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Notes for Lecture 15

We continue our proof of the Impagliazzo-Wigderson Theorem [1] stated in Lecture 12. As was
discussed there, our proof of the theorem requires sublinear-time list-decoding of error-correcting
codes. In today’s lecture, we give such a scheme for Reed-Muller codes. This is based on results
of [2].

1 Notations and Previous Results

Recall that F is a field with ¢ elements. We consider a subset H of F of size h. A Reed-Muller
code maps messages in F*" to codewords in F4" for some m. It will be convenient to think of the
message as a function from H™ to F. In a Reed-Muller code, the message is interpreted as the
values taken by a multivariate polynomial on the subset H™ of F"*. The codeword corresponds to
the values of the polynomial at all points in F™. We denote M the message and p the encoding.
The “corrupted” codeword is denoted f.

We first recall two results from previous lectures.

Proposition 1 Assume the function f : F™ — F is 1—10—close to a multivariate polynomial p :

F™ — F of degree hm with ¢ > 5hm. Given x € F™, we can compute p(z) w.h.p. in time
poly (|F|, hm).

m

Proposition 2 Let g : F — F and a > 2+/(d+ 1)|F| for some d. Then, we can find a list of all
polynomials of degree d that agree with g on at least a points in time poly(|F|). Moreover, the list
has size at most 5.

2 Toy Problem

We begin with a toy problem.
e Setup:

— p : F™ — F polynomial of degree hm

— f : F™ — F function agreeing with p on ¢ fraction of inputs
e Given:

— x,y uniformly random in F™
— the value of p(y)

— oracle access to f

e Goal: compute p(z).



The following algorithm is a natural candidate solution to this problem. Consider the line [(t) =
ty+(1—t)x for t € F. It contains |F| points with [(0) = z and I(1) = y. Consider the restrictions of p
and f to this line, that is po(t) = p(I(t)) and fo = f(I(¢)). Apply Sudan’s algorithm (Proposition 2)
to fo with d = hm and a = @. The list returned has size Z}'LE;JL. If there is a unique polynomial r

in the list with 7(1) = p(y) then output r(0), otherwise output FAIL.

We make two claims.

Claim 3 Assume |F| > %. Then, with probability at least 19/20 over the choice of x,y, po and foy

agree on at least @ points (and, in particular, po appears in the list output by our algorithm).

PROOF: Because z,y are chosen independently uniformly at random in F™™, the points on the line
{l(t) : t € F} are pairwise independent. For ¢ € IF, define

Z, = { L, if po(t) = fo(t),

0, o.w.

We have E[Z;] > ¢ because p and f have ¢ agreement. Let = E[)", Z;] and £ be the event

e|F|

&= { fo and py agree on less than 5 points} .
By Chebyshev’s inequality,
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where we have used the pairwise independence of the Z;’s to permute Var and >, and the fact that
the variance of a 0 — 1 variable is at most %. [l

Claim 4 Assume |F| > 168#. Then, with probability at least %, po 1s the unique polynomial in the
list with value p(y) at t =1 (for € small enough).

PrOOF: We think of x and y as being picked according to the following process. We first pick
a random line, that is we choose z,w independently uniformly at random and consider the line
I'(t) = tz + (1 — t)w. We then choose two different uniform points on I, that is we choose t1, to
uniformly without replacement in IF and let z = t12 4+ (1 — ¢1)w and y = t2z + (1 — t2)w.

By assumption, a = @ > 24/|F|hm so that Sudan’s algorithm can be used. By Proposition 2,
there are at most ﬂ}gl polynomials of degree at most hm agreeing with f restricted to I’ on at least

@ points. T'wo such polynomials agree on at most %’" fraction of F (number of roots of difference).

Assume 7 is a polynomial not equal to pf, the restriction of p to I’ (in particular pj(t2) = p(y)).
Then

hm

Plr(t2) = p(y)] < Gk



because y is uniformly random on the line. Therefore,
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if € is small enough.

Notice finally that even though we applied Sudan’s algorithm to f restricted to [’ rather than [,
there is a one-to-one linear map between polynomials such that agreement with f on [ corresponds
to agreement with f on I’. This concludes the proof.

O

We have proved the following.

Proposition 5 Consider the setup of the Toy Problem with

|F| > max{20 16hm}

g2’ g2

Then for € small enough, we can compute p(x) with probability at least 1%.

3 Main Result

Given z,y the algorithm above is deterministic. Let A, ) (x) be the output of the algorithm on
inputs z,y,p(y). Then we know from Proposition 5 that

IED90,?;[14y,p(y) (1’) = p(IL‘)] >

S|

Therefore, there exists a y such that
9
Px[Aym(y)(x) =p(x)] 2 10°
Fix that y. From Proposition 2, it follows that if f has a circuit of size S then A, ) has a circuit

of size S|F|+ poly(|F|). Now, apply the algorithm of Proposition 1 to A
result.

yp(y)- We get the following

Theorem 6 Letp : F™ — F be a polynomial of degree hm and f : F"™ — F a function agreeing
with p on an € fraction of inputs in F'™. Assume furthermore that
20 16hm
F| > e
|F| > max { 2 2 }
If f can be computed by a circuit of size S, then p can be computed by a circuit of size Spoly(|F|, hm)
(a more careful analysis gives S|F|poly(log |F|, hm) + poly(|F|)).



4 Back to the Impagliazzo-Wigderson Theorem

We conclude with a discussion of the relevance of Theorem 6 to our (ongoing) proof of the
Impagliazzo-Wigderson theorem which we will complete in the next lecture.

Suppose L is a decision problem solvable in time 29" that cannot be solved by circuits of size
2°" on inputs of length n for some § > 0. Denote L, : {0,1}"* — {0,1} the restriction of L to
inputs of size n. Fix v(= 2(d)). Using the notation of the previous sections, take h = 27", m = %,
€ = Q%n From previous results, we need to take ¢ = 16 - 227 . 297 = 237"+4 We think of H
as {0,1}"" and L, as a function from H™ to {0,1}. Let p : "™ — F a degree hm polynomial
that agrees with L, on H™. We think of p as a function from {0,1}3"+4/7 to {0,1}37"+4, By a
standard interpolation formula, p is computable in time 29" . From Theorem 6, if there exists a
circuit of size S that computes p on a fraction € = 27% of inputs, then there exists a circuit of size
5277 for some ¢ > 0 that computes p everywhere. In particular, it computes L,, everywhere. This
gives a contradiction if 7 is such that $27¢ < 29", Therefore, we have constructed a function with

exponential average-case complexity.

What we really need is a decision problem with exponential average-case complexity. We will
construct such a problem in the next lecture.
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