U.C. Berkeley Handout N14
(CS294: Pseudorandomness and Combinatorial Constructions October 13, 2005
Professor Luca Trevisan Scribe: Radu Mihaescu

Notes for Lecture 14

In this lecture we will show how to concatenate the Hadamard and Reed-Solomon codes to obtain a
code where the number of corrupted bits can get arbitrarily close to % We also present Reed-Muller
codes together with a sublinear-time unique decoding algorithm.

1 Concatenation of Reed-Solomon and Hadamard codes

Let us consider a Reed-Solomon code on the field F:
RS :F* - F" n<|F|

By Sudan’s algorithm (see previous lecture), given a corrupted encoding with > 2v/kn + 1 non-
errors, we can reconstruct in polynomial time the list of all codewords that agree with the given
input in at least > 2vkn + 1 positions.

Now consider a Hadamard code .
H:{0,1}* — {0,1}*.

By the Goldreich-Levin algorithm, given a corrupted encoding with > (% + €)2F non-errors, in time
poly(k, %) we can reconstruct all messages whose encoding has agreement > (% + €)2F with the

input. From the analysis of the algorithm it also follows that given y € {0, 1}2k, there are at most
O(e%) codewords that agree in > (% + €)2* bits with 3. By using Fourier analysis we can get ﬁ

codewords.

We want to produce a code such that if the proportion of errors in the output is less but arbitrarily
close to %, then we can find in polynomial time all the codewords that are close to the output.

Now suppose n = |F| = 2!. As before we have
RS :FF - F"H: {0,1}* — {0,1}2",

which gives
RSoH : {0,1}* — {0,1}"2",

If > (% +€)n2' of the bits in the output are correct, then an easy calculation shows there exist ne/2

blocks in which at least > (% + %)n bits are correct. We now apply the Hadamard list decoding

algorithm with radius (% — §)n to each block individually. By a previous argument, there are at

most €2 codewords in each list.

€{0,1}!=F
—~

lk bits

RS

n field elts

n blocks of 2! bits each

1
channel introduces (5 — €) fraction of errors

Now pick a random element from each list and construct a new binary string. For at least §n of
the blocks, the correct field codeword is contained in its list and there are at most 1/¢? elements

in each list, therefore this random assignment will, on average, correctly decode at least g of the
blocks.

/A

R

N] [
0N [

Think of the blocks as elements of F. We have an RS encoding where the proportion of non-errors
3 3
is at least 5. If n5 > 2v/nk, then by Sudan’s algorithm we are done. But

3 16k
n%>2\/nk<:>n2 —-
€

Since [= logn, we get | = log (lf—ﬁk) and our encoding becomes

256k2
2

16k
rRSoH : {0,175 (%) - 0,112

The following theorem is therefore true:

Theorem 1 For any k, e, there is a code C: {0,1}* «— {0,1}", where n = poly(k, %), computable
in polynomial time, such that given y € {0,1}", we can find in time polynomial in (k, %) a list of
size poly(%) that contains all codewords with agreement > (% + e)n with y.

2 Reed-Muller codes

Reed-Miiller codes are an encoding of the type

m

RM : F"" — Fa™,

Fix a subset H C F, such that |[H| = h. Given a message M of length A", we think of M as the
list of values of a function
M:H™ —F.

Claim 2 We can always find a polynomial Pys : F™ — F which has degree < h in each variable
such that
Py(x) = M(x),Yz € H™.

PRrOOF: This can be done by using the standard Lagrange inversion formula and induction on m.
O The encoding of M is then the list of values of Pys(-) at all points in F™.

Now suppose we have two different messages M and M’. Then their encodings correspond to two
different polynomials and the distance between the two codewords would be

length of encoding - PIFr [Prr(x) # Pppe(x)] > |F|™ (1 — hm))
zel™

This is an easy consequence of the following theorem:

Theorem 3 (Schwartz-Ziepel) Ifp:F™ — F is a non-zero degree d polynomial, then Pr,cpm[p(z) =
0] < &,

]
We therefore need |F| > 2hm to get an encoding with relative distance %, in which case we will

transform strings of length k£ = A" into strings of length A™(2m)™ = k(2m)™.

When m is large, take h = k'/™. 1In this case, the encoding becomes more wasteful, but the
efficiency actually increases, as the decoding running-time depends only on h.

Now let us describe the decoding procedure. Let Py : F™ — F be the degree d = hm encoding of
the message M : H™ — F, with |F| > 5d = 5hm. Suppose that the output f : F™ — F differs from
Pys in at most 1/10 of the total number |[F™| of entries. Given z € H™, we need to compute p(z).

We use the following algorithm:

RM —decode(x)
Choose uniformly at random y € F™
Take the line [(t) =ty + (1 — t)z
Let F(t) be the result of the unique decoding of Reed-Solomon codes algorithm
applied to f(I(t)) as a function of ¢
Return f(0).

It is easy to see that since Py is a polynomial in x, Py/(I(t)) is a composition of two polynomials,
and therefore a polynomial in ¢, of the same degree d. Let Py(I(t)) = p(t). We have Py (z) =
Pr(1(0)) = p(0). Therefore recovering p is enough for recovering M (x).

F

errQrs

H

Now if y is uniformly distributed, then a-y is uniformly distributed for any constant a, so ty+(1—t)x
is uniformly distributed for any fixed value of ¢ (remember we are choosing y uniformly at random).
Therefore with probability > 0.9, I(t) is correct (i.e.f(I(t)) = p(t)) for any fixed value of ¢. Also,
on average 0.9 of the points on [(t) are correct.

By Markov’s inequality, Pr[|{t|p(t) = f(I(¢))}| > 0.7|F|] > 2/3. Using the decoding algorithm of
Reed-Solomon from 2 lectures ago, we can find the unique polynomial p(¢) which agrees with f(I(t)
in at least 0.6 of the positions. We can do this since d < 0.2|F|, and thus 0.4|F| < (|F| — d)/2.0

Note: It is possible to get the probability of error arbitrarily close to 1 by a method similar to
that of the Goldreich-Levin algorithm.

Py :F"—=F M:H"™ —TF h=|H]|

Then Py is of degree d = hm and f : I — F differs from P for at most 0.9|F|™ inputs. Now
look at the line through x and y, where & and y are chosen uniformly at random. Apply Sudan’s
list-decoding algorithm to find all polynomials of degree at most d that agree with f on the line
in at least 0.05 of the points. If the list does not contain a unique polynomial ¢ with ¢(0) = f(z),
then return an error. Otherwise output Pys(y) = ¢(1).

