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Notes for Lecture 4

In the last lecture we defined the Fourier coefficients of Boolean functions and studied some of their
properties. Recall that

• Any Boolean function f : {0, 1}n → {−1, 1} may be expressed uniquely as

f(x) =
∑

S⊆{1,...,n}

f̂(S)uS(x)

where uS(x) = (−1)
P

i∈S xi and f̂(S) = (f, uS) = Ex∼{0,1}n f(x)uS(x).

• f̂(∅) = Ex∼{0,1}n f(x)

•
∑

S |f̂(S)| ≤
√

2n

•
∑

S f̂2(S) = 1

• If z1, . . . , zn are ε-biased and f : {0, 1}n → R then∣∣∣∣∣ E
x∼{0,1}n

f(x)− E f(z1, . . . , zn)

∣∣∣∣∣ ≤ 2ε
∑
S 6=∅

∣∣∣f̂(S)
∣∣∣

• If z1, . . . , zn are ε-biased and f : {0, 1}n → {−1, 1} then∣∣∣∣ Pr
x∼{0,1}n

[f(x) = 1]−Pr[f(z1, . . . , zn) = 1]
∣∣∣∣ ≤ ε

∑
S 6=∅

∣∣∣f̂(S)
∣∣∣

• If a Boolean function f depends on only k of its input bits then
∑

S 6=∅ |f̂(S)| ≤
√

2k.

Today we will see some classes of functions for which ε-biased distributions are ε-pseudorandom.

Fix (a1, . . . ak) ∈ {0, 1}k. Let f : {0, 1}k → {−1, 1} be defined by

f(x1, . . . , xk) =

{
−1 if ∀i xi = ai

1 otherwise

Let us estimate the Fourier coefficients of f . For any S 6= ∅ we have

f̂(S) = E f(x)uS(x) = 2Pr[f(x) = uS(x)]− 1

Since 1
2 −

1
2k ≤ Pr[f(x) = uS(x)] ≤ 1

2 + 1
2k we have

∣∣∣f̂(S)
∣∣∣ ≤ 2

2k . It follows that
∑

S 6=∅

∣∣∣f̂(S)
∣∣∣ ≤

2(2k−1)
2k ≤ 2. Thus for every fixed pattern a = (a1, . . . , ak) and every ε-biased random variable

z = (z1, . . . , zk), the function f as defined above satisfies |Pr[f(x) = −1]−Pr[f(z) = −1]| ≤ 2ε,
i. e.,

∣∣ 1
2k −Pr[z = a]

∣∣ ≤ 2ε.
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Now recall that if f : {0, 1}n → {−1, 1} is a function that depends on only k of its input bits,
i1, . . . , ik then f̂(S) = 0 for every S which is not a subset of {i1, . . . , ik}. It follows that for any
k-bit pattern ai1 , . . . , aik the function f : {0, 1}n → {−1, 1} defined by

f(x1, . . . , xk) =

{
−1 if ∀j xij = aij

1 otherwise

has the property that
∑

S 6=∅

∣∣∣f̂(S)
∣∣∣ ≤ 2.

A decision tree on n inputs is a rooted binary tree in which each non-leaf node is labelled with some
input variable xi, 1 ≤ i ≤ n. The two subtrees of the node correspond to the further computation
when the variable xi at the node takes value 0 or 1. Each leaf is labelled with a return value of
the function to be computed. Computation on input x = (x1, . . . , xn) proceeds by starting at the
root, and examining the variable xi with which the root is labelled. Depending on the value of
xi computation proceeds recursively in the appropriate subtree. When a leaf is reached, the value
of the leaf is returned. Note that each leaf corresponds to a (partial) pattern of variable settings.
By size of the decision tree we will mean the number of leaves. We will show that the size of a
decision tree is an upper bound on the sum of the non-principal Fourier coefficients of the function
it computes.

Suppose f : {0, 1}n → {−1, 1} is computable by a decision tree with m leaves. (Note that we are
not making any assumption about the optimality of the tree.) For each leaf ` of the decision tree
we define the auxiliary function

f`(x) =

{
0 if computation on x does not lead to `

output of ` otherwise

i. e., f` is non-zero only on inputs that lead the conputation to `. (Note that f` is not a boolean
function.) Since every input x leads the computation to exactly one leaf, we have

f(x1, . . . , xn) =
∑

`

f`(x1, . . . , xn).

Taking Fourier expansions of the auxiliary functions we have

f(x) =
∑

`

f`(x) =
∑

`

∑
S

f̂`(S)uS(x) =
∑
S

(∑
`

f̂`(S)

)
uS(x).

By the uniqueness of Fourier expansions, f̂(S) =
∑

` f̂`(S) for each S, and we have

∑
S 6=∅

∣∣∣f̂(S)
∣∣∣ = ∑

S 6=∅

∣∣∣∣∣∑
`

f̂`(S)

∣∣∣∣∣ ≤∑
S 6=∅

∑
`

∣∣∣f̂`(S)
∣∣∣ =∑

`

∑
S 6=∅

∣∣∣f̂`(S)
∣∣∣
 .

Thus it suffices to bound the sum of the non-principal Fourier coefficients for each f̂`.

For each leaf ` define the function g` : {0, 1}n → {−1, 1} as follows:

g`(x) = 1− 2(output of `)f`(x) =

{
−1 if x leads to `

1 otherwise
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Then g` is a Boolean function corresponding to a fixed (partial) pattern of settings of the input
variables. For such g` we have already seen that

∑
S 6=∅ |ĝ`(S)| ≤ 2. Now for S 6= ∅,

ĝ`(S) = (g`, uS) = (1± 2f`, uS) = (1, uS)± 2(f`, uS) = 0± 2(f`, uS) = ±2f̂`(S)

so that |ĝ`(S)| = 2
∣∣∣f̂`(S)

∣∣∣ and hence
∑

S 6=∅

∣∣∣f̂`(S)
∣∣∣ ≤ 1. We have shown

Theorem 1 If a function f : {0, 1}n → {−1, 1} is computable by a decision tree with m leaves
then

∑
S 6=∅

∣∣∣f̂(S)
∣∣∣ ≤ m.

In fact the same conclusion holds if instead of decision trees we have generalized decision trees in
which the non-leaf nodes are labelled with parities of (subsets of) input variables.

To see this, note that since parity is addition mod 2, a path from the root to a leaf corresponds to
a system Ax = b of linear equations over F2. Let r be the rank of A. For a leaf ` define

g`(x) =

{
−1 if Ax = b

1 otherwise

Since f(x) =
∑

`
g(x)−1

2 (output of `), once again it is sufficient to show that
∑

S 6=∅ |ĝ`(S)| ≤ 2.

If the system Ax = b is inconsistent, then g` ≡ 1 and for all non-empty S, ĝ`(S) = 0. If it is
consistent, then without loss of generality (by deleting redundant rows) we may assume that the
rows of A are linearly independent mod 2 (i. e., A is an r × n matrix). Let M be any full-rank
n× n matrix over {0, 1} which agrees with A on the first r rows. (Such a matrix M exists because
a linearly independent set of vectors may always be extended to a basis.) Let h : {0, 1}n → {−1, 1}
be defined by

h(y) =

{
−1 if for 1 ≤ i ≤ r, yi = bi

1 otherwise

Then we know that
∑

S 6=∅

∣∣∣ĥ(S)
∣∣∣ ≤ 2. Also g`(x) = h(Mx) and we have

ĝ`(S) = (g`, uS)

= E g`(x)(−1)Stx

= E h(Mx)(−1)St(M−1Mx)

= E h(Mx)(−1)(S
tM−1)(Mx)

= (h,U(M−1)tS)

= ĥ((M−1)tS)

where the superscript t denotes transpose and by abuse of notation we use S to denote the {0, 1}-
vector of inclusion in set S. Under this identification, (M−1)tS is some other subset of {1, . . . , n}
and we’ve shown that the non-principal Fourier coefficients of g` are just some permutation of the
non-principal Fourier coefficients of h. It follows that

∑
S 6=∅ |ĝ`(S)| ≤ 2.
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Thus we have shown that an (ε/m)-biased distribution is ε-pseudorandom for the class of all Boolean
functions f that are computable by decision trees (with nodes labelled by parities) with m leaves.

Next we will consider consider functions representable by k-CNF formulas of small size. We’ll say
f : {0, 1}n → {−1, 1} is a k-CNF with m clauses if there is a k-CNF formula ϕ with m clauses such
that

f(x1, . . . , xn) =

{
−1 if ϕ is satisfied by x1, . . . , xn

1 otherwise

It turns out that there are 2-CNF functions f with m = O(n) clauses for which
∑

S 6=∅

∣∣∣f̂(S)
∣∣∣ =

2Ω(n). Therefore we cannot apply the previous arguments to show pseudorandomness of ε-biased
distributions for this class. However it can be shown that if f is a k-CNF with m clauses and
z1, . . . , zn is εO(k2k)-biased then (z1, . . . , zn) is ε-pseudorandom for f .

Conjecture 1 If z1, . . . , zn is poly(ε/m)-biased then it is ε-pseudorandom for the class of k-CNFs
with m clauses.

Conjecture 2 If z1, . . . , zn is
(

1

2log(s/ε)O(d)

)
-biased then it is ε-pseudorandom for the class of func-

tions that are computable by circuits of size s and depth d.
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