
U.C. Berkeley Handout N11
CS294: Pseudorandomness and Combinatorial Constructions October 4, 2005
Professor Luca Trevisan Scribe: Alexandra Kolla

Notes for Lecture 11

In this lecture we will begin with the proof of the Nisan -Wigderson Theorem that we stated last
time.

Theorem 1 (Nisan - Wigderson) Suppose there is a language L decidable in time 2O(n) and
there is δ > 0 such that L is (2δn, 1

2δn) - hard on inputs of length n. Then ultimate pseudorandom
generators exist.

Proof:

Fix input length n. Completely analogous to the Blum - Micali -Yao pseudorandom generator of
stretch n + 1, we will first show that G : {0, 1}n → {0, 1}n+1 such that x 7→ x, f(x) is (2δn, 1

2δn)-
pseudorandom.
Assume, towards contradiction, that there is a circuit ∆ of size S ≤ 2δn such that for ε ≥ 1

2δn) we
have: ∣∣∣∣ Pr

x∼{0,1}n,b∼{0,1}
[∆(x, b) = 1]−Pr[∆(x, f(x) = 1]

∣∣∣∣ ≥ ε

Then one of the following circuits: ∆(x, 0) , ∆(x, 1) ∆(x, 0), ∆(x, 1) computes f on ≥ 1/2 + ε
fraction of the inputs. Therefore, the following algorithm computes f in ≥ 1/2 + ε fraction of the
inputs:

Algorithm A (x)
Choose uniformly at random b

if ∆(x, b) = 1 output b else output b

It follows that Prx,b[A(x) = f(x)] > 1/2 + ε which is a contradiction. Therefore G is a (S, ε)
pseudorandom generator with stretch n + 1.

In order to construct the ultimate generator, we need to have stretch N = 2Ω(n). However, we
cannot use the same construction as in the B-M-Y pseudorandom generator GN , because we need
to compute f(x) N times. In the Nisan - Wigderson case, f is computed in time 2O(n) but we can
only have distinguishers of size 2δn. What we do instead can be illustrated in the above figure.

The main idea of the constructions lies in the fact that function f evaluated in a random input
may be hard to compute, but evaluated in correlated inputs may be easier. Formally, we give the
following construction:

Construction of G from O(n) = t - bit random input z and form f : (S, ε) - hard.

1

We first construct N subsets of {1, . . . , t} S1, . . . ,SN . Each one of them will have size |Si| = n and
the intersection of any two of them will be |Si ∩ Sj | ≤ logN . The following figure indicates the
construction for values t = 50, n = 30, N = 220, |Si| = 30, |Si ∩ Sj | ≤ 20

We choose N = 2δn/2

2 . We want to prove that if f is (S, ε)-hard then the output of the generator is
(S −N2, εN) - pseudorandom.
Suppose, towards contradiction that there is a circuit ∆ such that

Pr
z

[∆(f(x1)f(x2) . . . f(xN)) = 1]−Pr[∆(r1, r2, . . . , rN) = 1] ≥ ε

Consider the following distributions of inputs for ∆:

f(x1)f(x2) . . . f(xN)
r1f(x2) . . . f(xN)
...
r1, r2, . . . , rN

By a hybrid argument, there must be two consecutive distributions such that

Pr
z

[∆(r1, . . . , ri−1, f(xi) . . . f(xN)) = 1](∗)−Pr[∆(r1, . . . , ri, f(xi+1) . . . f(xN)) = 1](∗∗) ≥ ε/N

(1)

Consider the following algorithm A which takes input x and b and wants to distinguish wether
b = f(x) or b is a random bit.

Algorithm A (x, b)
Define z ∈ {0, 1}t such that z|Si

= x and z|{1,...,t}−Si
is random.

Compute x1 = z|S1
, x2 = z|S2

, . . . , xN = z|SN

Pick at random r1, . . . , ri−1

output ∆(r1, . . . , ri−1, b, f(xi+1) . . . f(xN))

If we could show that

Pr
x∼{0,1}n,randomnessofA

[A(x, f(x)) = 1](∗)− Pr
x∼{0,1}n,randomnessofA,r∈{0,1}

[A(x, r) = 1](∗∗) ≥ ε/N

Then f is not (size of A,ε/N) - hard.

The problem with this idea is that we will need to compute f(xi+1), . . . , f(xN) so the size of A will
be bigger than the size of a circuit that computes f , therefore we could distinguish f from b just by
computing f(x) from scratch. The above difficulty can be overcome with the following idea: since
A probabilistic, there is a choice of randomness z|{1,...,t}−Si

(consider the best possible), such that
the distinguishing probability is still > ε/N . Therefore, we can fix this randomness and hardwire
it to the circuit. More precisely, in the new algorithm we have :

2

z|Si
= x

z|{1,...,t}−Si
= good choice of randomness.

For the rest of z|Sj
we have some fixed bits (t− n total) and some bits (n total) that belong to x.

To summarize, in each z|Sj
we have ≤ logN bits of x and ≥ n − logN constants. We therefore

define the following functions that depend only on k = logN bits of x :
f(xi+1) = gi+1(x)
...
f(xN) = gN (x)

Since gj depends only on k bits, it can be computed by a circuit of size O(2k) = O(N). Therefore,
size of A = size of ∆+O(N2) and we conclude that if the generator is not (S,ε) - pseudorandom then
f is not (size of ∆+O(N2), ε/N)-hard. By assumption, f is (2δn, 1

2δn) - hard so taking N = c ·2δn/2

, S = 1/2 · 2δn and ε = c′

2δn/2 , we can see that Algorithm A is a distinguisher for f , reaching the
desired contradiction. In the following lecture,we will see how to construct the Si. �

3

