choose x1 = 1√

n
(1, 1 · · · , 1) and x2 another eigenvector orthogonal to x1. x2 should

be (x2(1), · · · , x2(n)) with
∑

i x2(i) = 0. Therefore, some entries should be positive and some
others should be negative(*).

0 ≤
∑
u,v

M(u, v)(x2(u)− x2(v))2 = 2d− 2λ2 = 0

Therefore, for x2 any two adjacent vertices must have identical labels and the only way for condition
(*) to hold is the graph to be disconnected.
Conversely, if the graph is disconnected then λ1 = λ2 = d (Exercise).

We now turn the discussion to the edge-expansion of the graph (definition 1). Observe that h(G) = 0
iff graph is disconnected, equivalently iff λ2 = d. Assume that λ1 − λ2 > ε. Then h(G) > ε′. In
fact,

Theorem 6 λ2 ≥ d− 2h ⇒ h ≥ d−λ2
2

Proof: Let S be the set that achieves h(G) = edges(S,V−S)
|S|

Remember that λ2 = λ2 = maxx∈Rn,‖x‖=1,x⊥x1
{xMxT }

Define x′ based on S, such that x′⊥(1, 1, · · · , 1).
Prove that x′Mx′T ≥ (d− 2h) · ‖x′‖2.
For x = x′

‖x′‖2 we have xMxT ≥ d− 2h ⇒ λ2 ≥ d− 2h. �

Theorem 7 h ≤
√

d(d− λ2) ⇒ h2 ≥ d(d− λ2).

Before we see the proof of the latest theorem let’s consider the solution to our previous exercise.
Assume G is disconnected with S and V − S the two connected components.
Let p = |S|

|V | , q = |V−S|
|V | . Assign

x(v) =
{

q if v ∈ S
−p if v /∈ S

First, observe that x⊥(1, 1, · · · , 1) since
∑

v x(v) = q · |S| − p · |V − S| = qpn− pqn = 0.
Second, look at xM = (dq, dq, · · · , dq︸ ︷︷ ︸

|S|

,−pd,−pd, · · · ,−pd︸ ︷︷ ︸
|V−S|

) = dx.

Therefore, if the graph is disconnected we have λ2 = d.

We will see the proof of the latest theorem in the following lecture.
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