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Notes for Lecture 8

1 The Goldreich-Levin Theorem: Learning Linear Functions

The Goldreich-Levin theorem proves existence of probabilistic learning algorithms for linear func-
tions. An application of the theorem also proves existence of hard-core predicates for one way
permutations.

One way of describing the problem is to consider a function f : {0, 1}n → {0, 1} which agrees with
a linear function la(x) : {0, 1}n → {0, 1} at a (1

2 + ε) fraction of the inputs. The function la(·) is
defined as

la(x) := a · x =
n∑

i=1

ai · xi (mod 2)

Then the problem is to find all possible candidates for the bit-vector a given oracle access to the
function f . This can also be viewed as a problem in error-correcting codes as the function la(·)
is nothing but the Hadamard code for a and f(·) represents a version of the codeword with upto
(1
2 − ε) fraction of bits corrupted. It is required to find all possible values for the original message.

The theorem says that it is possible to do so with high probability of success in time polynomial
in n and 1/ε. Formally:

Theorem 1 (Goldreich-Levin) There is a probabilstic algorithm such that given f : {0, 1}n → {0, 1}
and ε > 0 it runs in time poly(n, ε) and outputs a list L so that for every a ∈ {0, 1}n

Pr
x∼{0,1}n

[
n∑

i=1

aixi = f(x)

]
≥ 1

2
+ ε ⇒ Pr[a ∈ L] ≥ 1

2

2 The case of low-error data

We first consider the special case when f is guaranteed to be correct (i.e. have value equal to
la) on at least 7/8th of the inputs (The treatment here can actually be generalized to the case of
agreement on (3

4 + ε) fraction of inputs). Since, the distance between two functions is a metric,
using triangle inequality shows that there must be a unique function la(·) and hence a unique a for
this case. The following algorithms finds the solution with high probability (ei represents the n-bit
vector with 1 only in the ith position):

Find-Unique-Function()
for i = 1 to n do

for j = 1 to t do
Pick an x ∈ {0, 1}n uniformly at random
Compute aij = f(x + ei)− f(ei)

Take ai = maj(ai1, . . . , ait)
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Note that in each iteration of the inner loop, each of f(x + ei) and f(x) is correct with probability
at least 7/8. Thus, the probability of finding the correct value of ai is at least 3/4 for each iteration
of the inner loop. This gives that probability of error in the majority over t trials is at most e−Ω(t)

by Chernoff bounds. Using this for all i we have:

Pr[ai is correct for all i] ≥ (1− e−Ω(t))n

Taking t = O(log n) with an appropriate constant gives an O(n log n) algorithm with arbitrarily
small error. We assume this to be bounded by some constant, say δ.

3 “Almost an algorithm” for the general case

The previous algorithm assumes that the oracle gives the correct value of la(·) at least 7/8th of
the time. We now try to construct a subroutine which does that. However, we assume that this
function has the correct values of la(·) at a few points “hard-coded” into it. The values are assumed
to be obtainable from some other oracle.

To construct the routine, we proceed as follows:

• Pick X(1), . . . , X(k) ∈ {0, 1}n independently at random

• Obtain la(X(1)), . . . , la(X(k)) from the other oracle

• Define the function AX(1),...X(k) as:

AX(1),...,X(k)(z) := maj[(f(z + X(1))− la(X(1))), . . . , (f(z + X(k))− la(X(k)))]

To analyze the probability of correctness of this function, we define: the variables E1, . . . , Ek where
Ej = 1 when f(z + X(j)) = la(z + X(j)) and 0 otherwise. Thus, E[Ej ] ≥ (1

2 + ε). Also

Pr
X(1),...,X(k),z

[AX(1),...,X(k)(z) 6= la(z)] = Pr

∑
j

Ej < k/2


≤ Pr

∣∣∣∣∣∣
∑

j

Ej − E

∑
j

Ej

∣∣∣∣∣∣ < εk


≤

Var[
∑

j Ej ]
ε2k2

(using Chebyshev′s inequality)

=

∑
j Var[Ej ]
ε2k2

(since the X′
js are pairwise independent)

=
1

4ε2k2

Taking k = 4/ε2 gives

Pr
X(1),...,X(k),z

[AX(1),...,X(k)(z) 6= la(z)] ≥ 1
16

⇒ Pr
X(1),...,X(k)

[
Pr
z

[AX(1),...,X(k)(z) 6= la(z)] ≤ 1
8

]
≥ 1

2
(using Markov′s inequality)
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This shows that if we just randomly pick X(1), . . . , X(k) and create the subroutine AX(1),...X(k)(),
then with high probability it provides us with low-error-data. So it is possible use the algorithm
Find-Unique-Solution() with the only modification of using AX(1),...X(k) to find values of f instead
of querying the oracle. Since the complexity of AX(1),...X(k)() is O( 1

ε2
), the total complexity now

becomes O( 1
ε2

n log n). The probability of success is at least 1
2 −δ, which can be amplified (to above

1
2 as stated in the theorem) by repeating the algorithm a constant number of times.

4 The final idea - using pseudorandomness!

Since the enigmatic “other” oracle which facilitated the construction of AX(1),...X(k) does not actually
exist, we need to try all possible guesses for the values of la(·) at each of these points. However,
this would make the complexity exponential in 1/ε which is clearly undesirable.

A better solution may be obtained by observing that in the previous proof we do not actually
require the points X(1), . . . , X(k) to be uniformly random but just pairwise independent. The
following construction gives us the value of la(·) at k pairwise independent points using only log k
guesses (for proof refer to lecture 1).

• Pick X1, . . . , Xt (where t = log k + 1).

• ∀S ⊆ 1, 2, . . . , t, S 6= ∅ define XS =
∑

i∈S Xi where summation represents bitwise addition
modulo 2. Then the 2k−1 variables generated are all pairwise independent - we may use any
k of them for the algorithm.

• Since la is a linear function for bit-vectors, we note that la(XS) =
∑

i∈S la(Xi)

The above construction requires to know the value of la(·) at only log k + 1 points. Thus, for these
we may try all possible guesses which increase the running time by a factor of 2t = 2k = O( 1

ε2
).

This then completes the algorithm and the overall time complexity is O( 1
ε4

n log n).

Combining the ideas so far, we get the final algorithm as follows:

Find-List()
Pick X1, . . . , Xt independently and uniformly at random
for every (b1, . . . , bt) ∈ {0, 1}t do

for every S ⊆ 1, . . . , t, S 6= ∅ do
Assign XS =

∑
i∈S Xi

Assign bS =
∑

i∈S bi

Define A(z) = majS⊆1,...,tS 6=∅ f(XS + z)− bS

for i = 1 to n do
for j = 1 to c log n do

Pick z ∈ {0, 1}n uniformly at random
Compute aij = A(z + ei)−A(z)

Take ai = maj(ai1, . . . , aij)
Add a to the list L

Output L
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5 Producing hard-core predicates

We know that pseudorandom generators can be constructed assuming existence of one way per-
mutations having a hard-core predicate. The Goldreich-Levin theorem allows us to to weaken
this assumption. We show that every one-way permutation allows us to define another one-way
permutation having a hard-core predicate. Formally, we intend to prove the following:

Lemma 2 Let p : {0, 1}n → {0, 1}n be an (S, ε) one-way permutation computable by a circuit of
size t. Then q : {0, 1}2n → {0, 1}2n defined as q(x, y) := (p(x), y) is another one-way permutation
for which the predicate B(x, y) := x · y is (S′, ε′) hard-core. The sizes S and S′ are polynomially
related.

Proof: It is easy to see that q(x, y) is a permutation. It is also one-way because a circuit which
inverts it will also be able to invert p(x). Suppose that B(x, y) is not (S′, ε′) hard-core for q(·).
This means that ∃A (a circuit) with A = |S′| s.t.

Pr
x,y∼{0,1}n

[A(p(x), y) = x · y] ≥ 1
2

+ ε

⇒ Pr
y|x

[A(p(x), y) = x · y] ≥ 1
2

+ ε (As the distribution is uniform)

Thus, for a given x, A(p(x), y) defines a function on {0, 1}n which agrees with x.y with a positive
bias. Thus, given p(x), we proceed as follows to invert it:

• Define f(y) := A(p(x), y).

• Compute the list L of the possible values of x using the previous algorithm.

• ∀a ∈ L compute p(a) and output a if p(a) = p(x).

Thus, each query to the oracle is now replaced by an O(S′) circuit. This requires a time of
O(S′ 1

ε4
n log n) for producing the list and O( 1

ε2
) time for the check in the last step. So the total

running time of the above procedure is O(S′ 1
ε4

n log n + t
ε2

). Choosing S′ appropriately so that this
is less that S, we arrive at a contradiction. This proves the desired result. �
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