
U.C. Berkeley — CS294: Codes and Complexity Handout N6
Professor Luca Trevisan Scribe: Hoeteck Wee

9/15/2003

Notes for Lecture 6

6.1 Outline

Today’s lecture will cover:

• List-Decoding for Reed-Solomon Codes

• List-Decoding for Concatenated Codes (Reed-Solomon with Hadamard)

6.2 List-Decoding of Reed-Solomon Codes

Recall that the [n, k, n − k + 1]q Reed-Solomon Code regards a message as a polynomial
p of degree k − 1, and the encoding is given by (p(x1), . . . , p(xn)), where x1, . . . , xn are
distinct elements of a field F q of size q. Upon passing through a noisy channel, we receive
y1, y2, . . . , yn. Suppose we are told that we have agreement t, that is #i : p(xi) = yi ≥ t.
Then,

1. If t ≥ n+k
2

, we have an efficient algorithm for unique decoding to recover p from
(y1, . . . , yn). In particular, we can uniquely decode from n(1/2 + k/2n) agreement, or
a fractional agreement that is arbitrarily close to 1/2 if we fix k and increase n. Note
that the condition t ≥ n+k

2
is necessary for unique decoding.

2. If t > 2
√

nk, we shall see that we can still efficiently list-decode from (y1, . . . , yn) to
recover a small list of polynomials that includes p. This means that we can list-decode
from n(2

√

k/n) agreement, or a fractional agreement that is arbitrarily close to 0 if
we fix k and increase n.

The list-decoding problem for Reed-Solomon codes can be stated as follows: given n
distinct points (x1, y1), (x2, y2), . . . , (xn, yn) in F2

q and parameters k, t, find a list of all
polynomials p such that:

1. p has degree ≤ k − 1; and

2. # : p(xi) = yi ≥ t

With no further constraints on n, k and t, it is not clear that the list of such polynomials
is small (that is, poly(n, k, t)). In particular, if t = k, there are at least qk such distinct
polynomials (pick any of the k points and interpolate). Therefore, we will definitely require
that t > k if we would like to efficiently list-decode.

1

6.2.1 A Geometric Perspective

For the purpose of this algorithm, we will want to describe the n given points using low-
degree planar curves that pass through them; that is, we consider curves {(x, y) : Q(x, y) =
0} where Q(x, y) is a low-degree polynomial. Note that we are not restricted to curves with
degree one in y; in particular, we may describe points on a circle centered at (0, 0) with
the equation x2 + y2 − 1 = 0. Other examples of point sets that may be described using
low-dimensional curves are lines, and unions of lines and circles.

'
&

$
%

b
b

b bb
b
b b

b
b bb b

@
@

@
@

@
@

�
�

�
�

�
� In the example on the left, we have a set of 13 points that lie

on the union of a circle and two lines. Suppose the point in
the center is (0, 0). Then, the set of points lie on the curve
described by: (x2 + y2 − 1)(x − y)(x + y) = 0.

6.2.2 A Simple List-Decoding Algorithm

For the list-decoding problem, the intuition is that if p is a polynomial with large agreement,
then the curve y − p(x) = 0 passes through many of the given points. Therefore, what we
will do in the list-decoding algorithm is to first find a low-degree polynomial Q passing
through all of the given points, and then show that all low-degree curves that pass through
many of the given points divides Q. This reduces the list-decoding problem to factorizing
a bivariate polynomial over a finite field, for which efficient algorithms do exist.

Algorithm List-Decode-RS

Given: n distinct points (x1, y1), . . . , (xn, yn) in F2
q.

1. Find Q(x, y) such that

• Q has low degree: dx − 1 in x, dy − 1 in y

• Q(xi, yi) = 0 for all i = 1, 2, . . . , n

• Q 6≡ 0.

2. Factor Q(x, y). For every factor of the form y−p(x), if p is a feasible solution, output
p.

There are two problems that we need to address:

1. Does there exist a low-degree polynomial Q that pass through all the given points,
and if so, how can we find one efficiently?

2. Must every low-degree polynomial that pass through many of the given points divide
Q? For instance, taking t = 3 for concreteness; it seems conceivable that we have a
polynomial R(x, y) quadratic in y that passes through 6 of the given points that lie
on y− p1(x), y − p2(x) for two low-degree polynomials p1, p2, and that R(x, y) divides
Q, but neither y − p1(x) nor y − p2(x) does.

2

6.2.3 Finding Q

First, we address the problem of finding Q. We may write

Q(x, y) =
∑

i=0,...,dx−1;j=0,...,dy−1

cijx
iyj

Now, the problem reduces to finding the dxdy coefficients of Q: cij , i = 0, 1, . . . , dx−1; j =
0, . . . , dy − 1. Observe that the requirement Q(xi, yi) = 0 is equivalent to a system of linear
constraints on the coefficients {cij}. Furthermore, this is a homogeneous system, so it will
always have the all 0’s solution, corresponding to Q ≡ 0. On the other hand, if dxdy > n,
that is, the number of variables is more than the number of linear constraints, then we can
always efficiently find a non-zero solution to the linear system that yields a non-zero Q that
passing through all the n points.

6.2.4 Proof of Correctness

Next, we will have to show that every polynomial p with large agreement with the points
(x1, y1), . . . , (xn, yn) is a factor of Q. More precisely, we are told that:

1. p(x) is a degree k − 1 polynomial such that y − p(x) is zero in at least t of the points.

2. Q(x, y) has degree dx − 1 in x and dy − 1 in y and passes through all the points (that
is, Q(xi, yi) = 0 for i = 1, 2, . . . , n).

3. There are ≥ t points (xi, yi) such that Q(xi, yi) = yi − p(xi) = 0.

For simplicity, we can rewrite these conditions assuming that we are choosing n points
on the curve Q(x, y) = 0, which yields the following statement:

Proposition 1 Suppose that

1. Q(x, y) is bivariate polynomial in x, y with degree dx − 1 in x and dy − 1 in y.

2. p(x) is a degree k − 1 polynomial in x.

3. There are ≥ t points (xi, yi) such that Q(xi, yi) = yi − p(xi) = 0.

4. t > (dx − 1) + (k − 1)(dy − 1).

Then y − p(x) divides Q(x, y).

This proposition is a special case of Bezout’s Theorem, that says that any two curves
that share lots of points in common must share a common factor. Here, y−p(x) is irreducible
(over polynomials in y with coefficients from F q[x]), so it divides Q(x, y). A simple proof
of this special case is shown below.

It is also important to note that we only require that the points (x1, y1), . . . , (xn, yn) be
distinct, and not that x1, . . . , xn be distinct, as in the case for list-decoding Reed-Solomon
codes. This allows the list-decoding procedure to be used in a more general setting, as we
shall see later.

3

Proof: View Q is a univariate polynomial in y whose coefficients are univariate polynomials
in x:

q(y) = q0(x) + yq1(x) + . . . + ydy−1qdy−1(x)

Recall the Factor Theorem for polynomials: β is such that q(β) = 0 iff y − β divides
q(y). This tells us that p(x) is such that q(p(x)) ≡ 0 iff y− p(x) divides Q(x, y). Therefore,
to show y − p(x) divides Q(x, y), it suffices to show that Q(x, p(x)) is the zero polynomial.

From condition 3, we know that Q(xi, p(xi)) = 0 for at least t distinct values of the xi’s.
On the other hand, Q(x, p(x)) as a univariate polynomial in x can be written as:

Q(x, p(x)) = q0(x) + p(x)q1(x) + . . . + p(x)dy−1qdy−1(x)

and has degree at most (dx −1)+(k−1)(dy −1). Therefore, if t > (dx−1)+(k−1)(dy −1),
then Q(x, p(x)) ≡ 0 and y − p(x) divides Q(x, y). �

6.2.5 Fixing the Parameters

We are now ready to fix the parameters dx, dy. Recall that we require that:

1. dxdy > n, so that we have sufficient variables in the linear system for finding Q;

2. t > dx + kdy, to ensure that every polynomial with large agreement is a factor of Q.

We want to maximize t under both constraints, and that is optimized by setting dx =√
kn and dy =

√

n/k, so dx + kdy = 2
√

kn. As a polynomial in y, Q has degree dy and
therefore at most dy factors. Hence, there are at most dy =

√

n/k polynomials in the list.
This yields the following results:

Theorem 2 Given a list of n points (x1, y1), . . . , (xn, yn) in F2
q, we can efficiently find a

list of all polynomials p(x) of degree at most k − 1 that pass through at least t of these n
points, as long as t > 2

√
nk. Furthermore, the list has size at most

√

n/k.

Theorem 3 For every ε > 0, and for all sufficiently large n, there exist:

1. A [n, εn, (1 − ε)n]n Reed-Solomon code, such that we can efficiently list-decode from

agreement in at least 2
√

εn locations, and size of the list is at most
√

1/ε.

2. A [n, ε2n/4, (1 − ε2/4)n]n Reed-Solomon code such that we can efficiently list-decode

from agreement in at least εn locations, and the size of the list is at most 2/ε.

6.2.6 Increasing the List-Decoding Radius

Observe that in the proof of correctness, we only require that Q(x, p(x)) has degree less
than t in x. Therefore, it suffices that for all monomials xiyj in Q(x, y), we have i + kj < t
(instead of the more restrictive constraint that i < t/2 and j < t/2k). This means that we
may consider any Q(x, y) of the form:

Q(x, y) =
∑

i+kj<t

cijx
iyj

4

Therefore, the number of coefficients (and thus the number of variables in the linear
system) is given by:

| {(i, j) : i + kj < t} |=

t/k
︷ ︸︸ ︷

t + (t − k) + (t − 2k) + . . . + (t − t

k
· k) =

t

k
· 1

2
(t + 0) =

t2

2k

(instead of t/2 · t/2k = t2

4k if we consider only i < t/2 and j < t/2k.) To ensure that the

linear system {Q(xi, yi) = 0 | i = 1, 2, . . . , n} is under-determined, we need t2

2k > n, or

equivalently, t >
√

2kn. For such t, it suffices to consider Q of the form:

Q(x, y) =
∑

i+kj<t | j≤
√

2n/k

cijx
iyj

This allows us to place an upper bound of
√

2n/k on the size of list (instead of the crude
bound t/k).

Theorem 4 Given a list of n points (x1, y1), . . . , (xn, yn) in F2
q, we can efficiently find a

list of all polynomials p(x) of degree at most k − 1 that pass through at least t of these n
points, as long as t >

√
2nk. Furthermore, the list has size at most

√

2n/k.

6.3 List-decoding concatenated codes (RS with Hadamard)

Recall that the Hadamard code is a [2k, k, 1
2
· 2k]2 code with an encoding function C :

{0, 1}k → {0, 1}2k

that sends a message c1, c2, . . . , ck to {c1a1 + · · ·+ ckak}a∈{0,1}k . For our
analysis of the list-decoding algorithm, we will need the following Johnson-type bound for
the Hadamard code, which follows from a simple application of Fourier analysis:

Theorem 5 For every y ∈ {0, 1}n and for every ε > 0, there are at most 1
4ε2 codewords of

the [n, log n, n/2]2 Hadamard code at distance ≤
(

1
2

+ ε
)
n from y.

In addition, we will focus on the code obtained by concatenating the Reed-Solomon
Code with the Hadamard code with the following parameters:

Reed-Solomon: [n, k, n − k]n
Hadamard: [n, log n, 1

2
n]2

concatenated: [n2, k log n, 1
2
n(n − k)]2

6.3.1 A Simple List-Decoding Algorithm

Consider the naive list-decoding algorithm for the concatenated code from
(

1
2
− ε

)
n2 errors,

wherein we first list-decode the outer code, and then list-decode the inner code:

Algorithm List-Decode-RS-Hadamard

Given: (z1, . . . , zn) ∈ {0, 1}n2

, where zi ∈ {0, 1}n is a block corresponding to a codeword
of the inner code.

5

1. Decode n codewords of the outer code assuming ≤
(

1
2
− ε

2

)
n errors via a brute force

search. That is, for each i = 1, 2, . . . , n, we output a list Li of all the codewords of the
outer code that agree with zi in at least

(
1
2

+ ε
2

)
n positions. Note that |Li| ≤ 1/ε2.

2. For j = 1, 2, . . . , 1/ε2: pick the jth element yi of each list Li, i = 1, 2, . . . , n, and run
List-Decode-RS on (y1, . . . , yn) to find all degree k− 1 polynomials that agree with
(y1, . . . , yn) on at least 1

2
ε3n locations.

3. Output the messages corresponding to all such polynomials.

Note that for a random block zi chosen from z1, . . . , zn, zi agrees with the correct
encoding in ≥

(
1
2

+ ε
)
n locations. Then by Markov’s inequality,

Pr
i

[zi has agreement at least
(

1
2

+ ε
2

)
n with the correct encoding] ≥ ε

2
.

Otherwise, the agreement between (z1, . . . , zn) and the correct encoding is < ε
2
· n + 1 ·

(1
2

+ ε
2
)n = (1

2
+ ε)n, a contradiction. Hence, at least εn

2
of the lists Li contains the correct

outer codeword. If we pick a random element from each of these lists Li, then we expect
an agreement ≥ εn

2
· 1/(1/ε2) = ε3n

2
between the n field elements we have chosen, and n

elements corresponding to the correct Reed-Solomon encoding. By linearity of expectations,
this is still true if we fix a random j ∈ {1, 2, . . . , 1/ε2} and pick the jth element from each
of the lists Li. Therefore, if we enumerate over all possible choices of j, there is at least one
j for which we have agreement ≥ ε3n

2
. In this case, List-Decode-RS will succeed as long

as:
ε3n/2 >

√
2kn, that is, k ≤ ε6n/8

For each j, we have a list of size
√

2n/k = O(1/ε3), so the total size of the list is O(1/ε5).

Theorem 6 For every ε > 0, there exists a binary code that is obtained by concatenating

a Reed-Solomon Code with a Hadamard Code and that has the following properties:

1. It is a [n2, 1
8
ε6n log n, 1

2
n2(1 − ε6/8)]2 code.

2. It can be efficiently list-decoded from 1
2
− ε fraction of errors, and the size of the list

is O(1/ε5).

Finally, observe that we are not restricted to using the Hadamard code as the inner
code, as List-Decode-RS-Hadamard will run efficiently as long as the message length
of the inner code is logarithmic in the size of the input, as that would already allow us to
enumerate all codewords of the inner code in time polynomial in the size of the input and
therefore efficiently list-decode the inner code.

6.3.2 An Improved List-Decoding Algorithm

We can improve upon the parameters of List-Decode-RS-Hadamard with the simple
observation that List-Decode-RS works as long as the input points are distinct; in par-
ticular, the evaluations of the polynomial given to us do not have to be at pairwise distinct
points. As such, we can concatenate the lists L1, . . . , Ln, and pass all |L1|+ . . . + |Ln| ≤ n

ε2

6

points to List-Decode-RS, with a guaranteed agreement of at least εn
2

. In this case,
List-Decode-RS will succeed as long as:

εn/2 >
√

2k(n/ε2), that is, k ≤ ε4n/8

This yields a list of size
√

2(n/ε2)/k = O(1/ε3).

Algorithm List-Decode-RS-Hadamard-2

Given: (z1, . . . , zn) ∈ {0, 1}n2

, where zi ∈ {0, 1}n is a block corresponding to a codeword
of the inner code.

1. Decode n codewords of the outer code assuming ≤
(

1
2
− ε

2

)
n errors via a brute force

search to obtain n lists L1, . . . , Ln.

2. Run List-Decode-RS on L = L1 ∪ . . .∪Ln to find all degree k − 1 polynomials that
agree with L on at least 1

2
εn locations.

3. Output the messages corresponding to all such polynomials.

Theorem 7 For every ε > 0, there exists a binary code that is obtained by concatenating

a Reed-Solomon Code with a Hadamard Code and that has the following properties:

1. It is a [n2, 1
8
ε4n log n, 1

2
n2(1 − ε4/8)]2 code.

2. It can be efficiently list-decoded from 1
2
− ε fraction of errors, and the size of the list

is O(1/ε3).

7

