
U.C. Berkeley Handout N6
CS294: Pseudorandomness and Combinatorial Constructions September 15, 2005
Professor Luca Trevisan Scribe: Ben Reichardt

Notes for Lecture 6

Last time, we gave concrete and asymptotic definitions for one-way permutation, hard-core predi-
cate, indistinguishable distributions, and pseudorandom generator.

Today, we will show that if there is a permutation with a hard-core predicate, then there is a
pseudo-random generator. Precisely:

Theorem 1 If B : {0, 1}n → {0, 1} is (S, ε)-hard core for p : {0, 1}n → {0, 1}n, then

G(x
n

) = p(x)
n

, B(x)
1

is (S, ε)-pseudorandom.

Equivalently, we will show: If there exists a distinguisher circuit D of size ≤ S such that∣∣∣∣Pr
x

[D(p(x), B(x)) = 1]−Pr
x,r

[D(p(x), r) = 1]
∣∣∣∣ ≥ ε , (1)

then ∃ C of size ≤ S : Prx[C(p(x)) = B(x)] ≥ 1
2 + ε.

Proof: Without loss of generality, we may assume the distinguishing difference in Eq. (1) is
positive – otherwise use D̄ (recall that NOT gates aren’t counted towards the circuit size). We
give two (equivalent) constructions. The first is optimal and simpler, but perhaps less intuitive.

1.

Input z (= p(x))
Pick b ∈ {0, 1} at random
if D(z, b) = 1

then output b
else output 1-b

Let Ab(z) be the output of the algorithm (not yet a circuit) on input z, random choice b.
Then

Pr
x,b

[Ab(p(x)) = B(x)] = 1
2

(
Pr
x

[AB(p) = B] + Pr
x

[AB̄(p) = B]
)

= 1
2

(
Pr
x

[D(p, B) = 1] + Pr
x

[D(p, B̄) = 0]
)

≥ 1
2 + ε .

Here the first equality is from averaging over the cases b = B(x) and b = B(x). The second
equality is from the definition of the algorithm: AB(p) = B ⇔ D(p, B) = 1, and AB̄(p) =
B ⇔ D(p, B̄) = 0. The final inequality came from substituting Prx[D(p, B̄) = 0] = 1 −
Prx[D(p, B̄) = 1] and using

ε ≤ Pr
x

[D(p, B) = 1]−Pr
x,r

[D(p, r) = 1]

= Pr
x

[D(p, B) = 1]− 1
2

(
Pr
x

[D(p, 0) = 1] + Pr
x

[D(p, 1) = 1]
)

= 1
2

(
Pr
x

[D(p, B) = 1]−Pr
x

[D(p, B̄) = 1]
)

.

1

To get a circuit from this algorithm, note that there exists a fixed b0 ∈ {0, 1} so Prx[Ab0(p(x)) =
B(x)] ≥ 1

2 + ε. The circuit for A0(z) is D(z, 0), and the circuit for A1(z) is D(z, 1). In either
case, the size is at most S.

2.

Input z (= p(x))
Compute D(z, 0) D(z, 1)
case : 0 0 output random bit

0 1 output 1
1 0 output 0
1 1 output random bit

This algorithm is equivalent to the first algorithm because the random bit, call it b, can be
chosen before computing D(z, 0) and D(z, 1). If we then output 1 − b on case (0, 0), and b
on case (1, 1), then the output is always determined by only D(z, b); evaluating D(z, 1− b) is
unnecessary. Regardless, we shall give a separate analysis.

Define the four disjoint events E00, E11, Ec, Ew according to the the four possibilities for
(D(z, 0), D(z, 1)): either (0, 0), (1, 1), (B̄, B) or (B, B̄) respectively. That is, E00 ≡ {x :
D(p(x), 0) = 0, D(p(x), 1) = 0} and similarly for the other events. Using these definitions, we
get

ε ≤ Pr[D(p, B) = 1]−Pr[D(p, r) = 1]
= (Pr[Ec] + Pr[E11])−

(
Pr[E11]− 1

2 Pr[Ec]− 1
2 Pr[Ew]

)
= 1

2 (Pr[Ec]−Pr[Ew]) ,

and therefore the algorithm is correct with probability

Pr[correct] = 1
2 Pr[E00] + 1

2 Pr[E11] + Pr[Ec]
≥ 1

2 (Pr[E00] + Pr[E11] + Pr[Ec] + Pr[Ew]) + ε

= 1
2 · 1 + ε .

�

We have shown how given an n-bit permutation with a hard-core predicate, we get a pseudo-random
generator {0, 1}n → {0, 1}n+1 with the same security parameters. Now how can we get a PRG
with longer stretch?

How to get a longer stretch

For G : {0, 1}n → {0, 1}n+1, define G(k) : {0, 1}n → {0, 1}n+k by composing G on its n of its output
bits k times sequentially. The extra output bit from each round, together with the n+1 bits output
from the last round, form the output of G(k):

G(k):

k

n n+1

G GG … G

n+k output bits

2

Theorem 2 If G is (S, ε)-pseudorandom and computable by a circuit of size t, then G(k) is (S −
O(tk), kε)-pseudorandom.

Notice that the circuit size security parameter decreases in addition to the ε parameter increasing.
This reflects that in our proof by contradiction, given a distinguisher for G(k) we will build a
distinguisher for G essentially by adding on the computation of at most k rounds of G. As an aside,
it is certainly important that G be efficiently computable. Say for example that f : {0, 1}n → {0, 1}
satisfies that for all circuits C of size ≤ S, Pr[C(x) = f(x)] ≤ 1

2 + ε. Then x 7→ x, f(x) is (S, ε)-
pseudorandom. But applying this construction would result in the first k bits being constant,
certainly not random-looking.

Proof: Say we have D of size S such that
∣∣Pr[D(G(k)(x) = 1]−Pr[D(r) = 1]

∣∣ ≥ ε. We want to
show that there is a C of size ≤ S + O(tk) such that |Pr[C(G(x)) = 1]−Pr[C(r) = 1]| ≥ ε. The
argument is by the standard hybrid technique. Assume for simplicity that G is a PRG of the form
we constructed earlier today: G(x) = (p(x), B(x)). Define the following distributions H0, . . . ,Hk:

H0: B(x), B(p(x)), B(p(2)(x)), . . ., G(p(k−1)(x))
H1: r1 , B(p(x)), B(p(2)(x)), . . ., G(p(k−1)(x))
H2: r1 , r2 , B(p(2)(x)), . . ., G(p(k−1)(x))
...

Hk: r1 , r2 , r3 , . . ., rk, p(k)(x)

In each case, x is chosen at random from {0, 1}n and independently r1, . . . , rk each at random from
{0, 1}. Then H0 ∼ output of G(k), while Hk ∼ the uniform distribution. Since

ε ≤ Pr[D(H0) = 1]−Pr[D(Hk) = 1] =
k−1∑
i=0

(
Pr[D(Hi) = 1]−Pr[D(Hi+1 = 1]

)
(where we have w.l.o.g. assumed Pr[D(H0) = 1] > Pr[D(Hk) = 1] and telescoped the sum), there
exists an i such that Pr[D(Hi) = 1]−Pr[D(Hi+1) = 1] ≥ ε/k.

We will finish the proof next time. But the basic idea is that our G-distinguisher C will construct
either the distribution Hi or Hi+1 (depending on whether its input is from G or is truly random)
using at most k computations of G. It then feeds this distribution over {0, 1}n+k to the G(k)-
distinguisher D. �

3

