
U.C. Berkeley Handout N5
CS294: PCP and Hardness of Approximation February 1, 2006
Professor Luca Trevisan Scribe: Luca Trevisan

Notes for Lecture 5

These notes are based on my survey paper [1]. L.T.

More on the Inapproximability of Independent Set

In the last lecture we gave the following reduction from PCP to the Independent Set problem.

Theorem 1 (FGLSS Reduction) If there is a ρ-approximate algorithm for the independent set
problem, then every problem in PCPc,s[r(n), q(n)] can be solved in time poly(n, 2r(n)+q(n)), provided
c/s < ρ.

Theorem 1 and the PCP Theorem immediately implies that there is no ρ-approximate algorithm
for the independent set problem with ρ < 2 unless P = NP. In this lecture we will substantially
strengthen this inapproximability result.

1 Graph Product

Consider the following graph product operation. If G = (V,E) is an undirected graph, then define
the k-th power of G, denoted as Gk(V ′, E′) as the graph whose set of vertices is V ′ := V k (the set
of k-tuples of vertices of G) and whose set of edges is

E′ := {((u1, . . . , uk), (v1, . . . , vk)) such that ∃i.(ui, vi) ∈ E}

Let use denote by α(G) the size of a largest independent set in G. We have the following simple
result.

Lemma 2 (Independence Number of Product Graph) For every graph G = (V,E) and every
positive integer k,

α(Gk) = (α(G))k (1)

Proof: Let S ⊆ V be a largest independent set in G. Then |S| = α(G) and Sk is an independent
set in Gk, proving

α(Gk) ≥ |Sk| = (α(G))k (2)

Let now T ⊆ V k be a largest independent set in Gk and, for i = 1, . . . , k, let

Ti := {v such that ∃(v1, . . . , vk) ∈ T : vi = v}

1

be the “projection of T on the i-th coordinate.”

Note that each set Ti ⊆ V must be an independent set in G, and that T ⊆ T1 × · · · × Tk, so

α(Gk) = |T | ≤ |T1 × · · · × Tk| ≤ (α(G))k (3)

�

From the PCP Theorem and the reduction of Theorem 1 we deduced that there is no polynomial
time algorithm for the independent set problem achieving an approximation ratio better than two
unless P = NP. From Lemma 2 we can strengthen this result and rule out any constant factor
approximation.

Indeed, suppose that, for some constant r, we have an r-approximate algorithm for the maximum
independent set problem. On input a graph G, apply the algorithm to the graph Gk. The resulting
algorithm will be r1/k-approximate for G, and we can make r1/k < 2 by choosing k large enough.

2 Error-Reduction

We now consider an alternative approach to prove that the maximum independent set problem has
no constant approximation algorithm unless P = NP.

Suppose that V is a (O(log n), O(1))-restricted verifier for an NP-complete problem, and that V
has soundness 1/2 and completeness 1, as promised by the PCP Theorem. Define a new verifier V ′

that performs two independent repetitions of the computation of V , and that accepts if and only
if both repetitions accept. Then V ′ has clearly soundness 1/4 and completeness 1, and it is still
(O(log n), O(1))-restricted, thus showing that even an approximation better than 4 is infeasible. If
we repeat V a constant number of times, rather than twice, we can rule out any constant factor
approximation for the independent set problem.1

In general, a verifier that makes k(n) repetitions shows that L ∈ PCP1,1/2k(n) [O(k(n)·log n), O(k(n))],
and the reduction to Independent Set produces graphs that have 2O(k(n)·log n) vertices and for
which 2k(n)-approximate algorithms are infeasible. If we let k(n) = log n, then the graph has size
N = 2O((log n)2) and the infeasible ratio is n, which is 2Ω(

√
log N). So, if we have an algorithm

that on graphs with N vertices runs in polynomial time and has an approximation ratio 2o(
√

log N),
then we have an O(nO(log n)) algorithm to solve 3SAT, and NP ⊆ QP. More generally, by set-
ting k(n) = (log n)O(1), we can show that if there is an ε > 0 such that Independent Set can be
approximated within a factor 2O((log n)1−ε) then NP ⊆ QP.

1It is instructive to note that the graph obtained by applying the reduction of Theorem 1 to the verifier of the
PCP Theorem and then applying a k-fold graph product it is identical to the graph obtained by a k-fold sequential
repetition of the verifier of the PCP Theorem followed by an application of the reduction of Theorem 1.

2

3 Error-Reduction Using Random Walks

To prove an even stronger hardness of approximation result, we want to reduce the error probability
of the verifier of the PCP Theorem without increasing too much the randomness complexity of the
verifier, which is the main parameter affecting the size of the final graph.

Towards this goal we need a result about random walks on expander graphs. If G = (V,E) is a
regular graph, then a length-k random walk in G is a k + 1-tuple of vertices (v0, . . . , vk) in G that
is selected according to the following distribution: we select v0 uniformly at random in V , then we
select v1 as a uniformly chosen neighbor of v0, and, for i = 2, . . . , k we select vk as a uniformly
chosen neighbor of vk.

In future lectures we will prove the following result.

Theorem 3 (Random Walks in Expanders) There is a constant d such that for every n there
is a d-regular graph Gn = (Vn, En) with n vertices such that for every set B ⊆ Vn, |B| ≤ n/2, and
for every k, the probability that all the vertices of a random walk (v0, . . . , vk) are contained in B is
at most (2/3)k.

Furthermore, there is an algorithm that, on input n, runs in time polynomial in n and outputs Gn.

From the PCP Theorem and the above result we have

Theorem 4 (PCP Theorem With Low Soundness) For every k(n),

NP = PCP
1,(2

3)
k(n) [O(k(n) + log n), O(k(n))] (4)

Proof: Let L be a language in NP. From the PCP Theorem we have the existence of a verifier
V witnessing L ∈ PCP1,1/2[O(log n), O(1)]. Define the verifier V ′ as follows: on input an instance
x of length n and given oracle access to a proof w, let r(n) = O(log n) be the number of random
bits used by V given x and w.

The verifier V ′ first constructs the graph GR, where R := 2r(n) = poly(n) is the number of
possible random strings used by V given x and w we identify the set of vertices of GR with
the set {0, 1}r(n). Then V ′ selects a random walk of length k(n) in GR, a task that requires
log R+O(k(n)) = O(log n+k(n)) random bits. Finally, let z0, . . . , zk be the vertices of the random
walk: V ′ simulates V w(x) on each of the k + 1 random strings z0, . . . , zk. Finally, V ′ accepts if and
only if all the simulated computations accept.

It is clear that V ′ makes at most O(k(n)) oracles accesses into w and that it uses at most O(log n+
k(n)) random bits. If x ∈ L and w is a witness that makes V accept with probability 1, then
V ′w(x) also accepts with probability 1. Finally, consider the case x 6∈ L and let w be an arbitrary
oracle. Then V w(x) accepts with probability at most 1/2. Let B ⊆ {0, 1}r(n) be the set of at
most R/2 random strings that make V w(x) accept. Then the probability that V ′w(x) accepts is
the probability that all the vertices of a length-k random walk in GR are contained in B, an event
that (by Theorem 3) happens with probability at most (2/3)k. �

3

If we choose k(n) = log n and then apply the reduction of Theorem 1 then we have a graph of size
2O(k(n)+log n) = nO(1) for which an approximation ratio of n is infeasible. This shows the following
result.

Theorem 5 There is a constant c > 1 such that if there is a polynomial time nc-approximate
algorithm for Independent Set then P = NP.

References

[1] Luca Trevisan. Inapproximability of combinatorial optimization problems. Technical Report
TR04-065, Electronic Colloquium on Computational Complexity, 2004. 1

4

	Graph Product
	Error-Reduction
	Error-Reduction Using Random Walks

