
U.C. Berkeley Handout N18
CS294: Pseudorandomness and Combinatorial Constructions November 1, 2005
Professor Luca Trevisan Scribe: Constantinos Daskalakis

Notes for Lecture 18

1 Basic Definitions

In the previous lecture we defined the notion of a randomness extractor as follows:

Definition 1 A function Ext : {0, 1}n×{0, 1}d → {0, 1}m is a (k, ε)-extractor if, for every random
variable X of range {0, 1}n -which we will call a source- of min-entropy H∞(X) ≥ k, the following
holds for the statistical difference of Ext(X, Ud) and Um:

||Ext(X, Ud)− Um||SD ≤ ε,

where:

· we denote by Ul the uniform distribution on {0, 1}l

· the min-entropy of a random variable X of a finite range A is defined as H∞(X) = mina∈A 1
Pr[X=a]

· the statistical difference ||·||SD of two random variables Y and Z of a finite range A is defined
as:

||Y − Z||SD = max
T :A→{0,1}

|Pr[T (Y) = 1]−Pr[T (Z) = 1]|

The general goal is to keep the “high-quality” input randomness -parameter d of the model- as
small as possible, while maintaining the output randomness -parameter m- as close to the sum
k + d as possible. Last time, we showed some negative results asserting that the best tradeoff we
can hope for is something of the flavor:

m = k + d− 2 log
1
ε

+ Θ(1)

and d = log (n− k) + 2 log
1
ε
−Θ(1)

Today we will give a construction of randomness extractors. But first we will motivate our pursuit
by giving an interesting application.

2 An Example Application of Extractors

Suppose that AL is a randomized algorithm for a language L ⊆ {0, 1}l, which uses m bits of
randomness and has error probability ≤ 1

4 . A common way to boost the probability of success of
AL is to execute it t times on independent randomness and output the majority answer. In this
case, the random bits that are needed are t ·m and the probability of error is bounded by e−Ω(t).

1

A different way to boost the probability of success is via the use of randomness extractors. Indeed,
suppose that Ext : {0, 1}n × {0, 1}d → {0, 1}m is a (k, 1

8)-extractor and let us define algorithm A′L
as follows:

Algorithm A′L
Input: z ∈ {0, 1}l

pick n truly random bits r
compute m1 = Ext(r, 00...0) and then AL,m1(z)
compute m2 = Ext(r, 10...0) and then AL,m2(z)
...
compute m2d = Ext(r, 11...1) and then AL,m

2d
(z)

output the majority of AL,m1(z), . . . , AL,m
2d

(z)

The performance of A′L can be analyzed as follows. Let us fix an input z ∈ {0, 1}l and let us define

Bz := {r ∈ {0, 1}n|the output of A′L is wrong if r is picked at the first step}.
If X is uniform over Bz, then, by definition, H∞(X) = log |Bz|. Moreover, since for every r ∈ Bz

the answer of A′L is wrong, it follows that for this specific r the majority of the computations of
AL within A′L output the wrong answer. Therefore, Pr[AL,Ext(X,Ud)(z) = incorrect answer] > 1

2 .
However, the algorithm AL outputs the correct answer with probability of error at most 1/4.
Therefore, Pr[AL,Um(z) = incorrect answer] ≤ 1

4 and, thus,

||Ext(X, Ud)− Um||SD >
1
4
.

Now, if we assume that Bz ≥ 2k, i.e. H∞(X) ≥ k, the above inequality contradicts the fact that
Ext is a (k, 1

8) randomness extractor.

Therefore, it must be that Bz < 2k for every z ∈ {0, 1}l and, therefore,

Pr[A′L outputs incorrect answer] ≤ 2k

2n
≤ 2k−n.

The above inequality asserts that every extra bit of randomness that is invested above the value k
results in a decrease of the probability of error by a factor of 2. This is actually the optimal rate
with which probability of error can decrease.

In fact -to compare the boosting achieved by extractors with other methods of boosting- let us note
that, if we want to decrease the probability of error of AL to ε, then:

• boosting with independent repetitions needs O(
(
log 1

ε

) ·m) random bits

• boosting with a (k, 1
8) extractor with m ' k0.99 (k ' m1.01) needs m1.01 +log 1

ε random bits

• boosting with a random walk on an expander needs O(m + log 1
ε) random bits (in fact

at least m + 2 log 1
ε)

Therefore, for non-trivial boosting applications, the use of extractors is more economical in terms
of required randomness.

2

3 Construction of Randomness Extractors

In this section, we investigate how a construction similar to the Nisan-Wigderson generator could
be used to obtain randomness extractors. Below we briefly describe the structure of the Nisan-
Wigderson generator and its analysis, but for more details one should consult the notes of lectures
11 and 12.

Brief Description of the Nisan-Wigderson Pseudorandom Generator

Recall that the Nisan-Wigderson pseudorandom generator has the following high level structure

hard on avarage

N.W.

m pseudorandom bitsd truly random bits

f : {0, 1}l → {0, 1}

More precisely, the functionality of the generator relies on the construction of a set system S1, S2, . . . , Sm ⊆
[d] with the following properties:

• |Si| = l, for every i

• |Si ∩ Sj | ≤ α, for every i 6= j

Such a set system can be constructed with α = log m, l = c log m and d = e2c2 log m, and the
generator has the following functionality:

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

z z|S1 . . .z|Sm
...z|S2 f(z|S1) f(z|S2)

f

f(z|Sm)

We, now, briefly describe the analysis of the Nisan-Wigderson generator; elements of this analy-
sis will be useful later in constructing the randomness extractor. Let us denote by NW f :
{0, 1}d → {0, 1}m the function defined by the Nisan-Wigderson generator, that is, NW f (z) =
f(z|S1) . . . f(z|Sm), and suppose, by contradiction, that there exists a distinguishing circuit D :

3

{0, 1}m → {0, 1} such that
∣∣∣∣ Pr
z∼Ud

[D(NW f (z)) = 1]− Pr
z∼Um

[D(z) = 1]
∣∣∣∣ ≥ ε. (1)

Without loss of generality, we can remove the absolute value from the above inequality and apply
a hybrid argument using a set of hybrid distributions H0,H1, . . . , Hm defined as follows

Hi = r1r2 . . . ri−1rif(z|Si+1) . . . f(z|Sm), where (r1 . . . ri) ∼ Ui and z ∼ Ud,

to conclude that

ε ≤ Pr
z∼Ud

[D(NW f (z)) = 1]− Pr
z∼Um

[D(z) = 1] =
m∑

i=1

(Pr[D(Hi−1) = 1]−Pr[D(Hi) = 1]).

Thus, if we define algorithm A as follows

Algorithm A
Input: x, b /*can be either x, f(x) or x, r*/

pick i ∈ {1, . . . , m} /*pick one of the hybrids at random*/
pick r1, . . . , ri−1 ∈ {0, 1} at random
pick z ∼ Um conditioned on z|Si = x
output D(r1 . . . ri−1bf(z|Si+1) . . . f(z|Sm)

we have that

Pr[A(x, f(x)) = 1]−Pr[A(x, r) = 1] = Ei (Pr[D(Hi−1) = 1]−Pr[D(Hi) = 1]) ≥ ε

m

where the probabilities of the left hand side are taken both over the inputs to the algorithm and
over the randomness used by the algorithm itself. In fact, we can fix the randomness used inside
the algorithm, i.e. index i, bits r1, r2, . . . , ri−1 and the bits of z that are not indexed by Si, so that,
with these values fixed, it still holds that

Pr[A(x, f(x)) = 1]−Pr[A(x, r) = 1] ≥ ε

m
,

which implies that either A(x, 0) or A(x, 1) computes f correctly on at least a 1
2 + ε

m fraction of
the inputs.

In general, that is, independent of the way the absolute value from (1) is removed, we can fix index
i, bits r1, . . . , ri−1 and the bits of z not indexed by Si, so that one of A(x, 0), A(x, 1), A(x, 0), A(x, 1)
computes f correctly on at least a 1

2 + ε
m fraction of the inputs. The later assertion contradicts the

hardness on average of function f (after playing a bit with the parameters specifying the hardness
of f and the pseudorandomness of NW f).

Let us keep from the above analysis that, if the distinguisher exists, then given the distinguisher
circuit D and additional

log m + (i∗ − 1) + (m− i∗)2α + 2 = O(m2)

4

bits of information, where i∗ is the optimal choice for index i, we can construct a circuit that
agrees with f on at least a 1

2 + ε
m fraction of the inputs. Indeed, log m bits are needed to specify

i∗ and another i∗ − 1 bits to specify the optimal choice for r1, . . . , ri∗−1. Moreover, for every
j ∈ {i∗ + 1, . . . , m}, we need to give the value of f on at most 2α points of {0, 1}l, so that we
know f(z∗|Sj) for every x ∈ {0, 1}l; note that we do not need to know the optimal choice z∗ for z.
Finally, another 2 bits of information are needed to specify which of A(x, 0), A(x, 1), A(x, 0), A(x, 1)
to output.

Construction of Randomness Extractors

First Attempt: Let us investigate whether a construction of the following form could possess
good randomness extraction properties.

x ∼ Xsource X ∈ {0, 1}n

of min-netropy k

y

m bits

Nisan-Wigderson
generator

d truly random bits

z

In the above construction we can view each sample from x ∼ X as a funtion x : {0, 1}l → {0, 1},
where l = log n, and, so, the suggested structure actually implements function NW x, if we consider
a set system S1, S2, . . . , Sm ⊆ [d] with the following properties (δ is some free parameter):

• m = nδ

• d = e2

δ log n

• |Si| = l = log n, for every i

• |Si ∩ Sj | ≤ α = δ log n = log m, for every i 6= j

In order to establish randomness extraction properties for the above construction, one could hope
to go by contradiction and, via an argument similar to that in the analysis of the Nisan-Wigderson
generator, conclude that source X has sufficiently small description to contradict the fact that the
min-entropy of X is at least k. Indeed, let us pursue this proof idea to get some feel of what the real
construction should look like. Let us suppose that the above construction is not a (k, ε) randomness
extractor and, therefore, there exists a statistical test T : {0, 1}m → {0, 1} such that

| Pr
x∼X,z∼Ud

[T (NW x(z)) = 1]−Pr[T (Um) = 1]| > ε

5

Without loss of generality we can remove the absolute value from the above inequality and, then,
conclude that:

Pr
x∼X

[
Pr

z∼Ud

[T (NW x(z)) = 1]−Pr[T (Um) = 1] >
ε

2

]
≥ ε

2
(2)

Recall from the analysis of the Nisan-Wigderson generator that, if, for some x ∈ {0, 1}n, it holds
that

Pr
z∼Ud

[T (NW x(z)) = 1]−Pr[T (Um) = 1] >
ε

2
,

then, knowing the distinguishing circuit T and given additional O(m2) bits of information, we can
construct a circuit Dx : {0, 1}log n → {0, 1}, which -as an n-bit string- agrees with x on at least a
fraction of 1

2 + ε
2m positions. By combining this observation with (2), it follows that:

“If an x is drawn from X, then, with probability at least ε
2 , O(m2) bits are enough to specify a

string which agrees with x on at least a fraction of 1
2 + ε

2m positions”.

Unfortunately, this assertion is not sufficient to contradict the fact that source X has min entropy
≥ k. Note, however, that if, in the above assertion, instead of “1

2 + ε
2m” we had “1”, i.e. with

probability at least ε
2 over the choice of x, x could be described completely with O(m2) bits, then

a contradiction would be easy to get as follows:

- there are at most at most 2O(m2) strings that are described exactly by O(m2) bits;

- now, if S ⊆ {0, 1}n is the support of X, then, from the modified assertion, it follows that at
least ε

22k elements of S can be described by O(m2) bits (note that since H∞(X) ≥ k every
atom in S has probability at most 1

2k)

- therefore, it must hold that:
ε

2
2k < 2O(m2)

which can be violated by an appropriate choice of δ so that k > Ω(m2) + log 1
ε + 1.

This observation suggests that what we need to establish for our construction to work is, essentially,
a worst case to average case reduction. In other words, before throwing the samples drawn by the
source into the Nisan-Wigderson generator, we should somehow “disguise” them into longer strings
so that corrupted versions of these strings with -potentially- some small additional information are
enough to recover the samples we started with. To achieve this, we will use list decodable codes.

2nd Attempt: Following the above suggestion, let us suppose that C : {0, 1}n → {0, 1}n is a
(L, ε

2m)-list decodable code, i.e. for every y ∈ {0, 1}n:
∣∣∣∣
{

x ∈ {0, 1}n| C(x) agrees on at least a
1
2

+
ε

2m
fraction of positions with y

}∣∣∣∣ ≤ L.

The following choice of parameters is possible, as we have seen in previous lectures:

n = poly

(
n,

2m

ε

)
and L = poly

(m

ε

)
.

6

Now, let’s investigate what happens if, instead of applying the construction described above to
samples x ∼ X, we apply it to their encodings C(x). Let us consider the function:

NWE : {0, 1}n × {0, 1}d → {0, 1}m

defined by
NWE(x, z) := NWC(x)(z)

where the parameters of the construction are chosen as above but n is replaced by n, i.e.

• m = nδ

• d = e2

δ log n

• |Si| = l = log n, for every i

• |Si ∩ Sj | ≤ α = δ log n = log m, for every i 6= j

and δ > 0 is a free parameter to be decided later in the proof.

Claim 2 The function NWE(x, z) = NWC(x)(z) is a (k, ε)-extractor.

Proof: Suppose, by contradiction, that NWE is not a (k, ε) extractor. Then for some source X
of min-entropy at least k there exists a statistical test T : {0, 1}m → {0, 1} such that

| Pr
x∼X,z∼Ud

[T (NWE(x, z)) = 1]−Pr[T (Um) = 1]| > ε.

As in the analysis of our first attempt, we can remove the absolute value from the above inequality
without loss of generality and, then, conclude that

Pr
x∼X

[
Pr

z∼Ud

[T (NWE(x, z)) = 1]−Pr[T (Um) = 1] >
ε

2

]
≥ ε

2
(3)

So, if we define a x ∈ {0, 1}n to be bad iff

Pr
z∼Ud

[T (NWE(x, z)) = 1]−Pr[T (Um) = 1] >
ε

2
,

it follows that
Pr
x∼X

[x is bad] ≥ ε

2
.

Also, since X is of min-entropy ≥ k it follows that

of bad x’s
2k

≥ Pr
x∼X

[x is bad]

We will show that
of bad x’s ≤ 2O(m2+log 1/ε),

which will give a contradiction for an appropriate choice of δ that makes k > Ω(m2 + log 1/ε).

7

Claim 3 # of bad x’s ≤ 2O(m2+log 1/ε)

Proof: Let us fix a bad x. Call x = C(x). It follows that

ε

2
< Pr

z∼Ud

[T (NWE(x, z)) = 1]−Pr[T (Um) = 1] ≡ Pr
z∼Ud

[T (NW x(z)) = 1]−Pr[T (Um) = 1]

Thus, from exactly the same analysis as the one we did for our first attempt above, it follows that
O(m2) bits are enough to specify a string y which agrees with x = C(x) on at least a fraction
of 1

2 + ε
2m positions. Now, we resort to the fact that C is a (L, ε

2m)-list decodable code. This
implies that, given a string y, there are at most L candidate elements of {0, 1}n that are mapped
to codewords which agree with y in at least a fraction of 1

2 + ε
2m positions. So with additional

log L bits of information we can specify which element of that list is x. Therefore, every bad x is
specified with O(m2) + log L = O(m2) + O(log m + log 1/ε) = O(m2 + log 1/ε) bits of information.
Therefore,

of bad x’s ≤ 2O(m2+log 1/ε)

¤ ¤

To recapitulate, we constructed (k, ε) extractors Ext : {0, 1}n×{0, 1}d → {0, 1}m, with parameters
d,m that satisfy the following (δ > 0 is some free parameter which we have to choose to fit the
following requirements):

• m = nδ < n

• n = poly(n, 2m
ε) is the stretch of the list decodable code that we use

• d = O(1
δ log n) = 1

δ O(log n + log 1
ε)

• k > Ω(m2 + log 1/ε)

For example, if we use the concatenation of the Reed-Solomon with the Hadamard code for our en-
coding, then n = O

((
n·m

ε

)2
)

= O
(

n4

ε2

)
and, so, our parameters satisfy the following requirements

(again δ > 0 is a free parameter to play with to make sure that the first inequality holds):

• m = O

((
n2

ε

)δ
)

< min
{

n,O(
√

k +
√

log 1/ε)
}

• d = 1
δ O

(
log n + log 1

ε

)

8

