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Notes for Lecture 7

This lecture is based on the Goemans-Williamson paper [4], and Vazirani’s book [13].

Outline

1. Max-Cut – problem definiton:

Given an undirected graph G = (V,E), find a partition of the vertex set V = S ∪ S̄ that
maximizes the number of cut-edges (edges with an endpoint in S and an endpoint in S̄).

Examples: A clique, a bipartite graph, an odd cycle.

The problem is NP-hard [7]. Can be approximated within factor 1/2 [11].

Exercise 1: Show that local search (iteratively move to the other side a vertex if more than
half of its neighbors are in the same side, while possible) yields 1/2-approximation.

Exercise 2: Show that by randomly assigning vertices to either S or S̄ the expected number
of cut-edges is at least |E|/2.

2. Quadratic Integer Program:

Max
∑

(i,j)∈E

1− xixj

2

s.t. xi ∈ {+1,−1}, ∀i ∈ V

Relaxing the variables to be in [−1, 1] does not give a linear program. Replacing xS ∈ {0, 1}
with xS ≥ 0.

3. Semidefinite programming relaxation:

A relaxation to a vector program can be obtained by assuming xi is a unit-length vector in
Euclidean space of large dimension m (instead of one dimension):

Max
∑

(i,j)∈E

1− vi · vj

2

s.t. ‖vi‖2 = 1, ∀i ∈ V

The above vector program is equivalent to the following semidefinite program by letting
yij = vi · vj :

Max
∑

(i,j)∈E

1− yij

2

1



s.t. yii = 1, ∀i ∈ V

Y = (yij) is symmetric positive semidefinite.

4. Relaxation provides an upper bound:

Lemma 1: The SDP above can be solved in polynomial time within any desired accuracy.

Lemma 2: SDP ≥ OPT.

Importance of upper bound: Proving ALG ≥ ρ · SDP will imply ALG ≥ ρ ·OPT.

Example: For a 3-cycle, OPT = 2 while SDP = 9/4 by 3 vectors in the plane 120 degrees
apart of each other.

5. Hyperplane-cut rounding [4]:

Algorithm: Let {vi} be an optimal SDP solution in Rm. Choosen at random a vector r from
the unit sphere Sm, and set xi = sgn(r · vi), i.e. S = {i ∈ V : r · vi ≥ 0}.
Geometric view: Choose a random hyperplane going through the origin (whose normal is r).
It partitions the vectors (vertices) into two sides, forming a partition of V .

Observations:

(1) The rounding is invariant to rotation (just like the vector program).

(2) Choosing a random vector from Sm can be done by choosing m iid Gaussians X1, . . . , Xm

and letting r be a unit-length vector in the direction (X1, . . . , Xm). In fact, the same holds
wrt to any orthogonal basis of Rm.

Theorem 3: The cut producted by this algorithm has expected size at least 0.878 · SDP.

6. Claim: For every i, j ∈ V , Pr[exactly one of i,j falls into S] = αij/π, where αij ∈ [0, π] is
the angle between vi and vj .

Proof of claim: By the rotation invariance of r and of the SDP solution, we may assume
that vi and vj are nonzero in all but the first two coordinates. Consequently, vi and vj

lie in a two-dimensional plane, and for the event we are interested in, we may assume that
X3 = . . . = Xm = 0, i.e. r is chosen uniformly from the unit circle in that plane. Using a
two-dimensional picture, it is easy to verify that the probability the normal to r separates vi

from vj is exactly αij/π.

7. Proof of Theorem:

By the claim, for every i, j ∈ V , E[1−xixj

2 ] = αij/π. By elementary calculus, the RHS is at
least 0.878 · (1− cos αij

2 ) = 0.8781−vi·vj

2 .

Summing over all edges, we have by linearity of expectation, E[ALG] ≥ 0.878 · SDP.

Exercise 3: Suppose that SDP = c|E| for some 1/2 < c < 1. Show there exist c in this range,
for which this rounding achieves a better approximation factor.
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8. Comments:

1. The above rounding can be derandomized.

2. One can add additional constraints like the triangle inequality:

(vi − vk)2 ≤ (vi − vj)2 + (vj − vk)2, ∀i, j, k ∈ V,

but they did not lead to an improved approximation factor for Max-Cut.

3. The integrality ratio of the SDP above is exactly what the randomized rounding gives
(even with triangle inequality), i.e. ρGW = minα∈[0,π]

α/π
(1−cos α)/2 ≈ 0.878. A 5-cycle gives a

bound slightly worse than 0.878, but an exact bound requires considerable more work, see
Delorme-Poljak [1, 2], Feige-Schechtman [3] and Khot-Vishnoi [9].

4. If the Unique Games conjecture is true, than it is NP-hard to achieve approximation factor
better than ρGW ≈ 0.878 [8, 10]. Otherweise, the hardness of approximation factor currently
known is a bigger (worse) constant [12, 5].

5. A similar rounding procedure works for other problems like Max-DICUT and MAX-2SAT.

Two main differences: (1) There is an additional vector v0 used to “distinguish” the two sides.
(2) The triangle inequalities are useful to improve the approximation ratio.

6. The SDP rounding above motivated a more involved SDP rounding procedure for coloring
3-colorable graph [6].
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