U.C. Berkeley Handout N6
(CS294: Pseudorandomness and Combinatorial Constructions September 15, 2005
Professor Luca Trevisan Scribe: Ben Reichardt

Notes for Lecture 6

Last time, we gave concrete and asymptotic definitions for one-way permutation, hard-core predi-
cate, indistinguishable distributions, and pseudorandom generator.

Today, we will show that if there is a permutation with a hard-core predicate, then there is a
pseudo-random generator. Precisely:

Theorem 1 If B: {0,1}" — {0,1} is (S, €)-hard core for p:{0,1}" — {0,1}", then
G(a) = pla), B(a)

[
n 1

n

is (S, €)-pseudorandom.
Equivalently, we will show: If there exists a distinguisher circuit D of size < .S such that

Pr(D(p(x), B()) = 1] = PriD(p(e),r) = 1]| Z € . M

then 3 C of size < S : Pry[C(p(z)) = B(z)] > & + €.

ProOF: Without loss of generality, we may assume the distinguishing difference in Eq. (1) is
positive — otherwise use D (recall that NOT gates aren’t counted towards the circuit size). We
give two (equivalent) constructions. The first is optimal and simpler, but perhaps less intuitive.

Input z (= p(z))

Pick b € {0,1} at random
1. [if D(z,b) =1

then output b

else output 1-b

Let Ap(z) be the output of the algorithm (not yet a circuit) on input z, random choice b.
Then

Pr{A(p(z)) = B(z)]

z,b % (%r[AB(p) = B]+Pr[Az(p) = B])

= 1 (Pr(D(p. B) = 1] + Pr[D(p. B) = 1))

T
1
2 §+6.

Here the first equality is from averaging over the cases b = B(x) and b = B(z). The second
equality is from the definition of the algorithm: Ap(p) = B < D(p,B) = 1, and Agp(p) =
B < D(p,B) = 0. The final inequality came from substituting Pr,[D(p, B) = 0] = 1 —
Pr,[D(p, B) = 1] and using
€ < PI'[D(p, B) = 1] - PI'[D(p, T) = 1]
x,r

T

— Pr[D(p, B) = 1] - § (Pr[D(p,0) = 1] + Pr[D(p, 1) = 1]

T

= L (Br[D(p. B) = 1] - Pr[D(p. B) = 1])

1

O

To get a circuit from this algorithm, note that there exists a fixed by € {0, 1} so Pry[A4p, (p(x)) =
B(z)] > 1 + €. The circuit for Ag(z) is D(z,0), and the circuit for A;(z) is D(z,1). In either
case, the size is at most S.

Input z (= p(x)
Compute D(z,0) D(z,1)
case : 0 output random bit
1 output 1
0 output 0
1

)
z
0
0
1
1 output random bit

This algorithm is equivalent to the first algorithm because the random bit, call it b, can be
chosen before computing D(z,0) and D(z,1). If we then output 1 — b on case (0,0), and b
on case (1,1), then the output is always determined by only D(z,b); evaluating D(z,1 —b) is
unnecessary. Regardless, we shall give a separate analysis.

Define the four disjoint events Fgy, F11, E., F, according to the the four possibilities for
(D(z,0), D(2,1)): either (0,0), (1,1), (B, B) or (B, B) respectively. That is, Egp = {z :
D(p(x),0) = 0,D(p(x),1) = 0} and similarly for the other events. Using these definitions, we
get

e < Pr[D(p,B)=1]—Pr[D(p,r) =1]

= (Pr[EJ]+ Pr[Ey]) — (Pr[En] — 3 Pr[E] — § Pr[E,))
= %(Pr[Ec] - Pr[Ey,]) ,

and therefore the algorithm is correct with probability

Prlcorrect] = $Pr[Ey)+ 3 Pr[Ey] + Pr[E]
> L (Pr[Eg) + Pr[Ey] + Pr|E] 4+ Pr[E,]) + ¢
= % ‘14e€ .

We have shown how given an n-bit permutation with a hard-core predicate, we get a pseudo-random
generator {0,1}" — {0,1}"*! with the same security parameters. Now how can we get a PRG
with longer stretch?

How to get a longer stretch

For G : {0,1}" — {0,1}"*!, define G® : {0,1}" — {0,1}"** by composing G on its n of its output
bits k times sequentially. The extra output bit from each round, together with the n+ 1 bits output
from the last round, form the output of G*):

k
pu— N
n | n+1 -
Gh: 3G G G G

n+k output bits

Theorem 2 If G is (S, €)-pseudorandom and computable by a circuit of size t, then G®) s (S —
O(tk), ke)-pseudorandom.

Notice that the circuit size security parameter decreases in addition to the € parameter increasing.
This reflects that in our proof by contradiction, given a distinguisher for G*) we will build a
distinguisher for G essentially by adding on the computation of at most k rounds of G. As an aside,
it is certainly important that G be efficiently computable. Say for example that f : {0,1}" — {0,1}
satisfies that for all circuits C of size < S, Pr[C(z) = f(z)] < 5 + €. Then z — z, f(z) is (S, €)-
pseudorandom. But applying this construction would result in the first & bits being constant,
certainly not random-looking.

PROOF: Say we have D of size S such that !Pr[D(G(k) (z) = 1] = Pr[D(r) = 1]| > e. We want to
show that there is a C' of size < S + O(tk) such that |Pr[C(G(z)) = 1] — Pr[C(r) = 1]| > €. The
argument is by the standard hybrid technique. Assume for simplicity that G is a PRG of the form
we constructed earlier today: G(z) = (p(z), B(x)). Define the following distributions Hy, ..., Hj:

Ho: B(x), Bp(x)), B0 (2)), ..., Gp*~(z))
Hy: ri, B(p(x)), B (2)), ..., Gp*~1(x))
HQ: o, T2 3 B(p(Q)(x))>) G(p(kil)(w))
Hy: o, T2, rs . 1 pM(2)
In each case, z is chosen at random from {0, 1}" and independently ry, ..., 7 each at random from

{0,1}. Then Hy ~ output of G*), while H}, ~ the uniform distribution. Since

¢ < Pr[D(Ho) =1] = Pr[D(Hy) =1] =) (Pr[D(H;) = 1] — Pr[D(H;1 = 1])

i

Ead
—_

I
o

(where we have w.l.o.g. assumed Pr[D(Hy) = 1] > Pr[D(H}) = 1] and telescoped the sum), there
exists an i such that Pr[D(H;) = 1] — Pr[D(H;+1) = 1] > €/k.

We will finish the proof next time. But the basic idea is that our G-distinguisher C' will construct
either the distribution H; or H;;+1 (depending on whether its input is from G or is truly random)
using at most k computations of G. It then feeds this distribution over {0,1}*** to the G®*)-
distinguisher D. [J

