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Notes for Lecture 4

In the last lecture we defined the Fourier coefficients of Boolean functions and studied some of their
properties. Recall that

e Any Boolean function f: {0,1}" — {—1,1} may be expressed uniquely as

f)y= Y F(S)us(z)

SC{1,...,n}

where ug(z) = (—1)%is % and f(S) = (f,us) = Eqnfo,}n f(z)us(z).

e f(0) =Epqo1} f(2)
o Sslf(9) < Vvn

« s M) =1
o If z1,..., 2, are e-biased and f :{0,1}" — R then

f(@) =Ef(z,-- -, 20)

x~{0,1}"

§2€Z‘f(5)’

SH#0D

o If z1,..., 2, are e-biased and f:{0,1}" — {—1,1} then

P 1) = 1= Pr{f(a1, o) = 1]‘ < ag;@ ’f(S)‘

e If a Boolean function f depends on only k of its input bits then > g 17(S)| < V2.

Today we will see some classes of functions for which e-biased distributions are e-pseudorandom.
Fix (a1,...ax) € {0,1}*. Let f:{0,1}* — {—1,1} be defined by

f(ml,...,xk) =

1 otherwise

{—1 ifVvi z;,=aq

Let us estimate the Fourier coefficients of f. For any S # () we have

~

f(S) =E f(z)us(z) = 2Pr[f(z) = us(z)] — 1

Since 3 — 2% < Pr[f(z) = ug(z)] < 5 + 2% we have )]‘A‘(S)‘ < Z. It follows that >540 ‘f(S)‘ <

27-
k_
2(22k L < 2. Thus for every fixed pattern a = (aq,...,ax) and every e-biased random variable

z = (z1,...,2k), the function f as defined above satisfies |Pr[f(z) = —1] — Pr[f(z) = —1]| < 2e,

i e., 2% —Pr[z = a]’ < 2e.




Now recall that if f : {0,1}" — {—1,1} is a function that depends on only k of its input bits,
i1,...,1, then f(S) = 0 for every S which is not a subset of {iy,...,ix}. It follows that for any
k-bit pattern a;,, ..., a;, the function f:{0,1}" — {—1,1} defined by

f(xl,...,xk):{ J J J

1 otherwise

has the property that 257&@ ‘f(S)) <2.

A decision tree on n inputs is a rooted binary tree in which each non-leaf node is labelled with some
input variable z;,1 <7 < n. The two subtrees of the node correspond to the further computation
when the variable x; at the node takes value 0 or 1. Each leaf is labelled with a return value of
the function to be computed. Computation on input x = (x1,...,x,) proceeds by starting at the
root, and examining the variable z; with which the root is labelled. Depending on the value of
x; computation proceeds recursively in the appropriate subtree. When a leaf is reached, the value
of the leaf is returned. Note that each leaf corresponds to a (partial) pattern of variable settings.
By size of the decision tree we will mean the number of leaves. We will show that the size of a
decision tree is an upper bound on the sum of the non-principal Fourier coefficients of the function
it computes.

Suppose f : {0,1}" — {—1,1} is computable by a decision tree with m leaves. (Note that we are
not making any assumption about the optimality of the tree.) For each leaf ¢ of the decision tree
we define the auxiliary function

£l {O if computation on x does not lead to £
\T) =

output of / otherwise

i. €., f¢ is non-zero only on inputs that lead the conputation to ¢. (Note that f; is not a boolean
function.) Since every input x leads the computation to exactly one leaf, we have

flxy,...,xn) = ng(xl,...,:cn).
l

Taking Fourier expansions of the auxiliary functions we have

F@) =3 fole) = SN FulS)us(a) = 3 (Z ﬁ(b*)) us (x).
l V4 S S 4

By the uniqueness of Fourier expansions, f(S) = o0 fg(S ) for each S, and we have

z\f<s>\=z|2ﬁ<s> <SP || =2 [ X |hs)]
S#0 | ¢ S#) ¢ ¢ \S#0

S£0

Thus it suffices to bound the sum of the non-principal Fourier coefficients for each fg.
For each leaf ¢ define the function g, : {0,1}" — {—1,1} as follows:

—1 if z leads to ¢

ge(x) =1 — 2(output of ¢) fo(x) = .
1 otherwise
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Then g, is a Boolean function corresponding to a fixed (partial) pattern of settings of the input
variables. For such g, we have already seen that 3 ¢ |¢(S)| < 2. Now for S # 0,

3(S) = (ge,us) = (L £ 2fo,us) = (1, ug) £ 2(fo, us) = 0+ 2(fo, us) = £2f,(S)

so that |gp(S)| = 2’%(5)‘ and hence } ¢ ‘ﬁ(S)‘ < 1. We have shown

Theorem 1 If a function f : {0,1}" — {—1,1} is computable by a decision tree with m leaves
then 3 g ’f(S)’ < m.

In fact the same conclusion holds if instead of decision trees we have generalized decision trees in
which the non-leaf nodes are labelled with parities of (subsets of) input variables.

To see this, note that since parity is addition mod 2, a path from the root to a leaf corresponds to
a system Az = b of linear equations over 5. Let r be the rank of A. For a leaf ¢ define

(x) —1 ifAz =0
xTr) =
gt 1 otherwise

Since f(z) =), x2) 1(output of £), once again it is sufficient to show that > ¢4 [ge(5)[ < 2.

If the system Az = b is inconsistent, then gy = 1 and for all non-empty S, g;(S) = 0. If it is
consistent, then without loss of generality (by deleting redundant rows) we may assume that the
rows of A are linearly independent mod 2 (i.e., A is an r X n matrix). Let M be any full-rank
n x n matrix over {0, 1} which agrees with A on the first r rows. (Such a matrix M exists because
a linearly independent set of vectors may always be extended to a basis.) Let h : {0,1}" — {—1,1}
be defined by

—1 iffor1<i<r, y =¥
h(y) = .
1 otherwise

Then we know that > ¢ ’E(S)‘ < 2. Also gy(z) = h(Mz) and we have

at(S) = (ge,us)
Ege<x><—1>5‘w
E h(Mz)(—1)5" (M~ Mz)

= (—

= Eh(Maz)(—1)5"M D)
= (h,Uns-1ys)

= h((M7)'S)

where the superscript ¢ denotes transpose and by abuse of notation we use S to denote the {0,1}-
vector of inclusion in set S. Under this identification, (M ~1)!S is some other subset of {1,...,n}
and we’ve shown that the non-principal Fourier coefficients of g, are just some permutation of the
non-principal Fourier coefficients of h. It follows that > 4 [G:(S)] < 2.
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Thus we have shown that an (¢/m)-biased distribution is e-pseudorandom for the class of all Boolean
functions f that are computable by decision trees (with nodes labelled by parities) with m leaves.

Next we will consider consider functions representable by k-CNF formulas of small size. We’ll say
f:{0,1}" — {—1,1} is a k-CNF with m clauses if there is a k~-CNF formula ¢ with m clauses such
that

flay,... zpn) =

—1 if o is satisfied by x1,..., 2,
1 otherwise

It turns out that there are 2-CNF functions f with m = O(n) clauses for which } g )f(S)‘ =

29(n) - Therefore we cannot apply the previous arguments to show pseudorandomness of e-biased
distributions for this class. However it can be shown that if f is a k-CNF with m clauses and
21y .., zn is €92") biased then (#1,...,2n) is e-pseudorandom for f.

Conjecture 1 If z1,..., 2z, is poly(c/m)-biased then it is e-pseudorandom for the class of k-CNF's
with m clauses.

Conjecture 2 If z1,...,2, is (W) -biased then it is e-pseudorandom for the class of func-
tions that are computable by circuits of size s and depth d.



