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Notes for Lecture 3

These notes are based on my survey paper [6]. L.T.

Some Consequences of the PCP Theorem

We have seen that the PCP Theorem is equivalent to the inapproximability of Max 3SAT and
other constraint satisfaction problems. In this lecture we will see several reductions that prove
inapproximability results for other problems.

1 Max 3SAT with Bounded Occurrences

We begin with a reduction from the Max E3SAT problem on general instances to the restriction
of Max E3SAT to instances in which every variable occurrs only in a bounded number of clauses.
The latter problem will be a useful starting point for other reductions.

For the reduction we will need expander graphs of the following type.

Definition 1 (Expander Graph) Let c > 0 be a constant. An undirected graph G = (V,E) is
a c-expander if, for every subset S ⊆ V , |S| ≤ |V |/2, the number of edges e(S, V − S) having one
endpoint in S and one in V − S is at least c|̇S|.

For our purposes, it will be acceptable for the expander graph to have multiple edges. It is easy
to prove the existence of constant-degree 1-expanders using the probabilistic method. Polynomial-
time constructible 1-expanders of constant degree can be derived from [1] or [5], and, with a smaller
degree, from [3]. In a later class, we will prove the following result.

Theorem 2 (Explicit construction of expanders) For every constant c there is a constant
d = d(c) and an algorithm that on, input an integer n > d, runs in time polynomial in n and
output a regular graph of degree d with n vertices that is a c-expander.

In the following, we use d to denote the constant d(1) in Theorem 2.

Let now ϕ be an instance of 3SAT with n variables x1, . . . , xn and m clauses. For each variable
xi, let occi be the number of occurrences of xi, that is, the number of clauses that involve the
literal xi or the literal x̄i. We write xi ∈ Cj if the variable xi occurs in clause Cj . Notice that∑n

i=1 occi = 3m. For each i, construct a 1-expander graph Gi = (Vi, Ei) where Vi has occi vertices,
one for each occurrence of xi in ϕ. We denote the vertices of Vi as pairs [i, j] such that xi occurrs
in Cj . Each of these graphs has constant degree d.
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We define a new instance ψ of Max E3SAT with N = 3m variables Y = {yi,j}i∈[n],xi∈Cj
, one for

each occurrence of each variable in ϕ. For each clause of ϕ we put an equivalent clause in ψ. That
is, if Cj = (xa ∨ xb ∨ xc) is a clause in ϕ, then (ya,j ∨ yb,j ∨ yc,j) is a clause in ψ. We call these
clauses the primary clauses of ψ. Note that each variable of ψ occurs only in one primary clause.

To complete the construction of ψ, for every variable xi in ϕ, and for every edge ([i, j], [i, j′]) in the
graph Gi, we add the clauses (yi,j ∨ ȳi′,j) and (ȳi,j ∨yi′,j) to ψ. We call these clauses the consistency
clauses of ψ. Notice that if yi,j = yi′,j then both consistency clauses are satisfied, while if yi,j 6= yi′,j

then one of the two consistency clauses is contradicted.

This completes the construction of ψ. By construction, every variable occurrs in at most 2d + 1
clauses of ψ, and ψ has M = m+ 3dm clauses.

We now claim that the cost of an optimum solution in ψ is determined by the cost of an optimum
solution in ϕ and, furthermore, that a good approximation algorithm applied to ψ returns a good
approximation for ϕ. We prove the claim in two steps.

Claim 3 If there is an assignment for ϕ that satisfies m− k clauses, then there is an assignment
for ψ that satisfies ≥M − k clauses.

Proof: This part of the proof is simple: take the assignment for ϕ and then for every variable yi,j

of ψ give to it the value that the assignment gives to xi. This assignment satisfies all the consistency
clauses and all but k of the remaining clauses. �

Claim 4 If there is an assignment for ψ that leaves k clauses not satisfied, then there is an as-
signment for ϕ that leaves ≤ k clauses not satisfied.

Proof: This is the interesting part of the proof. Let ai,j be the value assigned to yi,j . We first
“round” the assignment so that all the consistency clauses are satisfied. This is done by defining
an assignment bi, where, for every i, the value bi is taken to be the majority value of ai,j over all
j such that xi ∈ Cj , and we assign the value bi to all the variables yi,j . The assignment bi satisfies
all the consistency clauses, but it is possible that it contradicts some primary clauses that were
satisfied by ai,j . We claim that, overall, the bi assignment satisfies at least as many clauses as the
ai,j assignment. Indeed, for each i, if bi differs from the ai,j for, say, t values of j, then there can
be at most t primary clauses that were satisfied by ai,j but are contradicted by bi. On the other
hand, because of the consistency clauses being laid out as the edges of a 1-expander graph, at least
t consistency clauses are contradicted by the ai,j assignment for that value of i alone, and so, the
bi assignment can be no worse.

We conclude that bi assignment contradicts no more clauses of ψ than are contradicted by ai,j , that
is, no more than k clauses. When we apply bi as an assignment for ϕ, we see that bi contradicts at
most k clauses of ϕ. �

In conclusion:

• If ϕ is satisfiable then ψ is satisfiable;
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• If every assignment contradicts at least an ε fraction of the clauses of ϕ, then every assignment
contradicts at least an ε/(1 + 3d) fraction of the clauses of ψ.

Theorem 5 There are constants d and ε2 and a polynomial time computable reduction from 3SAT
to Max 3SAT-d such that if ϕ is satisfiable then f(ϕ) is satisfiable, and if ϕ is not satisfiable then
the optimum of f(ϕ) is less than 1 − ε2 times the number of clauses. In particular, if there is an
approximation algorithm for Max 3SAT-d with performance ratio better than (1−ε2), then P = NP.

2 Vertex Cover and Independent Set

In an undirected graph G = (V,E) a vertex cover is a set C ⊆ V such that for every edge (u, v) ∈ E
we have either u ∈ C or v ∈ C, possibly both. An independent set is a set S ⊆ V such that for
every two vertices u, v ∈ S we have (u, v) 6∈ E. It is easy to see that a set C is a vertex cover in G
if and only if V −C is an independent set. It then follows that the problem of finding a minimum
size vertex cover is the same as the problem of finding a maximum size independent set. From the
point of view of approximation, however, the two problems are not equivalent: the Vertex Cover
problem has a 2-approximate algorithm (but, as we see below, it has no PTAS unless P = NP),
while the Independent Set problem has no constant-factor approximation unless P = NP.

We give a reduction from Max E3SAT to Independent Set. The reduction will also prove intractabil-
ity of Vertex Cover. If we start from an instance of Max E3SAT-d we will get a bounded degree
graph, but the reduction works in any case. The reduction appeared in [4], and it is similar to the
original proof of NP-completeness of Vertex Cover and Independent Set [2].

Starting from an instance ϕ of E3SAT with n variables and m clauses, we constuct a graph with
3m vertices; the graph has a vertex vi,j for every occurrence of a variable xi in a clause Cj . For
each clause Cj , the three vertices corresponding to the three literals in the clause are joined by
edges, and form a triangle (we call such edges clause edges). Furthermore, if a variable xi occurrs
positively in a clause Cj and negated in a clause Cj′ , then there is an edge between the vertices
vi,j and vi,j′ (we call such edges consistency edges). Let us call this graph Gϕ. See Figure 1 for an
example of this construction.

Note that if every variable occurrs in at most d clauses then the graph has degree at most d+ 2.

Claim 6 There is an independent set of size ≥ t in Gϕ if and only if there is an assignment that
satisfies ≥ t clauses in ϕ.

Proof: Suppose we have an assignment ai that satisfies t clauses. For each clause Cj , let us pick a
vertex vi,j that corresponds to a literal of Cj satisfied by ai. We claim that the set of picked vertices
is an independent set in Gϕ. To prove the claim, we note that we picked at most one vertex from
each triangle, so that we do not violate any clause edge, and we picked vertices consistent with the
assignment, so that we could not violate any consistency edge.

For the other direction, suppose we have an independent set with t vertices. The vertices must
come from t different triangles, corresponding to t different clauses. We claim that we can satisfy
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Figure 1: Graph construction corresponding to the 3CNF formula ϕ = (x1 ∨ x2 ∨ x̄3) ∧
(x2 ∨ x3 ∨ x̄5) ∧ (x̄1 ∨ x4 ∨ x5) ∧ (x̄1 ∨ x̄3 ∨ x5).

all such clauses. We do so by setting an assingment so that xi takes a value consistent with the
vertices vi,j in the independent set, if any. Since consistency edges cannot be violated, this is a well
defined assignment, and it satisfies t clauses. �

If we combine this reduction with Theorem 5, we get the following result.

Theorem 7 There is a polynomial time computable function mapping instances ϕ of 3SAT into
graphs Gϕ of maximum degree d+ 2 such that if ϕ is satisfiable then Gϕ has an independent set of
size at least N/3 (and a vertex over of size at most 2N/3, where N is the number of vertices, and
if ϕ is not satisfiable then every independent set in Gϕ has size at most N · (1 − ε2)/3, and every
vertex cover has size at least N · (2 + ε2)/3. In particular, if there is an approximation algorithm
for Independent Set in degree-(d + 2) graphs with performance ratio better than 1/(1 − ε2), or if
there is an approximation algorithm for Vertex Cover in degree-(d + 2) graphs with performance
ratio better than 1 + ε2/2, then P = NP.
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